1
|
Villacís JF, López-Rosero A, Bustillos JJ, Cadena M, Yumiseva CA, Grijalva MJ, Villacís AG. Bacterial microbiota from the gut of Rhodnius ecuadoriensis, a vector of Chagas disease in Ecuador's Central Coast and Southern Andes. Front Microbiol 2024; 15:1464720. [PMID: 39376708 PMCID: PMC11456480 DOI: 10.3389/fmicb.2024.1464720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Chagas disease is a neglected tropical disease caused by the parasite Trypanosoma cruzi that is transmitted mainly by the feces of infected Triatomines. In Ecuador the main vector is Rhodnius ecuadoriensis which is distributed in several provinces of the country. More than 40% of these insects in the wild have T. cruzi as part of their intestinal microbiota. For this reason, the objective of this research was to characterize the intestinal bacterial microbiota of R. ecuadoriensis. Methods The methodology used was based on the DNA extraction of the intestinal contents from the wild collected insects (adults and nymphs V), as well as the insects maintained at the insectary of the CISeAL. Finally, the samples were analyzed by metagenomics extensions based on the different selected criteria. Results The intestinal microbiota of R. ecuadoriensis presented a marked divergence between laboratory-raised and wild collected insects. This difference was observed in all stages and was similar between insects from Loja and Manabí. A large loss of microbial symbionts was observed in laboratory-raised insects. Discussion This study is a crucial first step in investigating microbiota interactions and advancing new methodologies.
Collapse
Affiliation(s)
- Juan F. Villacís
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Andrea López-Rosero
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan José Bustillos
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Matías Cadena
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - César A. Yumiseva
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| | - Anita G. Villacís
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
2
|
Melgar S, Castellanos S, Stevens L, Monroy MAC, Dorn PL. Genetic diversity of the Chagas vector Triatoma dimidiata s.l. (Hemiptera: Reduviidae) across geographic scales in a top-priority area for control. JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae066. [PMID: 38970363 DOI: 10.1093/jme/tjae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 07/08/2024]
Abstract
Population genetic structure of arthropod disease vectors provides important information on vector movement and climate or other environmental variables that influence their distribution. This information is critical for data-driven vector control. In the first comprehensive study of the genetic structure of T. dimidiata s.l. (Latreille, 1811) we focus on an area of active transmission designated as a top priority for control. We examined a high number of specimens across a broad geographic area along the border of Guatemala and El Salvador including multiple spatial scales using a high number of genome-wide markers. Measuring admixture, pairwise genetic differentiation, and relatedness, we estimated the specimens represented three genetic clusters. We found evidence of movement (migration/gene flow) across all spatial scales with more admixture among locations in El Salvador than in Guatemala. Although there was significant isolation by distance, the 2 close villages in Guatemala showed either the most or least genetic variation indicating an additional role of environmental variables. Further, we found that social factors may be influencing the genetic structure. We demonstrated the power of genomic studies with a large number of specimens across a broad geographic area. The results suggest that for effective vector control movement must be considered on multiple spatial scales along with its contributing factors.
Collapse
Affiliation(s)
- Sergio Melgar
- Faculty of Chemical Sciences and Pharmacy, School of Biology, Laboratory of Applied Entomology and Parasitology (LENAP-USAC), University of San Carlos of Guatemala, Guatemala City, Guatemala, USA
| | - Salvador Castellanos
- Faculty of Chemical Sciences and Pharmacy, School of Biology, Laboratory of Applied Entomology and Parasitology (LENAP-USAC), University of San Carlos of Guatemala, Guatemala City, Guatemala, USA
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, VT 05401, USA
| | - Marà A Carlota Monroy
- Faculty of Chemical Sciences and Pharmacy, School of Biology, Laboratory of Applied Entomology and Parasitology (LENAP-USAC), University of San Carlos of Guatemala, Guatemala City, Guatemala, USA
| | - Patricia L Dorn
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA 70118, USA
| |
Collapse
|
3
|
Schaub GA. Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors-A Review. Microorganisms 2024; 12:855. [PMID: 38792688 PMCID: PMC11123833 DOI: 10.3390/microorganisms12050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
4
|
Busselman RE, Curtis-Robles R, Meyers AC, Zecca IB, Auckland LD, Hodo CL, Christopher D, Saunders AB, Hamer SA. Abundant triatomines in Texas dog kennel environments: Triatomine collections, infection with Trypanosoma cruzi, and blood feeding hosts. Acta Trop 2024; 250:107087. [PMID: 38061614 DOI: 10.1016/j.actatropica.2023.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Triatomine insects are vectors of the protozoan parasite Trypanosoma cruzi- the causative agent of Chagas disease. Chagas disease is endemic to Latin America and the southern United States and can cause severe cardiac damage in infected mammals, ranging from chronic disease to sudden death. Identifying interactions among triatomines, T. cruzi discrete typing units (DTUs), and blood feeding hosts is necessary to understand parasite transmission dynamics and effectively protect animal and human health. Through manual insect trapping efforts, kennel staff collections, and with the help of a trained scent detection dog, we collected triatomines from 10 multi-dog kennels across central and south Texas over a one-year period (2018-2019) and tested a subset to determine their T. cruzi infection status and identify the primary bloodmeal hosts. We collected 550 triatomines, including Triatoma gerstaeckeri (n = 515), Triatoma lecticularia (n = 15), Triatoma sanguisuga (n = 6), and Triatoma indictiva (n = 2), with an additional 10 nymphs and 2 adults unable to be identified to species. The trained dog collected 42 triatomines, including nymphs, from areas not previously considered vector habitat by the kennel owners. Using qPCR, we found a T. cruzi infection prevalence of 47 % (74/157), with T. lecticularia individuals more likely to be infected with T. cruzi than other species. Infected insects harbored two T. cruzi discrete typing units: TcI (64 %), TcIV (23 %), and mixed TcI/TcIV infections (13 %). Bloodmeal host identification was successful in 50/149 triatomines, revealing the majority (74 %) fed on a dog (Canis lupus), with other host species including humans (Homo sapiens), raccoons (Procyon lotor), chickens (Gallus gallus), wild pig (Sus scrofa), black vulture (Coragyps atratus), cat (Felis catus), and curve-billed thrasher (Toxostoma curviostre). Given the frequency of interactions between dogs and infected triatomines in these kennel environments, dogs may be an apt target for future vector control and T. cruzi intervention efforts.
Collapse
Affiliation(s)
- R E Busselman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - R Curtis-Robles
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - A C Meyers
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - I B Zecca
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - L D Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - C L Hodo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States; Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
| | | | - A B Saunders
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - S A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
5
|
Barnabé C, Brenière SF, Santillán-Guayasamín S, Douzery EJP, Waleckx E. Revisiting gene typing and phylogeny of Trypanosoma cruzi reference strains: Comparison of the relevance of mitochondrial DNA, single-copy nuclear DNA, and the intergenic region of mini-exon gene. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105504. [PMID: 37739149 DOI: 10.1016/j.meegid.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Chagas disease is a widespread neglected disease in Latin America. Trypanosoma cruzi, the causative agent of the disease, is currently subdivided into six DTUs (discrete typing units) named TcI-TcVI, and although no clear association has been found between parasite genetics and different clinical outcomes of the disease or different transmission cycles, genetic characterization of T. cruzi strains remains crucial for integrated epidemiological studies. Numerous markers have been used for this purpose, although without consensus. These include mitochondrial genes, single or multiple-copy nuclear genes, ribosomal RNA genes, and the intergenic region of the repeated mini-exon gene. To increase our knowledge of these gene sequences and their usefulness for strain typing, we sequenced fragments of three mitochondrial genes, nine single-copy nuclear genes, and the repeated intergenic part of the mini-exon gene by Next Generation Sequencing (NGS) on a sample constituted of 16 strains representative of T. cruzi genetic diversity, to which we added the corresponding genetic data of the 38 T. cruzi genomes fully sequenced until 2022. Our results show that single-copy nuclear genes remain the gold standard for characterizing T. cruzi strains; the phylogenetic tree from concatenated genes (3959 bp) confirms the six DTUs previously recognized and provides additional information about the alleles present in the hybrid strains. In the tree built from the three mitochondrial concatenated genes (1274 bp), three main clusters are identified, including one with TcIII, TcIV, TcV, and TcVI DTUs which are not separated. Nevertheless, mitochondrial markers remain necessary for detecting introgression and heteroplasmy. The phylogenetic tree built from the sequence alignment of the repeated mini-exon gene fragment (327 bp) displayed six clusters, but only TcI was associated with a single cluster. The sequences obtained from strains belonging to the other DTUs were scattered into different clusters. Therefore, while the mini-exon marker may bring, for some biological samples, some advantages in terms of sensibility due to its repeated nature, mini-exon sequences must be used with caution and, when possible, avoided for T. cruzi typing and phylogenetic studies.
Collapse
Affiliation(s)
- Christian Barnabé
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France.
| | - Simone Frédérique Brenière
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France
| | - Soledad Santillán-Guayasamín
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France; Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Emmanuel J P Douzery
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.
| | - Etienne Waleckx
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD, CIRAD, University of Montpellier, Montpellier, France; Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico; ACCyC, Asociación Chagas con Ciencia y Conocimiento, A. C, Orizaba, Mexico.
| |
Collapse
|
6
|
Tarabai H, Floriano AM, Zima J, Filová N, Brown JJ, Roachell W, Smith RL, Beatty NL, Vogel KJ, Nováková E. Microbiomes of Blood-Feeding Triatomines in the Context of Their Predatory Relatives and the Environment. Microbiol Spectr 2023; 11:e0168123. [PMID: 37289079 PMCID: PMC10433993 DOI: 10.1128/spectrum.01681-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
The importance of gut microbiomes has become generally recognized in vector biology. This study addresses microbiome signatures in North American Triatoma species of public health significance (vectors of Trypanosoma cruzi) linked to their blood-feeding strategy and the natural habitat. To place the Triatoma-associated microbiomes within a complex evolutionary and ecological context, we sampled sympatric Triatoma populations, related predatory reduviids, unrelated ticks, and environmental material from vertebrate nests where these arthropods reside. Along with five Triatoma species, we have characterized microbiomes of five reduviids (Stenolemoides arizonensis, Ploiaria hirticornis, Zelus longipes, and two Reduvius species), a single soft tick species, Ornithodoros turicata, and environmental microbiomes from selected sites in Arizona, Texas, Florida, and Georgia. The microbiomes of predatory reduviids lack a shared core microbiota. As in triatomines, microbiome dissimilarities among species correlate with dominance of a single bacterial taxon. These include Rickettsia, Lactobacillus, "Candidatus Midichloria," and Zymobacter, which are often accompanied by known symbiotic genera, i.e., Wolbachia, "Candidatus Lariskella," Asaia, Gilliamella, and Burkholderia. We have further identified a compositional convergence of the analyzed microbiomes in regard to the host phylogenetic distance in both blood-feeding and predatory reduviids. While the microbiomes of the two reduviid species from the Emesinae family reflect their close relationship, the microbiomes of all Triatoma species repeatedly form a distinct monophyletic cluster highlighting their phylosymbiosis. Furthermore, based on environmental microbiome profiles and blood meal analysis, we propose three epidemiologically relevant and mutually interrelated bacterial sources for Triatoma microbiomes, i.e., host abiotic environment, host skin microbiome, and pathogens circulating in host blood. IMPORTANCE This study places microbiomes of blood-feeding North American Triatoma vectors (Reduviidae) into a broader evolutionary and ecological context provided by related predatory assassin bugs (Reduviidae), another unrelated vector species (soft tick Ornithodoros turicata), and the environment these arthropods coinhabit. For both vectors, microbiome analyses suggest three interrelated sources of bacteria, i.e., the microbiome of vertebrate nests as their natural habitat, the vertebrate skin microbiome, and the pathobiome circulating in vertebrate blood. Despite an apparent influx of environment-associated bacteria into the arthropod microbiomes, Triatoma microbiomes retain their specificity, forming a distinct cluster that significantly differs from both predatory relatives and ecologically comparable ticks. Similarly, within the related predatory Reduviidae, we found the host phylogenetic distance to underlie microbiome similarities.
Collapse
Affiliation(s)
- Hassan Tarabai
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
| | - Anna Maria Floriano
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Jan Zima
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Natalia Filová
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Joel J. Brown
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Cornell University, Department of Entomology, Ithaca, New York, USA
| | - Walter Roachell
- Public Health Command-Central, Fort Sam Houston, San Antonio, Texas, USA
| | - Robert L. Smith
- The University of Arizona, Department of Entomology and Desert Station, Tucson, Arizona, USA
| | - Norman L. Beatty
- University of Florida College of Medicine, Department of Medicine, Division of Infectious Disease and Global Medicine, and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Kevin J. Vogel
- The University of Georgia, Department of Entomology, Athens, Georgia, USA
| | - Eva Nováková
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, Ceske Budejovice, Czech Republic
| |
Collapse
|
7
|
Segovia M, Schwabl P, Sueto S, Nakad CC, Londoño JC, Rodriguez M, Paiva M, Llewellyn MS, Carrasco HJ. Vector mapping and bloodmeal metabarcoding demonstrate risk of urban Chagas disease transmission in Caracas, Venezuela. PLoS Negl Trop Dis 2023; 17:e0010613. [PMID: 36930686 PMCID: PMC10057784 DOI: 10.1371/journal.pntd.0010613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/29/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Chagas disease is a significant public health risk in rural and semi-rural areas of Venezuela. Triatomine infection by the aetiological agent Trypanosoma cruzi is also observed in the Metropolitan District of Caracas (MDC), where foodborne T. cruzi outbreaks occasionally occur but active vector-to-human transmission (infection during triatomine bloodmeal) is considered absent. Citizen science-based domiciliary triatomine collection carried out between 2007 and 2013 in the MDC has advanced understanding of urban T. cruzi prevalence patterns and represents an important public awareness-building tool. The present study reports on the extension of this triatomine collection program from 2014 to 2019 and uses mitochondrial metabarcoding to assess feeding behavior in a subset of specimens. The combined, thirteen-year dataset (n = 4872) shows a high rate of T. cruzi infection (75.2%) and a predominance of Panstrongylus geniculatus (99.01%) among triatomines collected in domiciliary areas by MDC inhabitants. Collection also involved nymphal stages of P. geniculatus in 18 of 32 MDC parishes. Other collected species included Triatoma nigromaculata, Triatoma maculata, Rhodnius prolixus, and Panstrongylus rufotuberculatus. Liquid intestinal content indicative of bloodmeal was observed in 53.4% of analyzed specimens. Dissection pools representing 108 such visually blooded P. geniculatus specimens predominantly tested positive for human cytochrome b DNA (22 of 24 pools). Additional bloodmeal sources detected via metabarcoding analysis included key sylvatic T. cruzi reservoirs (opossum and armadillo), rodents, and various other synanthropic and domesticated animals. Results suggest a porous sylvatic-domiciliary transmission interface and ongoing adaptation of P. geniculatus to the urban ecotope. Although P. geniculatus defecation traits greatly limit the possibility of active T. cruzi transmission for any individual biting event, the cumulation of this low risk across a vast metropolitan population warrants further investigation. Efforts to prevent triatomine contact with human food sources also clearly require greater attention to protect Venezuela's capital from Chagas disease.
Collapse
Affiliation(s)
- Maikell Segovia
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Philipp Schwabl
- School of Biodiversity, One Health Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Salem Sueto
- School of Biodiversity, One Health Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Candy Cherine Nakad
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Juan Carlos Londoño
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Marlenes Rodriguez
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Manuel Paiva
- Escuela de Salud Pública, Universidad Central de Venezuela, Caracas, Venezuela
| | - Martin Stephen Llewellyn
- School of Biodiversity, One Health Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Hernán José Carrasco
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
- * E-mail:
| |
Collapse
|
8
|
Arias MB, Hartle-Mougiou K, Taboada S, Vogler AP, Riesgo A, Elfekih S. Unveiling biogeographic patterns in the worldwide distributed Ceratitis capitata (medfly) using populations genomics and microbiome composition. Mol Ecol 2022; 31:4866-4883. [PMID: 35838255 DOI: 10.1111/mec.16616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Invasive species are among the most important, growing threats to food security and agricultural systems. The Mediterranean medfly, Ceratitis capitata, is one of the most damaging representatives of a group of rapidly expanding species in the Tephritidae family, due to their wide host range and high invasiveness potential. Here, we used restriction site-associated DNA sequencing (RADseq) to investigate the population genomic structure and phylogeographic history of medflies collected from six sampling sites, including Africa (South Africa), the Mediterranean (Spain, Greece), Latin America (Guatemala, Brazil) and Australia. A total of 1,907 single nucleotide polymorphisms (SNPs) were used to identify two genetic clusters separating native and introduced ranges, consistent with previous findings. In the introduced range, all individuals were assigned to one genetic cluster except for those in Brazil, which showed introgression of an additional genetic cluster that also appeared in South Africa, and which could not be previously identified using microsatellite markers. Moreover, we assessed the microbial composition variations in medfly populations from selected sampling sites using amplicon sequencing of the 16S ribosomal RNA (V4 region). Microbiome composition and structure were highly similar across geographic regions and host plants, and only the Brazilian specimens showed increased diversity levels and a unique composition of its microbiome compared to other sampling sites. The unique SNP patterns and microbiome features in the Brazilian specimens could point to a direct migration route from Africa with subsequent adaptation of the microbiota to the specific conditions present in Brazil. These findings significantly improve our understanding of the evolutionary history of the global medfly invasions and their adaptation to newly colonised environments.
Collapse
Affiliation(s)
- María Belén Arias
- Department of Life Sciences, Natural History Museum, London, UK.,School of Life Sciences, University of Essex, Colchester, UK
| | - Katherine Hartle-Mougiou
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Life Sciences, Imperial College London, Ascot, UK
| | - Sergi Taboada
- Department of Life Sciences, Natural History Museum, London, UK.,Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Ciencias de la Vida, Universidad de Alcalá de Henares, Madrid, Spain
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Life Sciences, Imperial College London, Ascot, UK
| | - Ana Riesgo
- Department of Life Sciences, Natural History Museum, London, UK.,Department of Biodiversity and Evolutionary Biology, Museum Nacional de Ciencias Naturales, Madrid, Spain
| | - Samia Elfekih
- CSIRO Health & Biosecurity, Black Mountain, Canberra, Australia.,PEARG, School of BioSciences, Bio21 Institute, The University of Melbourne VIC, Australia
| |
Collapse
|
9
|
Velásquez-Ortiz N, Hernández C, Cantillo-Barraza O, Medina M, Medina-Alfonso M, Suescún-Carrero S, Muñoz M, Vega L, Castañeda S, Cruz-Saavedra L, Ballesteros N, Ramírez JD. Estimating the genetic structure of Triatoma dimidiata (Hemiptera: Reduviidae) and the transmission dynamics of Trypanosoma cruzi in Boyacá, eastern Colombia. PLoS Negl Trop Dis 2022; 16:e0010534. [PMID: 35816541 PMCID: PMC9302734 DOI: 10.1371/journal.pntd.0010534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Chagas disease is considered a public health issue in Colombia, where many regions are endemic. Triatoma dimidiata is an important vector after Rhodnius prolixus, and it is gaining importance in Boyacá, eastern Colombia. Following the recent elimination of R. prolixus in the region, it is pivotal to understand the behavior of T. dimidiata and the transmission dynamics of T. cruzi. We used qPCR and Next Generation Sequencing (NGS) to evaluate T. cruzi infection, parasite load, feeding profiles, and T. cruzi genotyping for T. dimidiata specimens collected in nine municipalities in Boyacá and explored T. dimidiata population genetics. We found that T. dimidiata populations are composed by a single population with similar genetic characteristics that present infection rates up to 70%, high parasite loads up to 1.46 × 109 parasite-equivalents/mL, a feeding behavior that comprises at least 17 domestic, synanthropic and sylvatic species, and a wide diversity of TcI genotypes even within a single specimen. These results imply that T. dimidiata behavior is similar to other successful vectors, having a wide variety of blood sources and contributing to the circulation of different genotypes of the parasite, highlighting its importance for T. cruzi transmission and risk for humans. In the light of the elimination of R. prolixus in Boyacá and the results we found, we suggest that T. dimidiata should become a new target for vector control programs. We hope this study provides enough information to enhance surveillance programs and a future effective interruption of T. cruzi vector transmission in endemic regions. Chagas disease is a complex zoonotic infection caused by the protozoan Trypanosoma cruzi. This pathology is endemic in the Americas and causes a tremendous burden in terms of public health. The feces of triatomine bugs mainly transmit this parasite. A massive diversity of triatomines can be found in the north of South America, where Rhodnius is considered the most epidemiologically relevant genus. However, government efforts have attempted to control the vector transmission of specific regions. That is the case of Boyaca in eastern Colombia, which has several municipalities certified as free of R. prolixus transmission of the parasite. However, other species such as Triatoma dimidiata can occupy the left niche due to R. prolixus elimination. We explored the infection rate, parasite load, feeding preferences, and T. cruzi diversity in T. dimidiata specimens collected in municipalities with no R. prolixus infestation. Our results highlight the preponderant need for increasing serological surveillance and prevention in those communities due to the risk of a plausible reactivation of T. cruzi vector transmission due to T. dimidiata.
Collapse
Affiliation(s)
- Natalia Velásquez-Ortiz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Omar Cantillo-Barraza
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo BCEI Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Manuel Medina
- Programa de Control de Enfermedades Transmitidas por Vectores, Secretaría de Salud Departamental, Tunja, Boyacá, Colombia
| | - Mabel Medina-Alfonso
- Grupo de Investigación del Laboratorio de Salud Pública de Boyacá, Secretaria de Salud de Boyacá, Tunja, Colombia
| | - Sandra Suescún-Carrero
- Grupo de Investigación del Laboratorio de Salud Pública de Boyacá, Secretaria de Salud de Boyacá, Tunja, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- * E-mail: ,
| |
Collapse
|
10
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
11
|
Assessing risk of vector transmission of Chagas disease through blood source analysis using LC-MS/MS for hemoglobin sequence identification. PLoS One 2022; 17:e0262552. [PMID: 35073364 PMCID: PMC8786159 DOI: 10.1371/journal.pone.0262552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022] Open
Abstract
Chagas disease is mainly transmitted by triatomine insect vectors that feed on vertebrate blood. The disease has complex domiciliary infestation patterns and parasite transmission dynamics, influenced by biological, ecological, and socioeconomic factors. In this context, feeding patterns have been used to understand vector movement and transmission risk. Recently, a new technique using Liquid chromatography tandem mass spectrometry (LC-MS/MS) targeting hemoglobin peptides has showed excellent results for understanding triatomines' feeding patterns. The aim of this study was to further develop the automated computational analysis pipeline for peptide sequence taxonomic identification, enhancing the ability to analyze large datasets data. We then used the enhanced pipeline to evaluate the feeding patterns of Triatoma dimidiata, along with domiciliary infestation risk variables, such as unkempt piles of firewood or construction material, cracks in bajareque and adobe walls and intradomiciliary animals. Our new python scripts were able to detect blood meal sources in 100% of the bugs analyzed and identified nine different species of blood meal sources. Human, chicken, and dog were the main blood sources found in 78.7%, 50.4% and 44.8% of the bugs, respectively. In addition, 14% of the bugs feeding on chicken and 15% of those feeding on dogs were captured in houses with no evidence of those animals being present. This suggests a high mobility among ecotopes and houses. Two of the three main blood sources, dog and chicken, were significantly (p < 0.05) affected by domiciliary infestation risk variables, including cracks in walls, construction material and birds sleeping in the intradomicile. This suggests that these variables are important for maintaining reproducing Triatoma dimidiata populations and that it is critical to mitigate these variables in all the houses of a village for effective control of these mobile vectors.
Collapse
|
12
|
Stevens L, Lima-Cordón RA, Helms Cahan S, Dorn PL, Monroy MC, Axen HJ, Nguyen A, Hernáiz-Hernánde Y, Rodas A, Justi SA. Catch me if you can: Under-detection of Trypanosoma cruzi (Kinetoplastea: Trypanosomatida) infections in Triatoma dimidiata s.l. (Hemiptera: Reduviidae) from Central America. Acta Trop 2021; 224:106130. [PMID: 34536368 DOI: 10.1016/j.actatropica.2021.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022]
Abstract
Assays for parasite detection in insect vectors provide important information for disease control. American Trypanosomiasis (Chagas disease) is the most devastating vector-borne illness and the fourth most common in Central America behind HIV/AIDS and acute respiratory and diarrheal infections (Peterson et al., 2019). Under-detection of parasites is a general problem which may be influenced by parasite genetic variation; however, little is known about the genetic variation of the Chagas parasite, especially in this region. In this study we compared six assays for detecting the Chagas parasite, Trypanosoma cruzi: genomic reduced representation sequencing (here referred to as genotype-by-sequencing or GBS), two with conventional PCR (i.e., agarose gel detection), two with qPCR, and microscopy. Our results show that, compared to GBS genomic analysis, microscopy and PCR under-detected T. cruzi in vectors from Central America. Of 94 samples, 44% (50/94) were positive based on genomic analysis. The lowest detection, 9% (3/32) was in a subset assayed with microscopy. Four PCR assays, two with conventional PCR and two with qPCR showed intermediate levels of detection. Both qPCR tests and one conventional PCR test targeted the 195 bp repeat of satellite DNA while the fourth test targeted the 18S gene. Statistical analyses of the genomic and PCR results indicate that the PCR assays significantly under detect infections of Central American T. cruzi genotypes.
Collapse
Affiliation(s)
- Lori Stevens
- Department of Biology, University of Vermont, Burlington, VT, 05401, USA.
| | | | - Sara Helms Cahan
- Department of Biology, University of Vermont, Burlington, VT, 05401, USA
| | - Patricia L Dorn
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, USA
| | - M Carlota Monroy
- The Applied Entomology and Parasitology Laboratory, Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala
| | - Heather J Axen
- Department of Biology, University of Vermont, Burlington, VT, 05401, USA
| | - Andrew Nguyen
- Department of Biology, University of Vermont, Burlington, VT, 05401, USA
| | | | - Antonieta Rodas
- The Applied Entomology and Parasitology Laboratory, Biology School, Pharmacy Faculty, San Carlos University of Guatemala, Guatemala
| | - Silvia A Justi
- The Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MD, USA; Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
13
|
Diversity of Trypanosoma cruzi parasites infecting Triatoma dimidiata in Central Veracruz, Mexico, and their One Health ecological interactions. INFECTION GENETICS AND EVOLUTION 2021; 95:105050. [PMID: 34450293 DOI: 10.1016/j.meegid.2021.105050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/21/2023]
Abstract
Triatoma dimidiata is the main vector of Trypanosoma cruzi parasites in Veracruz, Mexico, and its association with human housing appears variable. Also, in spite of a high seroprevalence of T. cruzi infection in humans, parasite transmission remains poorly understood. Therefore, we aimed to identify T. dimidiata blood feeding sources and its parasite and microbial diversity to reconstruct T. cruzi parasite transmission ecology in central Veracruz, Mexico, within a One Health/Ecohealth framework. We used a metabarcoding and deep sequencing approach of specific markers for the simultaneous identification of T. dimidiata haplogroup (ITS-2), vertebrate blood meals (12 s gene), T. cruzi parasites (mini-exon gene), and gut microbiota (bacterial 16 s). Twelve species of domestic/synanthropic animals and humans were identified as blood sources, with multiple feeding on 4.2 ± 0.4 hosts per bug. The feeding/parasite transmission network was strongly centered on humans, emphasizing a significant risk of infection. We also unambiguously confirmed the presence of TcI, TcII, TcV and TcVI DTUs in T. dimidiata, and sequences from Veracruz tended to cluster apart from parasites from other regions, suggesting some level of local differentiation. Analysis of T. dimidiata microbiota suggested that several bacterial families may be associated with the presence/absence of T. cruzi, and some of these associations may also be parasite DTU-specific. Such integrative approaches within the EcoHealth/One Health framework provide key insights on T. cruzi transmission and potential novel strategies for disease control.
Collapse
|
14
|
Polonio R, López-Domínguez J, Herrera C, Dumonteil E. Molecular ecology of Triatoma dimidiata in southern Belize reveals risk for human infection and the local differentiation of Trypanosoma cruzi parasites. Int J Infect Dis 2021; 108:320-329. [PMID: 34098097 DOI: 10.1016/j.ijid.2021.05.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE In Belize, the main vector for Trypanosoma cruzi, the agent of Chagas disease, is Triatoma dimidiata, but transmission cycles and the risk for human infection are unclear. Therefore, the aim of this study was to identify T. dimidiata blood feeding sources and its parasite and microbial diversity, in order to reconstruct T. cruzi parasite transmission ecology in southern Belize. METHODS A metabarcoding approach based on deep sequencing of markers was used for bug taxonomy, blood meal sources, T. cruzi genotypes, and microbiota composition. Bugs were collected in 13 villages of Toledo district. RESULTS Bugs fed on at least 13 species, from domestic hosts such as humans, dogs, cows, and pigs, to synanthropic species such as mice, rats, and opossums, and sylvatic species such as deer, peccary, and kinkajou, in agreement with an opportunistic feeding behavior. Nonetheless, most feeding focused on a few species, including humans. Infection with T. cruzi was detected in 24 of 39 bugs (62%), and the analysis of 242 T. cruzi mini-exon sequences (average 10 ± 5 haplotypes per bug) indicated the presence of TcI and TcIV parasite discrete typing units (DTUs). However, for both DTUs, sequences from Belize mostly clustered apart from sequences from North and South America, suggesting the local differentiation of parasites. T. dimidiata also harbored a diverse bacterial microbiota, with ontogenic changes suggesting microbiota maturation during nymphal development. CONCLUSIONS Together, these results indicate a significant risk for T. cruzi infection in humans. They also highlight the need to better characterize the diversity of T. cruzi strains in the region and its impact on disease epidemiology.
Collapse
Affiliation(s)
- Roy Polonio
- University of Belize, Punta Gorda, Toledo, Belize
| | - Jaime López-Domínguez
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA; LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico; Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
15
|
Eberhard FE, Klimpel S, Guarneri AA, Tobias NJ. Metabolites as predictive biomarkers for Trypanosoma cruzi exposure in triatomine bugs. Comput Struct Biotechnol J 2021; 19:3051-3057. [PMID: 34136103 PMCID: PMC8178018 DOI: 10.1016/j.csbj.2021.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), colonizes the intestinal tract of triatomines. Triatomine bugs act as vectors in the life cycle of the parasite and transmit infective parasite stages to animals and humans. Contact of the vector with T. cruzi alters its intestinal microbial composition, which may also affect the associated metabolic patterns of the insect. Earlier studies suggest that the complexity of the triatomine fecal metabolome may play a role in vector competence for different T. cruzi strains. Using high-resolution mass spectrometry and supervised machine learning, we aimed to detect differences in the intestinal metabolome of the triatomine Rhodnius prolixus and predict whether the insect had been exposed to T. cruzi or not based solely upon their metabolic profile. We were able to predict the exposure status of R. prolixus to T. cruzi with accuracies of 93.6%, 94.2% and 91.8% using logistic regression, a random forest classifier and a gradient boosting machine model, respectively. We extracted the most important features in producing the models and identified the major metabolites which assist in positive classification. This work highlights the complex interactions between triatomine vector and parasite including effects on the metabolic signature of the insect.
Collapse
Affiliation(s)
- Fanny E. Eberhard
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt/Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Frankfurt/Main, Germany
| | - Alessandra A. Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima,1715, Belo Horizonte, MG CEP 30190-009, Brazil
| | - Nicholas J. Tobias
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Frankfurt/Main, Germany
- Corresponding author at: LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany.
| |
Collapse
|
16
|
Triatomine Feeding Profiles and Trypanosoma cruzi Infection, Implications in Domestic and Sylvatic Transmission Cycles in Ecuador. Pathogens 2021; 10:pathogens10010042. [PMID: 33430264 PMCID: PMC7825724 DOI: 10.3390/pathogens10010042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the blood meal patterns of insects that are vectors of diseases is fundamental in unveiling transmission dynamics and developing strategies to impede or decrease human–vector contact. Chagas disease has a complex transmission cycle that implies interactions between vectors, parasites and vertebrate hosts. In Ecuador, limited data on human infection are available; however, the presence of active transmission in endemic areas has been demonstrated. The aim of this study was to determine the diversity of hosts that serve as sources of blood for triatomines in domestic, peridomestic and sylvatic transmission cycles, in two endemic areas of Ecuador (central coastal and southern highland regions). Using conserved primers and DNA extracted from 507 intestinal content samples from five species of triatomines (60 Panstrongylus chinai, 17 Panstrongylus howardi, 1 Panstrongylus rufotuberculatus, 427 Rhodnius ecuadoriensis and 2 Triatoma carrioni) collected from 2006 to 2013, we amplified fragments of the cytb mitochondrial gene. After sequencing, blood meal sources were identified in 416 individuals (146 from central coastal and 270 from southern highland regions), achieving ≥ 95% identity with GenBank sequences (NCBI-BLAST tool). The results showed that humans are the main source of food for triatomines, indicating that human–vector contact is more frequent than previously thought. Although other groups of mammals, such as rodents, are also an available source of blood, birds (particularly chickens) might have a predominant role in the maintenance of triatomines in these areas. However, the diversity of sources of blood found might indicate a preference driven by triatomine species. Moreover, the presence of more than one source of blood in triatomines collected in the same place indicated that dispersal of vectors occurs regardless the availability of food. Dispersal capacity of triatomines needs to be evaluated to propose an effective strategy that limits human–vector contact and, in consequence, to decrease the risk of T. cruzi transmission.
Collapse
|
17
|
Faria AR, Nunes JB, Leite ALL, Ramos ABDSB, Siqueira RV, Nogueira ESC, Marques MJ, Colombo FA. Risk of Trypanosoma cruzi transmission in southern Minas Gerais, Brazil - Data from 2014 to 2020. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2021; 23:100530. [PMID: 33678384 DOI: 10.1016/j.vprsr.2021.100530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 11/27/2022]
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, is widely distributed in the Americas and is transmitted through vectorial, transfusional, and oral routes. This study aimed to evaluate the risk of vectorial transmission of Chagas disease in municipalities located in southern Minas Gerais, Brazil, by analyzing triatomine specimens collected from 2014 to 2020. All 1522 hematophagous triatomines were identified as Panstrongylus megistus, and were subjected to parasitological and molecular examinations. From 2014 to 2016, approximately 10% of insects were positive in the microscopic analysis of intestinal content, and 27% were positive as detected by the quantitative polymerase chain reaction (qPCR) of the same sampling. However, in the last investigated years, an increase in infected triatomines was observed in microscopic analysis (22%) and qPCR methods (41%). This corroborates the findings of acute human Chagas disease cases, which have increased in the study area from a maximum of 2 cases in previous years to 20 cases in 2019, and 17 cases in 2020 through June. Additionally, bloodmeal sources of infected triatomines were investigated; human blood was detected in up to 85.7% of the samples. Moreover, canine blood was also detected in triatomine intestinal content in recent years, reaching 91% of analyzed insects in 2018. Data on bloodmeal sources have demonstrated human-vector contact and have suggested the participation of dogs in the parasite transmission cycle. These results indicate the risk of T. cruzi vectorial transmission in Southern Minas Gerais and São Paulo owing to the boundary between these states. Thus, enhanced surveillance and vector control of Chagas disease are highly recommended in these areas.
Collapse
Affiliation(s)
- Angélica Rosa Faria
- Laboratory of Clinical Parasitology, Pharmaceutical Sciences Faculty, Universidade Federal de Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, Minas Gerais 37130-000, Brazil.
| | - Juliana Barbosa Nunes
- Laboratory of Pathology of Infectious Disease, Department of Pathology, Medical School, São Paulo University, SP, Brazil
| | - Ana Laura Lara Leite
- Laboratory of Parasitology, Institute of Biomedical Sciences, Universidade Federal de Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, Minas Gerais 37130-000, Brazil
| | - Amanda Bruno da Silva Bellini Ramos
- Laboratory of Clinical Parasitology, Pharmaceutical Sciences Faculty, Universidade Federal de Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, Minas Gerais 37130-000, Brazil
| | - Rosângela Vieira Siqueira
- Laboratory of Clinical Parasitology, Pharmaceutical Sciences Faculty, Universidade Federal de Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, Minas Gerais 37130-000, Brazil
| | - Ester Siqueira Caixeta Nogueira
- Department of Cell Biology and Development, Institute of Biomedical Sciences, Universidade Federal de Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, Minas Gerais 37130-000, Brazil
| | - Marcos José Marques
- Laboratory of Parasitology, Institute of Biomedical Sciences, Universidade Federal de Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, Minas Gerais 37130-000, Brazil
| | - Fabio Antonio Colombo
- Laboratory of Clinical Parasitology, Pharmaceutical Sciences Faculty, Universidade Federal de Alfenas, 700 Gabriel Monteiro da Silva Street, Alfenas, Minas Gerais 37130-000, Brazil
| |
Collapse
|
18
|
Arias-Giraldo LM, Muñoz M, Hernández C, Herrera G, Velásquez-Ortiz N, Cantillo-Barraza O, Urbano P, Ramírez JD. Species-dependent variation of the gut bacterial communities across Trypanosoma cruzi insect vectors. PLoS One 2020; 15:e0240916. [PMID: 33180772 PMCID: PMC7660481 DOI: 10.1371/journal.pone.0240916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Triatomines (Hemiptera: Reduviidae) are the insect vectors of Trypanosoma cruzi, the causative agent of Chagas disease. The gut bacterial communities affect the development of T. cruzi inside the vector, making the characterization of its composition important in the understanding of infection development. We collected 54 triatomine bugs corresponding to four genera in different departments of Colombia. DNA extraction and PCR were performed to evaluate T. cruzi presence and to determine the discrete typing unit (DTU) of the parasite. PCR products of the bacterial 16S rRNA gene were pooled and sequenced. Resulting reads were denoised and QIIME 2 was used for the identification of amplicon sequence variants (ASVs). Diversity (alpha and beta diversity) and richness analyses, Circos plots, and principal component analysis (PCA) were also performed. The overall T. cruzi infection frequency was 75.9%, with TcI being the predominant DTU. Approximately 500,000 sequences were analyzed and 27 bacterial phyla were identified. The most abundant phyla were Proteobacteria (33.9%), Actinobacteria (32.4%), Firmicutes (19.6%), and Bacteroidetes (7.6%), which together accounted for over 90% of the gut communities identified in this study. Genera were identified for these main bacterial phyla, revealing the presence of important bacteria such as Rhodococcus, Serratia, and Wolbachia. The composition of bacterial phyla in the gut of the insects was significantly different between triatomine species, whereas no significant difference was seen between the state of T. cruzi infection. We suggest further investigation with the evaluation of additional variables and a larger sample size. To our knowledge, this study is the first characterization of the gut bacterial structure of the main triatomine genera in Colombia.
Collapse
Affiliation(s)
- Luisa M Arias-Giraldo
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Omar Cantillo-Barraza
- Grupo de Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de la Orinoquia, Fundación Universidad del Trópico Americano (Unitropico), Yopal, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
19
|
Tobias NJ, Eberhard FE, Guarneri AA. Enzymatic biosynthesis of B-complex vitamins is supplied by diverse microbiota in the Rhodnius prolixus anterior midgut following Trypanosoma cruzi infection. Comput Struct Biotechnol J 2020; 18:3395-3401. [PMID: 33294135 PMCID: PMC7691439 DOI: 10.1016/j.csbj.2020.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 01/03/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, colonizes the gut of triatomine insects, including Rhodnius prolixus. It is believed that this colonization upsets the microbiota that are normally present, presumably switching the environment to one more favorable for parasite survival. It was previously thought that one particular bacterium, Rhodococcus rhodnii, was essential for insect survival due to its ability to produce vital B-complex vitamins. However, these bacteria are not always identified in great abundance in studies on R. prolixus microbiota. Here we sequenced the microbiota of the insect anterior midgut using shotgun metagenomic sequencing in order to obtain a high-resolution snapshot of the microbes inside at two different time points and under two conditions; in the presence or absence of parasite and immediately following infection, or three days post-infection. We identify a total of 217 metagenomic bins, and recovered one metagenome-assembled genome, which we placed in the genus Dickeya. We show that, despite Rhodococcus being present, it is not the only microbe capable of synthesizing B-complex vitamins, with the genes required for biosynthesis present in a number of different microbes. This work helps to gain a new insight into the microbial ecology of R. prolixus.
Collapse
Affiliation(s)
- Nicholas J Tobias
- LOEWE Center for Translational Biodiversity in Genomics (TBG), Frankfurt, Germany.,Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Fanny E Eberhard
- Integrative Parasitologie und Zoophysiologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Alessandra A Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte, MG CEP 30190-009, Brazil
| |
Collapse
|
20
|
Hu Y, Xie H, Gao M, Huang P, Zhou H, Ma Y, Zhou M, Liang J, Yang J, Lv Z. Dynamic of Composition and Diversity of Gut Microbiota in Triatoma rubrofasciata in Different Developmental Stages and Environmental Conditions. Front Cell Infect Microbiol 2020; 10:587708. [PMID: 33224899 PMCID: PMC7667259 DOI: 10.3389/fcimb.2020.587708] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
Triatoma rubrofasciata (T. rubrofasciata), one kind of triatomine insects, is the vector of Trypanosoma cruzi (T. cruzi), which lead to American trypanosomiasis. Although the gut microbiome may play an essential role in the development and susceptibility of triatomine, there is limited research on the gut microbiota of T. rubrofasciata. To elucidate the effect of the vector's developmental stages and environmental conditions on the gut microbiome, we employed 16S rRNA gene sequencing to profile the gut bacterial community diversity and composition of T. rubrofasciata. Significant shifts were observed in the overall gut microbe diversity and composition across the development of T. rubrofasciata and specific bacteria were detected in different stages. Serratia and Burkholderia-Caballeronia-Paraburkholderia were dominant in the 1st nymphal stage, while the abundance of Staphylococcus was low in the 1st nymphal stage. Oceanicaulis were undetectable in the adult stage and Odoribacter peaked in the 2nd nymphal stage. Moreover, Staphylococcus was correlated negatively with Serratia. Likewise, the total gut microbiota diversity and composition of T. rubrofasciata differentiated significantly by environmental conditions. The ingestion of a bloodmeal increased alpha diversity of gut bacterial communities, and Staphylococcus was more abundant in laboratory-reared bugs whereas Enterococcus enriched in wild-caught bugs. Furthermore, Pantoea was negatively correlated with Staphylococcus, and positively related to Bacillus only. The phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) algorithm showed obvious metagenomic functional differences by environmental conditions, and Chagas disease relevant pathway was enriched in wild-caught T. rubrofasciata.
Collapse
Affiliation(s)
- Yue Hu
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Hanguo Xie
- Provincial Key Laboratory of Zoonosis Research, Fujian Center for Disease Control and Prevention, Fuzhou, China
| | - Minzhao Gao
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Huang
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Hongli Zhou
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yubin Ma
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Minyu Zhou
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jinying Liang
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jun Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Zhiyue Lv
- Joint Program of Pathobiology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| |
Collapse
|
21
|
Brown JJ, Rodríguez-Ruano SM, Poosakkannu A, Batani G, Schmidt JO, Roachell W, Zima J, Hypša V, Nováková E. Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). MICROBIOME 2020; 8:146. [PMID: 33040738 PMCID: PMC7549230 DOI: 10.1186/s40168-020-00921-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Kissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas' disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species. METHODS To obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimised 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi-negative individuals across all six instars. RESULTS Triatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia but is not present in the phylogenetically more distant T. gerstaeckeri and T. sanguisuga. Species-specific microbiome composition, particularly pronounced in early instars, is further modulated by locality-specific effects. In addition, pathogenic bacteria of the genus Bartonella, acquired from the vertebrate hosts, are an abundant component of Triatoma microbiomes. CONCLUSION Our study is the first to demonstrate deterministic patterns in microbiome composition among all life stages and multiple Triatoma species. We hypothesise that triatomine microbiome assemblages are produced by species- and life stage-dependent uptake of environmental bacteria and multiple indirect transmission strategies that promote bacterial transfer between individuals. Altogether, our study highlights the complexity of Triatominae symbiosis with bacteria and warrant further investigation to understand microbiome function in these important vectors. Video abstract.
Collapse
Affiliation(s)
- Joel J. Brown
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | - Anbu Poosakkannu
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Giampiero Batani
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | - Walter Roachell
- US Army Public Health Command-Central, JBSA Fort Sam, Houston, TX USA
| | - Jan Zima
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
22
|
Salcedo-Porras N, Umaña-Diaz C, de Oliveira Barbosa Bitencourt R, Lowenberger C. The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms 2020; 8:E1438. [PMID: 32961808 PMCID: PMC7565714 DOI: 10.3390/microorganisms8091438] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Insects have established mutualistic symbiotic interactions with microorganisms that are beneficial to both host and symbiont. Many insects have exploited these symbioses to diversify and expand their ecological ranges. In the Hemiptera (i.e., aphids, cicadas, and true bugs), symbioses have established and evolved with obligatory essential microorganisms (primary symbionts) and with facultative beneficial symbionts (secondary symbionts). Primary symbionts are usually intracellular microorganisms found in insects with specialized diets such as obligate hematophagy or phytophagy. Most Heteroptera (true bugs), however, have gastrointestinal (GI) tract extracellular symbionts with functions analogous to primary endosymbionts. The triatomines, are vectors of the human parasite, Trypanosoma cruzi. A description of their small GI tract microbiota richness was based on a few culturable microorganisms first described almost a century ago. A growing literature describes more complex interactions between triatomines and bacteria with properties characteristic of both primary and secondary symbionts. In this review, we provide an evolutionary perspective of beneficial symbioses in the Hemiptera, illustrating the context that may drive the evolution of symbioses in triatomines. We highlight the diversity of the triatomine microbiota, bacterial taxa with potential to be beneficial symbionts, the unique characteristics of triatomine-bacteria symbioses, and the interactions among trypanosomes, microbiota, and triatomines.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Claudia Umaña-Diaz
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Ricardo de Oliveira Barbosa Bitencourt
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
- Programa de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, 23890-000 Seropédica, Brasil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| |
Collapse
|
23
|
Arias-Giraldo LM, Muñoz M, Hernández C, Herrera G, Velásquez-Ortiz N, Cantillo-Barraza O, Urbano P, Cuervo A, Ramírez JD. Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing. Parasit Vectors 2020; 13:434. [PMID: 32867816 PMCID: PMC7457505 DOI: 10.1186/s13071-020-04310-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Triatomines are hematophagous insects that play an important role as vectors of Trypanosoma cruzi, the causative agent of Chagas disease. These insects have adapted to multiple blood-feeding sources that can affect relevant aspects of their life-cycle and interactions, thereby influencing parasitic transmission dynamics. We conducted a characterization of the feeding sources of individuals from the primary circulating triatomine genera in Colombia using amplicon-based next-generation sequencing (NGS). METHODS We used 42 triatomines collected in different departments of Colombia. DNA was extracted from the gut. The presence of T. cruzi was identified using real-time PCR, and discrete typing units (DTUs) were determined by conventional PCR. For blood-feeding source identification, PCR products of the vertebrate 12S rRNA gene were obtained and sequenced by next-generation sequencing (NGS). Blood-meal sources were inferred using blastn against a curated reference dataset containing the 12S rRNA sequences belonging to vertebrates with a distribution in South America that represent a potential feeding source for triatomine bugs. Mean and median comparison tests were performed to evaluate differences in triatomine blood-feeding sources, infection state, and geographical regions. Lastly, the inverse Simpson's diversity index was calculated. RESULTS The overall frequency of T. cruzi infection was 83.3%. TcI was found as the most predominant DTU (65.7%). A total of 67 feeding sources were detected from the analyses of approximately 7 million reads. The predominant feeding source found was Homo sapiens (76.8%), followed by birds (10.5%), artiodactyls (4.4%), and non-human primates (3.9%). There were differences among numerous feeding sources of triatomines of different species. The diversity of feeding sources also differed depending on the presence of T. cruzi. CONCLUSIONS To the best of our knowledge, this is the first study to employ amplicon-based NGS of the 12S rRNA gene to depict blood-feeding sources of multiple triatomine species collected in different regions of Colombia. Our findings report a striking read diversity that has not been reported previously. This is a powerful approach to unravel transmission dynamics at microgeographical levels.
Collapse
Affiliation(s)
- Luisa M Arias-Giraldo
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Omar Cantillo-Barraza
- Grupo de Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de la Orinoquia, Fundación Universitaria Internacional del Trópico Americano (Unitropico), Yopal, Colombia
| | - Andrés Cuervo
- Secretaría Departamental de Salud de Arauca, Arauca, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
24
|
Dumonteil E, Pronovost H, Bierman EF, Sanford A, Majeau A, Moore R, Herrera C. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol Ecol 2020; 29:3747-3761. [PMID: 32749727 DOI: 10.1111/mec.15582] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Integrating how biodiversity and infectious disease dynamics are linked at multiple levels and scales is highly challenging. Chagas disease is a vector-borne disease, with specificities of the triatomine vectors and Trypanosoma cruzi parasite life histories resulting in a complex multihost and multistrain life cycle. Here, we tested the hypothesis that T. cruzi transmission cycles are shaped by triatomine host communities and gut microbiota composition by comparing the integrated interactions of Triatoma sanguisuga in southern Louisiana with feeding hosts, T. cruzi parasite and bacterial microbiota in two habitats. Bugs were collected from resident's houses and animal shelters and analysed for genetic structure, blood feeding sources, T. cruzi parasites, and bacterial diversity by PCR amplification of specific DNA markers followed by next-generation sequencing, in an integrative metabarcoding approach. T. sanguisuga feeding host communities appeared opportunistic and defined by host abundance in each habitat, yielding distinct parasite transmission networks among hosts. The circulation of a large diversity of T. cruzi DTUs was also detected, with TcII and TcV detected for the first time in triatomines in the US. The bacterial microbiota was highly diverse and varied significantly according to the DTU infecting the bugs, indicating specific interactions among them in the gut. Expanding such studies to multiple habitats and additional triatomine species would be key to further refine our understanding of the complex life cycles of multihost, multistrain parasites such as T. cruzi, and may lead to improved disease control strategies.
Collapse
Affiliation(s)
- Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Henry Pronovost
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Eli F Bierman
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Anna Sanford
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Alicia Majeau
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Ryan Moore
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| |
Collapse
|
25
|
Kieran TJ, Bayona-Vásquez NJ, Varian CP, Saldaña A, Samudio F, Calzada JE, Gottdenker NL, Glenn TC. Population genetics of two chromatic morphs of the Chagas disease vector Rhodnius pallescens Barber, 1932 in Panamá. INFECTION GENETICS AND EVOLUTION 2020; 84:104369. [PMID: 32442632 DOI: 10.1016/j.meegid.2020.104369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022]
Abstract
Rhodnius pallescens is the principal vector of Chagas disease in Panama. Recently a dark chromatic morph has been discovered in the highlands of Veraguas Province. Limited genetic studies have been conducted with regards to the population structure and dispersal potential of Triatominae vectors, particularly in R. pallescens. Next generation sequencing methods such as RADseq and complete mitochondrial DNA (mtDNA) genome sequencing have great potential for examining vector biology across space and time. Here we utilize a RADseq method (3RAD), along with complete mtDNA sequencing, to examine the population structure of the two chromatic morpho types of R. pallescens in Panama. We sequenced 105 R. pallescens samples from five localities in Panama. We generated a 2216 SNP dataset and 6 complete mtDNA genomes. RADseq showed significant differentiation among the five localities (FCT = 0.695; P = .004), but most of this was between localities with the dark vs. light chromatic morphs (Veraguas vs. Panama Oeste). The mtDNA genomes showed a 97-98% similarity between dark and light chromatic morphs across all genes and a 502 bp insert in light morphs. Thus, both the RADseq and mtDNA data showed highly differentiated clades with essentially no gene flow between the dark and light chromatic morphs from Veraguas and central Panama respectively. We discuss the growing evidence showing clear distinctions between these two morpho types with the possibility that these are separate species, an area of research that requires further investigation. Finally, we discuss the cost-effectiveness of 3RAD which is a third of the cost compared to other RADseq methods used recently in Chagas disease vector research.
Collapse
Affiliation(s)
- Troy J Kieran
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Natalia J Bayona-Vásquez
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, The University of Georgia, Athens, GA, USA
| | - Christina P Varian
- Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA; Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama; Centro de Investigación y Diagnóstico de Enfermedades Parasitarias (CIDEP), Facultad de Medicina, Universidad de Panamá, Panama
| | - Franklyn Samudio
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Jose E Calzada
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Nicole L Gottdenker
- Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA; Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA; Odum School of Ecology, The University of Georgia, Athens, GA, USA
| | - Travis C Glenn
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, The University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
26
|
Moo-Millan JI, Arnal A, Pérez-Carrillo S, Hernandez-Andrade A, Ramírez-Sierra MJ, Rosado-Vallado M, Dumonteil E, Waleckx E. Disentangling Trypanosoma cruzi transmission cycle dynamics through the identification of blood meal sources of natural populations of Triatoma dimidiata in Yucatán, Mexico. Parasit Vectors 2019; 12:572. [PMID: 31783778 PMCID: PMC6884771 DOI: 10.1186/s13071-019-3819-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/20/2019] [Indexed: 11/25/2022] Open
Abstract
Background In the Yucatán Peninsula, Mexico, Triatoma dimidiata is the main vector of Trypanosoma cruzi, the causative agent of Chagas disease. Little effort has been made to identify blood meal sources of T. dimidiata in natural conditions in this region, although this provides key information to disentangle T. cruzi transmission cycles and dynamics and guide the development of more effective control strategies. We identified the blood meals of a large sample of T. dimidiata bugs collected in different ecotopes simultaneously with the assessment of bug infection with T. cruzi, to disentangle the dynamics of T. cruzi transmission in the region. Methods A sample of 248 T. dimidiata bugs collected in three rural villages and in the sylvatic habitat surrounding these villages was used. DNA from each bug midgut was extracted and bug infection with T. cruzi was assessed by PCR. For blood meal identification, we used a molecular assay based on cloning and sequencing following PCR amplification with vertebrate universal primers, and allowing the detection of multiple blood meals in a single bug. Results Overall, 28.7% of the bugs were infected with T. cruzi, with no statistical difference between bugs from the villages or from sylvatic ecotopes. Sixteen vertebrate species including domestic, synanthropic and sylvatic animals, were identified as blood meal sources for T. dimidiata. Human, dog and cow were the three main species identified, in bugs collected in the villages as well as in sylvatic ecotopes. Importantly, dog was highlighted as the main blood meal source after human. Dog was also the most frequently identified animal together with human within single bugs, and tended to be associated with the infection of the bugs. Conclusions Dog, human and cow were identified as the main mammals involved in the connection of sylvatic and domestic transmission cycles in the Yucatán Peninsula, Mexico. Dog appeared as the most important animal in the transmission pathway of T. cruzi to humans, but other domestic and synanthropic animals, which most were previously reported as important hosts of T. cruzi in the region, were evidenced and should be taken into account as part of integrated control strategies aimed at disrupting parasite transmission.
Collapse
Affiliation(s)
- Joel Israel Moo-Millan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Audrey Arnal
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico.,Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Silvia Pérez-Carrillo
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Anette Hernandez-Andrade
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - María-Jesús Ramírez-Sierra
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Miguel Rosado-Vallado
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Eric Dumonteil
- Department of Tropical Medicine, Tulane University, School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Etienne Waleckx
- Laboratorio de Parasitología, Centro de Investigaciones Regionales "Dr Hideyo Noguchi", Universidad Autónoma de Yucatán, Mérida, Mexico. .,Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France.
| |
Collapse
|
27
|
Kieran TJ, Arnold KMH, Thomas JC, Varian CP, Saldaña A, Calzada JE, Glenn TC, Gottdenker NL. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit Vectors 2019; 12:504. [PMID: 31665056 PMCID: PMC6821009 DOI: 10.1186/s13071-019-3761-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. Rhodnius pallescens is a major vector of Chagas disease in Panama. Understanding the microbial ecology of disease vectors is important in the development of vector management strategies that target vector survival and fitness. In this study we examined the whole-body microbial composition of R. pallescens from three locations in Panama. Methods We collected 89 R. pallescens specimens using Noireau traps in Attalea butyracea palms. We then extracted total DNA from whole-bodies of specimens and amplified bacterial microbiota using 16S rRNA metabarcoding PCR. The 16S libraries were sequenced on an Illumina MiSeq and analyzed using QIIME2 software. Results We found Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes to be the most abundant bacterial phyla across all samples. Geographical location showed the largest difference in microbial composition with northern Veraguas Province having the most diversity and Panama Oeste Province localities being most similar to each other. Wolbachia was detected in high abundance (48–72%) at Panama Oeste area localities with a complete absence of detection in Veraguas Province. No significant differences in microbial composition were detected between triatomine age class, primary blood meal source, or T. cruzi infection status. Conclusions We found biogeographical regions differ in microbial composition among R. pallescens populations in Panama. While overall the microbiota has bacterial taxa consistent with previous studies in triatomine microbial ecology, locality differences are an important observation for future studies. Geographical heterogeneity in microbiomes of vectors is an important consideration for future developments that leverage microbiomes for disease control.
Collapse
Affiliation(s)
- Troy J Kieran
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.
| | - Kaylee M H Arnold
- Odum School of Ecology, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Jesse C Thomas
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Christina P Varian
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Jose E Calzada
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama
| | - Travis C Glenn
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Nicole L Gottdenker
- Odum School of Ecology, University of Georgia, Athens, GA, USA. .,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Department of Veterinary Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
28
|
Cahan SH, Orantes LC, Wallin KF, Hanley JP, Rizzo DM, Stevens L, Dorn PL, Rodas A, Monroy C. Residual survival and local dispersal drive reinfestation by Triatoma dimidiata following insecticide application in Guatemala. INFECTION GENETICS AND EVOLUTION 2019; 74:104000. [DOI: 10.1016/j.meegid.2019.104000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/30/2022]
|
29
|
Teotônio IMSN, Dias N, Hagström-Bex L, Nitz N, Francisco AF, Hecht M. Intestinal microbiota - A modulator of the Trypanosoma cruzi-vector-host triad. Microb Pathog 2019; 137:103711. [PMID: 31491548 DOI: 10.1016/j.micpath.2019.103711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/11/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
Chagas disease affects millions of people, and it is a major cause of death in Latin America. Prevention and development of an effective treatment for this infection can be favored by a more thorough understanding of T. cruzi interaction with the microbiome of vectors and hosts. Next-generation sequencing technology vastly broadened the knowledge about intestinal bacteria composition, showing that microbiota within each host (triatomines and mammals) is composed by high diversity of species, although few dominant phyla. This fact may represent an ecological balance that was acquired during the evolutionary process of the microbiome-host complex, and that serves to perpetuate this system. In this context, commensal microbiota is also essential to protect hosts, conferring them resistance to pathogens colonization. However, in some situations, the microbiota is not able to prevent infection but only modulate it. Here we will review the role of the microbiota on the parasite-vector-host triad with a focus on the kinetoplastida of medical importance Trypanosoma cruzi. Novel strategies to control Chagas disease based on intestinal microbiome will also be discussed.
Collapse
Affiliation(s)
| | - Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil
| | - Luciana Hagström-Bex
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil
| | - Amanda Fortes Francisco
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| |
Collapse
|
30
|
Keller JI, Lima-Cordón R, Monroy MC, Schmoker AM, Zhang F, Howard A, Ballif BA, Stevens L. Protein mass spectrometry detects multiple bloodmeals for enhanced Chagas disease vector ecology. INFECTION GENETICS AND EVOLUTION 2019; 74:103998. [PMID: 31401306 DOI: 10.1016/j.meegid.2019.103998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/22/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
Chagas disease, a neglected tropical disease endemic in Latin America, is caused by the protozoan parasite Trypanosoma cruzi and is responsible for significant health impacts, especially in rural communities. The parasite is transmitted by insect vectors in the Triatominae subfamily and due to lack of vaccines and limited treatment options, vector control is the main way of controlling the disease. Knowing what vectors are feeding on directly enhances our understanding of the ecology and biology of the different vector species and can potentially aid in engaging communities in active disease control, a concept known as Ecohealth management. We evaluated bloodmeals in rural community, house-caught insect vectors previously evaluated for bloodmeals via DNA analysis as part of a larger collaborative project from three countries in Central America, including Guatemala. In addition to identifying bloodmeals in 100% of all samples using liquid chromatography tandem mass spectrometry (LC-MS/MS) (n = 50), strikingly for 53% of these samples there was no evidence of a recent bloodmeal by DNA-PCR. As individual vectors often feed on multiple sources, we developed an enhanced detection pipeline, and showed the ability to quantify a bloodmeal using stable-isotope-containing synthetic references peptides, a first step in further exploration of species-specific bloodmeal composition. Furthermore, we show that a lower resolution mass spectrometer is sufficient to correctly identify taxa from bloodmeals, an important and strong attribute of our LC-MS/MS-based method, opening the door to using proteomics in countries where Chagas disease is endemic.
Collapse
Affiliation(s)
- Judith I Keller
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Raquel Lima-Cordón
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - M Carlota Monroy
- Laboratorio de Entomología Aplicada y Parasitología, Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Edificio T-10 Ciudad Universitaria Zona 12, Ciudad de Guatemala, Guatemala; Department of Biology, University of Vermont, Burlington, VT, United States
| | - Anna M Schmoker
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Fan Zhang
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Alan Howard
- Statistical Software Support and Consulting Services, University of Vermont, Burlington, VT, United States
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT, United States.
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
31
|
Beatty NL, Behrens-Bradley N, Love M, McCants F, Smith S, Schmidt JO, Hamer SA, Dorn PL, Ahmad N, Klotz SA. Rapid detection of human blood in triatomines (kissing bugs) utilizing a lateral flow immunochromatographic assay - A pilot study. Mem Inst Oswaldo Cruz 2019; 114:e190047. [PMID: 31166422 PMCID: PMC6543902 DOI: 10.1590/0074-02760190047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES We tested a rapid and specific immunochromatographic assay (that detects human blood in forensic samples) to determine if human blood was present in triatomines and their fecal excreta. METHODS We fed Triatoma rubida human blood (positive control) or mouse blood (negative control) and performed the assay on the abdominal contents and fecal excreta. Triatomine field specimens collected in and around human habitations and excreta were also tested. FINDINGS The assay was positive in triatomines fed human blood (N = 5/5) and fecal excreta from bugs known to have ingested human blood (N = 5/5). Bugs feeding on mice (N = 15/15) and their fecal excreta (N = 8/8) were negative for human blood. Human blood was detected in 47% (N = 23/49) triatomines, representing six different species, collected in the field. MAIN CONCLUSIONS The pilot study shows that this rapid and specific test may have applications in triatomine research. Further study is needed to determine the sensitivity of this assay compared to other well-established techniques, such as DNA- and proteomics-based methodologies and the assay’s application in the field.
Collapse
Affiliation(s)
- Norman L Beatty
- University of Arizona College of Medicine, Department of Medicine, Division of Infectious Diseases, Tucson, AZ, United States of America
| | - Nicole Behrens-Bradley
- University of Arizona College of Medicine, Department of Immunobiology, Tucson, AZ, United States of America
| | - Maria Love
- University of Arizona College of Medicine, Department of Immunobiology, Tucson, AZ, United States of America
| | - Finn McCants
- Loyola University New Orleans, Department of Biological Sciences, New Orleans, LA, United States of America
| | - Shannon Smith
- University of Arizona College of Medicine, Department of Medicine, Division of Infectious Diseases, Tucson, AZ, United States of America
| | - Justin O Schmidt
- Southwestern Biological Institute, Tucson, AZ, United States of America
| | - Sarah A Hamer
- Texas A&M University, Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
| | - Patricia L Dorn
- Loyola University New Orleans, Department of Biological Sciences, New Orleans, LA, United States of America
| | - Nafees Ahmad
- University of Arizona College of Medicine, Department of Immunobiology, Tucson, AZ, United States of America
| | - Stephen A Klotz
- University of Arizona College of Medicine, Department of Medicine, Division of Infectious Diseases, Tucson, AZ, United States of America
| |
Collapse
|
32
|
Chagas Disease in Central America: Recent Findings and Current Challenges in Vector Ecology and Control. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00175-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Justi SA, Cahan S, Stevens L, Monroy C, Lima-Cordón R, Dorn PL. Vectors of diversity: Genome wide diversity across the geographic range of the Chagas disease vector Triatoma dimidiata sensu lato (Hemiptera: Reduviidae). Mol Phylogenet Evol 2018; 120:144-150. [PMID: 29248626 PMCID: PMC5991476 DOI: 10.1016/j.ympev.2017.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023]
Abstract
To date, the phylogeny of Triatoma dimidiata sensu lato (s. l.) (Hemiptera: Reduviidae: Triatominae), the epidemiologically most important Chagas disease vector in Central America and a secondary vector in Mexico and northern South America, has only been investigated by one multi-copy nuclear gene (Internal Transcribed Spacer - 2) and a few mitochondrial genes. We examined 450 specimens sampled across most of its native range from Mexico to Ecuador using reduced representation next-generation sequencing encompassing over 16,000 single nucleotide polymorphisms (SNPs). Using a combined phylogenetic and species delimitation approach we uncovered two distinct species, as well as a well-defined third group that may contain multiple species. The findings are discussed with respect to possible drivers of diversification and the epidemiological importance of the distinct species and groups.
Collapse
Affiliation(s)
- Silvia A Justi
- Department of Biology, University of Vermont, Burlington, VT, United States.
| | - Sara Cahan
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Carlota Monroy
- Biology School, University of San Carlos, Guatemala City, Guatemala
| | - Raquel Lima-Cordón
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Patricia L Dorn
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, LA, United States
| |
Collapse
|