1
|
Kemeter LM, Birzer A, Heym S, Thoma-Kress AK. Milk Transmission of Mammalian Retroviruses. Microorganisms 2023; 11:1777. [PMID: 37512949 PMCID: PMC10386362 DOI: 10.3390/microorganisms11071777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The transmission of viruses from one host to another typically occurs through horizontal or vertical pathways. The horizontal pathways include transmission amongst individuals, usually through bodily fluids or excretions, while vertical transmission transpires from mother to their offspring, either during pregnancy, childbirth, or breastfeeding. While there are more than 200 human pathogenic viruses to date, only a small number of them are known to be transmitted via breast milk, including cytomegalovirus (CMV), human immunodeficiency virus type 1 (HIV-1), and human T cell lymphotropic virus type 1 (HTLV-1), the latter two belonging to the family Retroviridae. Breast milk transmission is a common characteristic among mammalian retroviruses, but there is a lack of reports summarizing our knowledge regarding this route of transmission of mammalian retroviruses. Here, we provide an overview of the transmission of mammalian exogenous retroviruses with a focus on Orthoretrovirinae, and we highlight whether they have been described or suspected to be transmitted through breast milk, covering various species. We also elaborate on the production and composition of breast milk and discuss potential entry sites of exogenous mammalian retroviruses during oral transmission.
Collapse
Affiliation(s)
| | | | | | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.M.K.); (A.B.); (S.H.)
| |
Collapse
|
2
|
AbuEed L, Makundi I, Miyake A, Kawasaki J, Minoura C, Koshida Y, Nishigaki K. Feline Foamy Virus Transmission in Tsushima Leopard Cats (Prionailurus bengalensis euptilurus) on Tsushima Island, Japan. Viruses 2023; 15:v15040835. [PMID: 37112816 PMCID: PMC10146696 DOI: 10.3390/v15040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Tsushima leopard cats (TLC; Prionailurus bengalensis euptilurus) only inhabit Tsushima Island, Nagasaki, Japan and are critically endangered and threatened by infectious diseases. The feline foamy virus (FFV) is widely endemic in domestic cats. Therefore, its transmission from domestic cats to TLCs may threaten the TLC population. Thus, this study aimed to assess the possibility that domestic cats could transmit FFV to TLCs. Eighty-nine TLC samples were screened, and FFV was identified in seven (7.86%). To assess the FFV infection status of domestic cats, 199 domestic cats were screened; 14.07% were infected. The phylogenetic analysis revealed that the FFV partial sequence from domestic cats and TLC sequences clustered in one clade, suggesting that the two populations share the same strain. The statistical data minimally supported the association between increased infection rate and sex (p = 0.28), indicating that FFV transmission is not sex dependent. In domestic cats, a significant difference was observed in FFV detection in feline immunodeficiency virus (p = 0.002) and gammaherpesvirus1 infection statuses (p = 0.0001) but not in feline leukemia virus infection status (p = 0.21). Monitoring FFV infection in domestic cats and TLC populations is highly recommended as part of TLC surveillance and management strategies.
Collapse
|
3
|
STLV-1 Commonly Targets Neurons in the Brain of Asymptomatic Non-Human Primates. mBio 2023; 14:e0352622. [PMID: 36802226 PMCID: PMC10128043 DOI: 10.1128/mbio.03526-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The human T-cell leukemia virus (HTLV)-1 is responsible for an aggressive neurodegenerative disease (HAM/TSP) and multiple neurological alterations. The capacity of HTLV-1 to infect central nervous system (CNS) resident cells, together with the neuroimmune-driven response, has not been well-established. Here, we combined the use of human induced pluripotent stem cells (hiPSC) and of naturally STLV-1-infected nonhuman primates (NHP) as models with which to investigate HTLV-1 neurotropism. Hence, neuronal cells obtained after hiPSC differentiation in neural polycultures were the main cell population infected by HTLV-1. Further, we report the infection of neurons with STLV-1 in spinal cord regions as well as in brain cortical and cerebellar sections of postmortem NHP. Additionally, reactive microglial cells were found in infected areas, suggesting an immune antiviral response. These results emphasize the need to develop new efficient models by which to understand HTLV-1 neuroinfection and suggest an alternative mechanism that leads to HAM/TSP.
Collapse
|
4
|
A Review on Zoonotic Pathogens Associated with Non-Human Primates: Understanding the Potential Threats to Humans. Microorganisms 2023; 11:microorganisms11020246. [PMID: 36838210 PMCID: PMC9964884 DOI: 10.3390/microorganisms11020246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Non-human primates (NHP) share a close relationship with humans due to a genetic homology of 75-98.5%. NHP and humans have highly similar tissue structures, immunity, physiology, and metabolism and thus often can act as hosts to the same pathogens. Agriculture, meat consumption habits, tourism development, religious beliefs, and biological research have led to more extensive and frequent contact between NHPs and humans. Deadly viruses, such as rabies virus, herpes B virus, Marburg virus, Ebola virus, human immunodeficiency virus, and monkeypox virus can be transferred from NHP to humans. Similarly, herpes simplex virus, influenza virus, and yellow fever virus can be transmitted to NHP from humans. Infectious pathogens, including viruses, bacteria, and parasites, can affect the health of both primates and humans. A vast number of NHP-carrying pathogens exhibit a risk of transmission to humans. Therefore, zoonotic infectious diseases should be evaluated in future research. This article reviews the research evidence, diagnostic methods, prevention, and treatment measures that may be useful in limiting the spread of several common viral pathogens via NHP and providing ideas for preventing zoonotic diseases with epidemic potential.
Collapse
|
5
|
Musashi-1 and miR-147 Precursor Interaction Mediates Synergistic Oncogenicity Induced by Co-Infection of Two Avian Retroviruses. Cells 2022; 11:cells11203312. [PMID: 36291177 PMCID: PMC9600308 DOI: 10.3390/cells11203312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Synergism between avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) has been reported frequently in co-infected chicken flocks. Although significant progress has been made in understanding the tumorigenesis mechanisms of ALV and REV, how these two simple oncogenic retroviruses induce synergistic oncogenicity remains unclear. In this study, we found that ALV-J and REV synergistically promoted mutual replication, suppressed cellular senescence, and activated epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, structural proteins from ALV-J and REV synergistically activated the expression of Musashi-1(MSI1), which directly targeted pri-miR-147 through its RNA binding site. This inhibited the maturation of miR-147, which relieved the inhibition of NF-κB/KIAA1199/EGFR signaling, thereby suppressing cellular senescence and activating EMT. We revealed a synergistic oncogenicity mechanism induced by ALV-J and REV in vitro. The elucidation of the synergistic oncogenicity of these two simple retroviruses could help in understanding the mechanism of tumorigenesis in ALV-J and REV co-infection and help identify promising molecular targets and key obstacles for the joint control of ALV-J and REV and the development of clinical technologies.
Collapse
|
6
|
Occurrence of Equine Foamy Virus Infection in Horses from Poland. Viruses 2022; 14:v14091973. [PMID: 36146781 PMCID: PMC9504846 DOI: 10.3390/v14091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Equine foamy virus (EFVeca) is a foamy virus of non-primate origin and among the least-studied members of this retroviral subfamily. By sequence comparison, EFVeca shows the highest similarity to bovine foamy virus. In contrast to simian, bovine or feline foamy viruses, knowledge about the epidemiology of EFVeca is still limited. Since preliminary studies suggested EFVeca infections among horses in Poland, we aimed to expand the diagnostics of EFVeca infections by developing specific diagnostic tools and apply them to investigate its prevalence. An ELISA test based on recombinant EFVeca Gag protein was developed for serological investigation, while semi-nested PCR for the detection of EFVeca DNA was established. 248 DNA and serum samples from purebred horses, livestock and saddle horses, Hucul horses and semi-feral Polish primitive horses were analyzed in this study. ELISA was standardized, and cut off value, sensitivity and specificity of the test were calculated using Receiver Operating Characteristic and Bayesian estimation. Based on the calculated cut off, 135 horses were seropositive to EFVeca Gag protein, while EFVeca proviral DNA was detected in 85 animals. The rate of infected individuals varied among the horse groups studied; this is the first report confirming the existence of EFVeca infections in horses from Poland using virus-specific tools.
Collapse
|
7
|
Carcone A, Journo C, Dutartre H. Is the HTLV-1 Retrovirus Targeted by Host Restriction Factors? Viruses 2022; 14:v14081611. [PMID: 35893677 PMCID: PMC9332716 DOI: 10.3390/v14081611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T cell leukemia/lymphoma (ATLL) and of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), was identified a few years before Human Immunodeficiency Virus (HIV). However, forty years later, our comprehension of HTLV-1 immune detection and the host immune responses to HTLV-1 is far more limited than for HIV. In addition to innate and adaptive immune responses that rely on specialized cells of the immune system, host cells may also express a range of antiviral factors that inhibit viral replication at different stages of the cycle, in a cell-autonomous manner. Multiple antiviral factors allowing such an intrinsic immunity have been primarily and extensively described in the context HIV infection. Here, we provide an overview of whether known HIV restriction factors might act on HTLV-1 replication. Interestingly, many of them do not exert any antiviral activity against HTLV-1, and we discuss viral replication cycle specificities that could account for these differences. Finally, we highlight future research directions that could help to identify antiviral factors specific to HTLV-1.
Collapse
|
8
|
Gessain A, Montange T, Betsem E, Bilounga Ndongo C, Njouom R, Buseyne F. Case-Control Study of the Immune Status of Humans Infected With Zoonotic Gorilla Simian Foamy Viruses. J Infect Dis 2021; 221:1724-1733. [PMID: 31822908 DOI: 10.1093/infdis/jiz660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Zoonotic simian foamy viruses (SFVs) establish persistent infections in humans, for whom the long-term consequences for health are poorly described. In this study, we aimed to characterize blood-cell phenotypes and plasma biomarkers associated with gorilla SFV infection in humans. METHODS We used a case-control design to compare 15 Cameroonian hunters infected with gorilla SFV (cases) to 15 controls matched for age and ethnicity. A flow cytometry-based phenotypic study and quantification of plasma immune biomarkers were carried out on blood samples from all participants. Wilcoxon signed-rank tests were used to compare cases and controls. RESULTS Cases had a significantly higher percentage of CD8 T lymphocytes than controls (median, 17.6% vs 13.7%; P = .03) but similar levels of B, natural killer, and CD4 T lymphocytes. Cases also had a lower proportion of recent CD4 thymic emigrants (10.9% vs 18.6%, P = .05), a higher proportion of programmed death receptor 1 (PD-1) expressing memory CD4 T lymphocytes (31.7% vs 24.7%, P = .01), and higher plasma levels of the soluble CD163 scavenger receptor (0.84 vs .59 µg/mL, P = .003) than controls. CONCLUSIONS We show, for the first time, that chronic infection with SFV is associated with T lymphocyte differentiation and monocyte activation.
Collapse
Affiliation(s)
- Antoine Gessain
- Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.,Unité Mixte de Recherche du Centre National de la Recherche Scientifique 3569, Paris, France
| | - Thomas Montange
- Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.,Unité Mixte de Recherche du Centre National de la Recherche Scientifique 3569, Paris, France
| | | | | | | | - Florence Buseyne
- Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France.,Unité Mixte de Recherche du Centre National de la Recherche Scientifique 3569, Paris, France
| |
Collapse
|
9
|
Halbrook M, Gadoth A, Shankar A, Zheng H, Campbell EM, Hoff NA, Muyembe JJ, Wemakoy EO, Rimoin AW, Switzer WM. Human T-cell lymphotropic virus type 1 transmission dynamics in rural villages in the Democratic Republic of the Congo with high nonhuman primate exposure. PLoS Negl Trop Dis 2021; 15:e0008923. [PMID: 33507996 PMCID: PMC7872225 DOI: 10.1371/journal.pntd.0008923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/09/2021] [Accepted: 10/26/2020] [Indexed: 01/09/2023] Open
Abstract
The Democratic Republic of the Congo (DRC) has a history of nonhuman primate (NHP) consumption and exposure to simian retroviruses yet little is known about the extent of zoonotic simian retroviral infections in DRC. We examined the prevalence of human T-lymphotropic viruses (HTLV), a retrovirus group of simian origin, in a large population of persons with frequent NHP exposures and a history of simian foamy virus infection. We screened plasma from 3,051 persons living in rural villages in central DRC using HTLV EIA and western blot (WB). PCR amplification of HTLV tax and LTR sequences from buffy coat DNA was used to confirm infection and to measure proviral loads (pVLs). We used phylogenetic analyses of LTR sequences to infer evolutionary histories and potential transmission clusters. Questionnaire data was analyzed in conjunction with serological and molecular data. A relatively high proportion of the study population (5.4%, n = 165) were WB seropositive: 128 HTLV-1-like, 3 HTLV-2-like, and 34 HTLV-positive but untypeable profiles. 85 persons had HTLV indeterminate WB profiles. HTLV seroreactivity was higher in females, wives, heads of households, and increased with age. HTLV-1 LTR sequences from 109 persons clustered strongly with HTLV-1 and STLV-1 subtype B from humans and simians from DRC, with most sequences more closely related to STLV-1 from Allenopithecus nigroviridis (Allen's swamp monkey). While 18 potential transmission clusters were identified, most were in different households, villages, and health zones. Three HTLV-1-infected persons were co-infected with simian foamy virus. The mean and median percentage of HTLV-1 pVLs were 5.72% and 1.53%, respectively, but were not associated with age, NHP exposure, village, or gender. We document high HTLV prevalence in DRC likely originating from STLV-1. We demonstrate regional spread of HTLV-1 in DRC with pVLs reported to be associated with HTLV disease, supporting local and national public health measures to prevent spread and morbidity.
Collapse
Affiliation(s)
- Megan Halbrook
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - Adva Gadoth
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - HaoQiang Zheng
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ellsworth M. Campbell
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nicole A. Hoff
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Emile Okitolonda Wemakoy
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Anne W. Rimoin
- University of California Los Angeles, Fielding School of Public Health, Los Angeles, California, United States of America
| | - William M. Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
10
|
Kraberger S, Fountain-Jones NM, Gagne RB, Malmberg J, Dannemiller NG, Logan K, Alldredge M, Varsani A, Crooks KR, Craft M, Carver S, VandeWoude S. Frequent cross-species transmissions of foamy virus between domestic and wild felids. Virus Evol 2020; 6:vez058. [PMID: 31942245 PMCID: PMC6955097 DOI: 10.1093/ve/vez058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Emerging viral outbreaks resulting from host switching is an area of continued scientific interest. Such events can result in disease epidemics or in some cases, clinically silent outcomes. These occurrences are likely relatively common and can serve as tools to better understand disease dynamics, and may result in changes in behavior, fecundity, and, ultimately survival of the host. Feline foamy virus (FFV) is a common retrovirus infecting domestic cats globally, which has also been documented in the North American puma (Puma concolor). The prevalent nature of FFV in domestic cats and its ability to infect wild felids, including puma, provides an ideal system to study cross-species transmission across trophic levels (positions in the food chain), and evolution of pathogens transmitted between individuals following direct contact. Here we present findings from an extensive molecular analysis of FFV in pumas, focused on two locations in Colorado, and in relation to FFV recovered from domestic cats in this and previous studies. Prevalence of FFV in puma was high across the two regions, ∼77 per cent (urban interface site) and ∼48 per cent (rural site). Comparison of FFV from pumas living across three states; Colorado, Florida, and California, indicates FFV is widely distributed across North America. FFV isolated from domestic cats and pumas was not distinguishable at the host level, with FFV sequences sharing >93 per cent nucleotide similarity. Phylogenetic, Bayesian, and recombination analyses of FFV across the two species supports frequent cross-species spillover from domestic cat to puma during the last century, as well as frequent puma-to-puma intraspecific transmission in Colorado, USA. Two FFV variants, distinguished by significant difference in the surface unit of the envelope protein, were commonly found in both hosts. This trait is also shared by simian foamy virus and may represent variation in cell tropism or a unique immune evasion mechanism. This study elucidates evolutionary and cross-species transmission dynamics of a highly prevalent multi-host adapted virus, a system which can further be applied to model spillover and transmission of pathogenic viruses resulting in widespread infection in the new host.
Collapse
Affiliation(s)
- Simona Kraberger
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Nicholas M Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Falcon Heights, St Paul, MN 55108, USA
| | - Roderick B Gagne
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer Malmberg
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nicholas G Dannemiller
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ken Logan
- Colorado Parks and Wildlife, 317 W Prospect Rd, Fort Collins, CO 80526, USA
| | - Mat Alldredge
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery Fort Collins, CO 80523, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life sciences, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 1474 Campus Delivery Fort Collins, CO 80523, USA
| | - Meggan Craft
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Falcon Heights, St Paul, MN 55108, USA
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Jégado B, Kashanchi F, Dutartre H, Mahieux R. STLV-1 as a model for studying HTLV-1 infection. Retrovirology 2019; 16:41. [PMID: 31843020 PMCID: PMC6915939 DOI: 10.1186/s12977-019-0503-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/07/2019] [Indexed: 01/17/2023] Open
Abstract
Few years after HTLV-1 identification and isolation in humans, STLV-1, its simian counterpart, was discovered. It then became clear that STLV-1 is present almost in all simian species. Subsequent molecular epidemiology studies demonstrated that, apart from HTLV-1 subtype A, all human subtypes have a simian homolog. As HTLV-1, STLV-1 is the etiological agent of ATL, while no case of TSP/HAM has been described. Given its similarities with HTLV-1, STLV-1 represents a unique tool used for performing clinical studies, vaccine studies as well as basic science.
Collapse
Affiliation(s)
- Brice Jégado
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, USA
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France.
| |
Collapse
|
12
|
Abstract
The full-length sequence of a Papio anubis simian foamy provirus was obtained by using PCR followed by Sanger sequencing. This simian foamy virus from a P. anubis animal (SFVp.anubis) is 13,393 bp long. Like other proviruses, the genome of SFVp.anubis is organized with long terminal repeats (LTRs), as well as gag, pol, env, tas, and bet genes. SFVp.anubis is closer to Old World African strains than to New World ones. The full-length sequence of a Papio anubis simian foamy provirus was obtained by using PCR followed by Sanger sequencing. This simian foamy virus from a P. anubis animal (SFVp.anubis) is 13,393 bp long. Like other proviruses, the genome of SFVp.anubis is organized with long terminal repeats (LTRs), as well as gag, pol, env, tas, and bet genes. SFVp.anubis is closer to Old World African strains than to New World ones.
Collapse
|
13
|
Murray SM, Linial ML. Simian Foamy Virus Co-Infections. Viruses 2019; 11:v11100902. [PMID: 31569704 PMCID: PMC6833048 DOI: 10.3390/v11100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/29/2022] Open
Abstract
Foamy viruses (FVs), also known as spumaretroviruses, are complex retroviruses that are seemingly nonpathogenic in natural hosts. In natural hosts, which include felines, bovines, and nonhuman primates (NHPs), a large percentage of adults are infected with FVs. For this reason, the effect of FVs on infections with other viruses (co-infections) cannot be easily studied in natural populations. Most of what is known about interactions between FVs and other viruses is based on studies of NHPs in artificial settings such as research facilities. In these settings, there is some indication that FVs can exacerbate infections with lentiviruses such as simian immunodeficiency virus (SIV). Nonhuman primate (NHP) simian FVs (SFVs) have been shown to infect people without any apparent pathogenicity. Humans zoonotically infected with simian foamy virus (SFV) are often co-infected with other viruses. Thus, it is important to know whether SFV co-infections affect human disease.
Collapse
Affiliation(s)
- Shannon M Murray
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| | - Maxine L Linial
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| |
Collapse
|
14
|
Nakamura H, Shimizu T, Takatani A, Suematsu T, Nakamura T, Kawakami A. Initial human T-cell leukemia virus type 1 infection of the salivary gland epithelial cells requires a biofilm-like structure. Virus Res 2019; 269:197643. [PMID: 31233774 DOI: 10.1016/j.virusres.2019.197643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 11/26/2022]
Abstract
The initial phase of the human T cell leukemia virus-1 (HTLV-1) infection of salivary gland epithelial cells (SGECs) was examined. SGECs of patients with Sjögren's syndrome (SS) and non-SS subjects were co-cultured with the HTLV-1-infected cell line HCT-5 or MOLT-4, then immunofluorescence (IF), scanning and transmission electron microscopy (SEM/TEM) were employed. The extracellular matrix and linker proteins galectin-3, agrin, and tetherin were expressed on the surfaces of both HCT-5 and MOLT-4 cells. HTLV-1 Gag-positive spots were observed on adjacent SGECs after 1 h of co-culture with HCT-5. Both in subjects with and those without SS, agrin and tetherin were co-expressed with HTLV-1 Gag on SGECs after co-culture with HCT-5, although no polarization of HTLV-1 Gag and relevant molecules was observed. SEM showed HTLV-1 virions that were found on HCT-5 were observed in the interfaces between HCT-5 cells and SGECs. TEM imaging showed that HTLV-1 virions were transmitted to SGECs at the interface with thin film-like structure, while HTLV-1 virions were released from the surface of HCT-5 cells. No endogenous retroviruses were observed. These results showed that the initial phase of HTLV-1 infection toward SGECs of SS was mediated not by viral synapses, but by biofilm-like components.
Collapse
Affiliation(s)
- Hideki Nakamura
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ayuko Takatani
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Suematsu
- Division of Electron Microscopy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsufumi Nakamura
- Department of Human Community, Faculty of Social Welfare, Nagasaki International University, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
15
|
An Immunodominant and Conserved B-Cell Epitope in the Envelope of Simian Foamy Virus Recognized by Humans Infected with Zoonotic Strains from Apes. J Virol 2019; 93:JVI.00068-19. [PMID: 30894477 DOI: 10.1128/jvi.00068-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/13/2019] [Indexed: 11/20/2022] Open
Abstract
Cross-species transmission of simian foamy viruses (SFVs) from nonhuman primates (NHPs) to humans is currently ongoing. These zoonotic retroviruses establish lifelong persistent infection in their human hosts. SFV are apparently nonpathogenic in vivo, with ubiquitous in vitro tropism. Here, we aimed to identify envelope B-cell epitopes that are recognized following a zoonotic SFV infection. We screened a library of 169 peptides covering the external portion of the envelope from the prototype foamy virus (SFVpsc_huHSRV.13) for recognition by samples from 52 Central African hunters (16 uninfected and 36 infected with chimpanzee, gorilla, or Cercopithecus SFV). We demonstrate the specific recognition of peptide N96-V110 located in the leader peptide, gp18LP Forty-three variant peptides with truncations, alanine substitutions, or amino acid changes found in other SFV species were tested. We mapped the epitope between positions 98 and 108 and defined six amino acids essential for recognition. Most plasma samples from SFV-infected humans cross-reacted with sequences from apes and Old World monkey SFV species. The magnitude of binding to peptide N96-V110 was significantly higher for samples of individuals infected with a chimpanzee or gorilla SFV than those infected with a Cercopithecus SFV. In conclusion, we have been the first to define an immunodominant B-cell epitope recognized by humans following zoonotic SFV infection.IMPORTANCE Foamy viruses are the oldest known retroviruses and have been mostly described to be nonpathogenic in their natural animal hosts. SFVs can be transmitted to humans, in whom they establish persistent infection, like the simian lenti- and deltaviruses that led to the emergence of two major human pathogens, human immunodeficiency virus type 1 and human T-lymphotropic virus type 1. This is the first identification of an SFV-specific B-cell epitope recognized by human plasma samples. The immunodominant epitope lies in gp18LP, probably at the base of the envelope trimers. The NHP species the most genetically related to humans transmitted SFV strains that induced the strongest antibody responses. Importantly, this epitope is well conserved across SFV species that infect African and Asian NHPs.
Collapse
|