1
|
Chen X, Di L, Qian M, Shen D, Feng X, Zhang X. Neurological features of Hansen disease: a retrospective, multicenter cohort study. Sci Rep 2024; 14:10374. [PMID: 38710787 PMCID: PMC11074337 DOI: 10.1038/s41598-024-60457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
To elucidate the neurological features of Hansen disease. The medical records of patients with confirmed Hansen disease transferred from the neurology department were reviewed, and all medical and neurological manifestations of Hansen disease were assessed. Eleven patients with confirmed Hansen disease, 10 with newly detected Hansen disease and 1 with relapsed Hansen disease, who visited neurology departments were enrolled. The newly detected patients with Hansen disease were classified as having lepromatous leprosy (LL, n = 1), borderline lepromatous leprosy (BL, n = 2), borderline leprosy (BB, n = 2), borderline tuberculoid leprosy (BT, n = 1), tuberculoid leprosy (TT, n = 2), or pure neural leprosy (PNL, n = 2). All of the patients with confirmed Hansen were diagnosed with peripheral neuropathy (100.00%, 11/11). The symptoms and signs presented were mainly limb numbness (100.00%, 11/11), sensory and motor dysfunction (100.00%, 11/11), decreased muscle strength (90.90%, 10/11), and skin lesions (81.81%, 9/11). Nerve morphological features in nerve ultrasonography (US) included peripheral nerve asymmetry and segmental thickening (100.00%, 9/9). For neuro-electrophysiology feature, the frequency of no response of sensory nerves was significantly higher than those of motor nerves [(51.21% 42/82) vs (24.70%, 21/85)(P = 0.0183*)] by electrodiagnostic (EDX) studies. Nerve histological features in nerve biopsy analysis included demyelination (100.00%, 5/5) and axonal damage (60.00%, 3/5). In addition to confirmed diagnoses by acid-fast bacteria (AFB) staining (54.54%, 6/11) and skin pathology analysis (100.00%, 8/8), serology and molecular technology were positive in 36.36% (4/11) and 100.00% (11/11) of confirmed patients of Hansen disease, respectively. It is not uncommon for patients of Hansen disease to visit neurology departments due to peripheral neuropathy. The main pathological features of affected nerves are demyelination and axonal damage. The combination of nerve US, EDX studies, nerve biopsy, and serological and molecular tests can improve the diagnosis of Hansen disease.
Collapse
Affiliation(s)
- Xiaohua Chen
- Leprosy Department, Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory for Research On Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China.
| | - Li Di
- Department of Neurology, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Qian
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinhong Feng
- Department of Neurology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Xiqing Zhang
- Department of Neurology, Beijing Junyi Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
2
|
Jiang H, Shi Y, Chokkakula S, Zhang W, Long S, Wang Z, Kong W, Long H, Wu L, Hu L, Yao Q, Wang H. Utility of Multi-target Nested PCR and ELISPOT Assays for the Detection of Paucibacillary Leprosy: A Possible Conclusion of Clinical Laboratory Misdiagnosis. Front Cell Infect Microbiol 2022; 12:814413. [PMID: 35480232 PMCID: PMC9036522 DOI: 10.3389/fcimb.2022.814413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
The diagnosis of paucibacillary (PB) leprosy often possesses a diagnostic challenge, especially for pure neuritic and lesser skin lesions with the zero bacillary load, requiring a sensitive and accurate diagnostic tool. We have included 300 clinically diagnosed new leprosy cases (comprising 98 PB cases) and analyzed the sensitivity and specificity of PB leprosy cases by nested PCR with folP, gyrA, rpoB, RLEP, and 16SrRNA and Enzyme-linked Immunospot Assay test (ELISPOT) with MMPII, NDO-BSA, and LID-1 antigens by detecting interferon gamma (IFN-γ) release. The overall positivity rates of genes tested in 300 clinical specimens were identified as 55% of 16SrRNA, 59% of RLEP, 59.3% of folP, 57.3% of rpoB, 61% of gyrA while 90% of nested folP, 92.6% of nested rpoB, and 95% of nested gyrA, and 285 (95%) of at least one gene positive cases. For PB specimens, 95% PCR positivity was achieved by three tested genes in nested PCR. The data obtained from ELISPOT for three antigens were analyzed for IFN-γ expression with 600 subjects. Among 98 PB leprosy cases, the sensitivity of MMP II, LID-1, and NDO-BSA was 90%, 87%, and 83%, respectively, and the specificity was 90%, 91%, and 86%, respectively. The total number of cases positive for at least one antigen was 90 (91.8%) in PB, which is significantly higher than that in multibacillary (MB) leprosy (56.7%). The combination of multi-targets nested PCR and ELISPOT assay provides a specific tool to early clinical laboratory diagnosis of PB leprosy cases. The two assays are complementary to each other and beneficial for screening PB patients.
Collapse
Affiliation(s)
- Haiqin Jiang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
- Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ying Shi
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
| | - Santosh Chokkakula
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
- Department of Microbiology, Chungbuk National University College of Medicine, and Medical Research Institute, Cheongju, South Korea
| | - Wenyue Zhang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
| | - Siyu Long
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
| | - Zhenzhen Wang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Wenming Kong
- Department of Leprosy Control, Zhejiang, Provincial Institute of Dermatology, Zhejiang, China
| | - Heng Long
- Department of Leprosy Control, Wenshan institute of Dermatology, Wenshan, China
| | - Limei Wu
- Department of Leprosy Control, Zhejiang, Provincial Institute of Dermatology, Zhejiang, China
| | - Lihua Hu
- Department of Leprosy Control, Zhejiang, Provincial Institute of Dermatology, Zhejiang, China
| | - Qiang Yao
- Department of Leprosy Control, Zhejiang, Provincial Institute of Dermatology, Zhejiang, China
- *Correspondence: Hongsheng Wang, ; Qiang Yao,
| | - Hongsheng Wang
- Department of Mycobacterium, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- National Centre for STD and Leprosy Control, China CDC, Nanjing, China
- Centre for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Hongsheng Wang, ; Qiang Yao,
| |
Collapse
|
3
|
Yuan YH, Liu J, You YG, Chen XH, Yuan LC, Wen Y, Li HY, Zhang Y. Transcriptomic Analysis of Mycobacterium leprae-Stimulated Response in Peripheral Blood Mononuclear Cells Reveal Potential Biomarkers for Early Diagnosis of Leprosy. Front Cell Infect Microbiol 2022; 11:714396. [PMID: 34993156 PMCID: PMC8724050 DOI: 10.3389/fcimb.2021.714396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify an unique host transcriptional signature in peripheral blood mononuclear cells (PBMCs) in response to Mycobacterium leprae antigens to distinguish between patients with leprosy and non-leprosy controls for early diagnosis of the disease. Sixteen individuals were enrolled in the discovery cohort [eight patients with leprosy, comprising four multibacillary (MB) and four paucibacillary (PB); and eight non-leprosy controls, comprising four healthy house contacts (HHCs) and four endemic controls (ECs)]. The differences in the transcriptome response of PBMCs to M. leprae sonicate antigen were evaluated between leprosy patients and non-leprosy controls, and 12 differentially expressed genes (CCL2/MCP-1, IL-8, JAKM, ATP, ND1, SERP, FLJ10489, LINC00659, LOC34487, LOC101928143, MIR22, and NCF1C) were identified. The accuracy of the 12 differentially expressed genes was further validated for the diagnosis of leprosy using real-time quantitative PCR in 82 individuals (13 MB, 10 PB, 37 HHCs, and 22 ECs) in the validation cohort. We found that a 5 gene signature set IL-8, CCL2/MCP-1, SERP, LINC00659 and FLJ10489 had a suitable performance in discriminating leprosy from ECs. In addition, elevated expression of IL-8, CCL2/MCP-1, SERP and LINC00659 was associated with MB diagnosis compared with ECs, whereas increased expression of IL-8, CCL2/MCP-1, SERP and FLJ10489 was found to be useful biomarkers for PB diagnosis from ECs. Moreover, we found decreased expression of NCF1C among leprosy patients could distinguish leprosy from HHCs, whereas higher expression of CCL2 among MB than PB could distinguish different leprosy patients. In conclusion, among the 12 candidate host genes identified, a three gene signature IL-8, CCL2/MCP-1, and SERP showed the best performance in distinguishing leprosy patients from healthy controls. These findings may have implications for developing a rapid blood-based test for early diagnosis of leprosy.
Collapse
Affiliation(s)
- You-Hua Yuan
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, China
| | - Jian Liu
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Yuan-Gang You
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Xiao-Hua Chen
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Lian-Chao Yuan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Yan Wen
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Huan Ying Li
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Ogunsumi DO, Lal V, Puchner KP, van Brakel W, Schwienhorst-Stich EM, Kasang C, Chukwu J, Kreibich S, Parisi S, Richardus JH, Blok DJ. Measuring endemicity and burden of leprosy across countries and regions: A systematic review and Delphi survey. PLoS Negl Trop Dis 2021; 15:e0009769. [PMID: 34543282 PMCID: PMC8483296 DOI: 10.1371/journal.pntd.0009769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/30/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leprosy is a chronic infectious disease caused by Mycobacterium leprae, the annual new case detection in 2019 was 202,189 globally. Measuring endemicity levels and burden in leprosy lacks a uniform approach. As a result, the assessment of leprosy endemicity or burden are not comparable over time and across countries and regions. This can make program planning and evaluation difficult. This study aims to identify relevant metrics and methods for measuring and classifying leprosy endemicity and burden at (sub)national level. METHODS We used a mixed-method approach combining findings from a systematic literature review and a Delphi survey. The literature search was conducted in seven databases, searching for endemicity, burden and leprosy. We reviewed the available evidence on the usage of indicators, classification levels, and scoring methods to measure and classify endemicity and burden. A two round Delphi survey was conducted to ask experts to rank and weigh indicators, classification levels, and scoring methods. RESULTS The literature review showed variation of indicators, levels, and cut-off values to measure leprosy endemicity and/or burden. The most used indicators for endemicity include new case detection rate (NCDR), new cases among children and new cases with grade 2 disability. For burden these include NCDR, MB cases, and prevalence. The classification levels 'high' and 'low' were most important. It was considered most relevant to use separate scoring methods for endemicity and burden. The scores would be derived by use of multiple indicators. CONCLUSION There is great variation in the existing method for measuring endemicity and burden across countries and regions. Our findings contribute to establishing a standardized uniform approach to measure and classify leprosy endemicity and burden at (sub)national level, which would allow effective communication and planning of intervention strategies.
Collapse
Affiliation(s)
- Dorcas O. Ogunsumi
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Vivek Lal
- Sasakawa-India Leprosy Foundation, New Delhi, India
| | - Karl Philipp Puchner
- German Leprosy and Tuberculosis Relief Association, Würzburg, Germany
- Medical Faculty/Master’s Programme Global Health and Disaster Medicine, University of Athens, Greece
| | | | - Eva-Maria Schwienhorst-Stich
- German Leprosy and Tuberculosis Relief Association, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christa Kasang
- German Leprosy and Tuberculosis Relief Association, Würzburg, Germany
| | - Joseph Chukwu
- German Leprosy and Tuberculosis Relief Association, Würzburg, Germany
| | - Saskia Kreibich
- German Leprosy and Tuberculosis Relief Association, Würzburg, Germany
| | - Sandra Parisi
- German Leprosy and Tuberculosis Relief Association, Würzburg, Germany
- Department for General Practice, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Jan Hendrik Richardus
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - David J. Blok
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
5
|
Polymorphisms in mitochondrial ribosomal protein S5 (MRPS5) are associated with leprosy risk in Chinese. PLoS Negl Trop Dis 2020; 14:e0008883. [PMID: 33362202 PMCID: PMC7757804 DOI: 10.1371/journal.pntd.0008883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/13/2020] [Indexed: 01/15/2023] Open
Abstract
Leprosy is an infectious disease caused by Mycobacterium leprae (M. leprae), with about 210,000 new cases per year worldwide. Although numerous risk loci have been uncovered by genome-wide association studies, the effects of common genetic variants are relatively modest. To identify possible new genetic locus involved in susceptibility to leprosy, whole exome sequencing was performed for 28 subjects including 14 patients and 12 unaffected members from 8 leprosy-affected families as well as another case and an unrelated control, and then the follow-up SNP genotyping of the candidate variants was studied in case-control sample sets. A rare missense variant in mitochondrial ribosomal protein S5 (MRPS5), rs200730619 (c. 95108402T>C [p. Tyr137Cys]) was identified and validated in 369 cases and 270 controls of Chinese descent (Padjusted = 0.006, odds ratio [OR] = 2.74) as a contributing factor to leprosy risk. Moreover, the mRNA level of MRPS5 was downregulated in M. leprae sonicate-stimulated peripheral blood mononuclear cells. Our results indicated that MRPS5 may be involved in leprosy pathogenesis. Further studies are needed to determine if defective MRPS5 could lead to impairment of energy metabolism of host immune cells, which could further cause defect in clearing M. leprae and increase susceptibility to infection.
Collapse
|
6
|
Zhao Q, Sun Y, Liu H, Zhang F. Prevention and Treatment of Leprosy - China, 2009-2019. China CDC Wkly 2020; 2:53-56. [PMID: 34594761 PMCID: PMC8393067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qing Zhao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China,Furen Zhang,
| |
Collapse
|
7
|
Chen X, You YG, Yuan YH, Yuan LC, Wen Y. Host immune responses induced by specific Mycobacterium leprae antigens in an overnight whole-blood assay correlate with the diagnosis of paucibacillary leprosy patients in China. PLoS Negl Trop Dis 2019; 13:e0007318. [PMID: 31017900 PMCID: PMC6481774 DOI: 10.1371/journal.pntd.0007318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/20/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leprosy, caused by Mycobacterium leprae, affects over 200,000 people annually worldwide and remains endemic in the ethnically diverse, mountainous and underdeveloped southwestern provinces of China. Delayed diagnosis of leprosy persists in China, thus, additional knowledge to support early diagnosis, especially early diagnosis of paucibacillary (PB) patients, based on the host immune responses induced by specific M. leprae antigens is needed. The current study aimed to investigate leprosy patients and controls in Southwest China by comparing supernatants after stimulation with specific M. leprae antigens in an overnight whole-blood assay (WBA) to determine whether host markers induced by specific M. leprae antigens improve the diagnosis or discrimination of PB patients with leprosy. METHODOLOGY/PRINCIPAL FINDINGS Leprosy patients [13 multibacillary (MB) patients and 7 PB patients] and nonleprosy controls [21 healthy household contacts (HHCs), 20 endemic controls (ECs) and 19 tuberculosis (TB) patients] were enrolled in this study. The supernatant levels of ten host markers stimulated by specific M. leprae antigens were evaluated by overnight WBA and multiplex Luminex assays. The diagnostic value in PB patients and ECs and the discriminatory value between PB patients and HHCs or TB patients were evaluated by receiver operator characteristics (ROC) analysis. ML2044-stimulated CXCL8/IL-8 achieved the highest sensitivity of 100%, with a specificity of 73.68%, for PB diagnosis. Compared to single markers, a 3-marker combination model that included ML2044-induced CXCL8/IL-8, CCL4/MIP-1 beta, and IL-6 improved the diagnostic specificity to 94.7% for PB patients. ML2044-stimulated IL-4 and CXCL8/IL-8 achieved the highest sensitivity (85.71% and 100%) and the highest specificity (95.24% and 84.21%) for discriminating PB patients from HHCs and TB patients, respectively. CONCLUSIONS Our findings suggest that the host markers induced by specific M. leprae antigens in an overnight WBA increase diagnostic and discriminatory value in PB patients with leprosy, with a particularly strong association with interleukin 8.
Collapse
Affiliation(s)
- Xiaohua Chen
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
- * E-mail: (XC); (YW)
| | - Yuan-Gang You
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - You-Hua Yuan
- Department of Laboratory, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Lian C. Yuan
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
| | - Yan Wen
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Capital Medical University, Beijing, China
- * E-mail: (XC); (YW)
| |
Collapse
|