1
|
Hobbs EC, Porter JL, Lee JYH, Loukopoulos P, Whiteley P, Skerratt LF, Stinear TP, Gibney KB, Meredith AL. Buruli ulcer surveillance in south-eastern Australian possums: Infection status, lesion mapping and internal distribution of Mycobacterium ulcerans. PLoS Negl Trop Dis 2024; 18:e0012189. [PMID: 39499725 PMCID: PMC11581399 DOI: 10.1371/journal.pntd.0012189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/21/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease of skin and subcutaneous tissues caused by Mycobacterium ulcerans. BU-endemic areas are highly focal, and M. ulcerans transmission dynamics vary by setting. In Victoria, Australia, BU is an endemic vector-borne zoonosis, with mosquitoes and native possums implicated in transmission, and humans incidental hosts. Despite the importance of possums as wildlife reservoirs of M. ulcerans, knowledge of BU in these animals is limited. Opportunistic necropsy-based and active trap-and-release surveillance studies were conducted across Melbourne and Geelong, Victoria, to investigate BU in possums. Demographic data and biological samples were collected, and cutaneous lesions suggestive of BU were mapped. Samples were tested for the presence of M. ulcerans DNA by IS2404 qPCR. The final dataset included 26 possums: 20 necropsied; 6 trapped and released. Most possums (77%) were common ringtails from inner Melbourne. Nine had ulcers, ranging from single and mild, to multiple and severe, exposing bones and tendons in three cases. M. ulcerans was confirmed in 73% (19/26) of examined possums: 8 with lesions and 11 without. Oral swabs were most frequently indicative of M. ulcerans infection status. Severely ulcerated possums had widespread systemic internal bacterial dissemination and were shedding M. ulcerans in faeces. The anatomical distribution of ulcers and PCR positivity of biological samples suggests possums may contract BU from bites of M. ulcerans-harbouring mosquitoes, traumatic skin wounds, ingestion of an unknown environmental source, and/or during early development in the pouch. Ringtail possums appear highly susceptible to infection with M. ulcerans and are important bacterial reservoirs in Victoria. Oral swabs should be considered for diagnosis or surveillance of infected possums. A One Health approach is needed to design and implement integrated interventions that reduce M. ulcerans transmission in Victoria, thereby protecting wildlife and humans from this emerging zoonotic disease.
Collapse
Affiliation(s)
- Emma C. Hobbs
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jean Y. H. Lee
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Panayiotis Loukopoulos
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Pam Whiteley
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Lee F. Skerratt
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Katherine B. Gibney
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Anna L. Meredith
- Melbourne Veterinary School, Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
- Office of the Dean, Faculty of Natural Sciences, The University of Keele, England, United Kingdom
| |
Collapse
|
2
|
Frimpong M, Frimpong VNB, Numfor H, Donkeng Donfack V, Amedior JS, Deegbe DE, Dadson B, Ablordey A, Eyangoh S, Phillips RO, Vedithi SC. Multi-centric evaluation of Biomeme Franklin Mobile qPCR for rapid detection of Mycobacterium ulcerans in clinical specimens. PLoS Negl Trop Dis 2023; 17:e0011373. [PMID: 37228126 DOI: 10.1371/journal.pntd.0011373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The gold standard for detection of Mycobacterium ulcerans is PCR due to its high accuracy in confirmation of suspected cases. But the available PCR assays are designed for standard size thermocyclers which are immobile and suited for reference laboratories often located long distances from endemic communities. This makes it a challenge to obtain immediate results for patient management. We validated and evaluated a dried reagent-based PCR assay adapted for a handheld, battery-operated, portable thermocycler with the potential to extend diagnostics to endemic communities with limited infrastructure. The diagnostic accuracy of the assay following a multi-center evaluation by three Buruli ulcer reference laboratories with over 300 clinical samples showed sensitivity and specificity of 100-97% and 100-94%, respectively using centralized IS2404 quantitative PCR platform as a reference standard. This assay coupled with a field-friendly extraction method fulfill almost all the target product profiles of Buruli ulcer for decentralized testing at the district, health center and community levels; a key critical action for achieving the NTD Road Map 2030 target for Buruli ulcer.
Collapse
Affiliation(s)
- Michael Frimpong
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Venus Nana Boakyewaa Frimpong
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Hycenth Numfor
- Mycobacteriology Unit, Centre Pasteur du Cameroon (CPC), Yaoundé, Cameroon
| | | | | | - Danielle Emefa Deegbe
- Noguchi Memorial Institute of Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Baaba Dadson
- Noguchi Memorial Institute of Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Anthony Ablordey
- Noguchi Memorial Institute of Medical Research (NMIMR), University of Ghana, Accra, Ghana
| | - Sara Eyangoh
- Mycobacteriology Unit, Centre Pasteur du Cameroon (CPC), Yaoundé, Cameroon
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | |
Collapse
|
3
|
Yalley AK, Ahiatrogah S, Kafintu-Kwashie AA, Amegatcher G, Prah D, Botwe AK, Adusei-Poku MA, Obodai E, Nii-Trebi NI. A Systematic Review on Suitability of Molecular Techniques for Diagnosis and Research into Infectious Diseases of Concern in Resource-Limited Settings. Curr Issues Mol Biol 2022; 44:4367-4385. [PMID: 36286015 PMCID: PMC9601131 DOI: 10.3390/cimb44100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases significantly impact the health status of developing countries. Historically, infectious diseases of the tropics especially have received insufficient attention in worldwide public health initiatives, resulting in poor preventive and treatment options. Many molecular tests for human infections have been established since the 1980s, when polymerase chain reaction (PCR) testing was introduced. In spite of the substantial innovative advancements in PCR technology, which currently has found wide application in most viral pathogens of global concern, the development and application of molecular diagnostics, particularly in resource-limited settings, poses potential constraints. This review accessed data from sources including PubMed, Google Scholar, the Web of Knowledge, as well as reports from the World Health Organization’s Annual Meeting on infectious diseases and examined these for current molecular approaches used to identify, monitor, or investigate some neglected tropical infectious diseases. This review noted some growth efforts in the development of molecular techniques for diagnosis of pathogens that appear to be common in resource limited settings and identified gaps in the availability and applicability of most of these molecular diagnostics, which need to be addressed if the One Health goal is to be achieved.
Collapse
Affiliation(s)
- Akua K. Yalley
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
| | - Selasie Ahiatrogah
- Department of Obstetrics and Gynaecology, College of Medicine, Pan African University of Life and Earth Sciences Institute, University of Ibadan, Ibadan P.O. Box 22133, Nigeria
| | - Anna A. Kafintu-Kwashie
- Department of Medical Microbiology, University of Ghana Medical School, Accra GA-221-1570, Ghana
| | - Gloria Amegatcher
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
| | - Diana Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Akua K. Botwe
- Molecular Biology Unit, Kintampo Health Research Centre, Ghana Health Service, Kintampo P.O. Box 200, Ghana
| | - Mildred A. Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, Accra GA-221-1570, Ghana
| | - Evangeline Obodai
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Nicholas I. Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
- Correspondence: ; Tel.: +233-54-827-6424
| |
Collapse
|
4
|
Wang L, Xu A, Zhou P, Zhao M, Xu C, Wang Y, Wang K, Wang F, Miao Y, Zhao W, Gao X. Rapid Detection of Candida tropicalis in Clinical Samples From Different Sources Using RPA-LFS. Front Cell Infect Microbiol 2022; 12:898186. [PMID: 35873165 PMCID: PMC9301490 DOI: 10.3389/fcimb.2022.898186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Candida tropicalis is one of the few Candida species besides Candida albicans that is able to produce true hyphae. At present, the commonly used clinical methods for the identification of this organism are traditional fungal culture, CTB staining, and color development. Polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) are also used to identify this fungus. Since the course of C. tropicalis infection progresses rapidly, there is an urgent need for rapid, sensitive, real-time field assays to meet the needs of clinical diagnosis. Recombinase polymerase amplification (RPA) combined with lateral flow strip (LFS) can rapidly amplify and visualize target genes within 20 min, and by pre-processing samples from different sources, the entire process can be controlled within 30 min. In this study, RPA-LFS was used to amplify the internal transcribed spacer-2 (ITS2) gene of C. tropicalis, and primer-probe design was optimized by introducing base mismatches to obtain a specific and sensitive primer-probe combination for clinical sample detection. LFS assay for 37 common clinical pathogens was performed, sensitivity and specificity of the detection system was determined, reaction temperature and time were optimized, and 191 actual clinical samples collected from different sources were tested to evaluate the detection performance of the established RPA-LFS system to provide a reliable molecular diagnostic method for the detection of C. tropicalis, the results show that the RPA-LFS system can specifically detect C. tropicalis without cross-reacting with other fungi or bacterial, with a sensitivity of 9.94 CFU/µL, without interference from genomic DNA of other species, at an optimal reaction temperature of 39°C, and the whole reaction process can be controlled within 20 min, and to meet the clinical need for rapid, sensitive, real-time, and portable field testing.
Collapse
Affiliation(s)
- Lei Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Aiguo Xu
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Ping Zhou
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Chenglai Xu
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yan Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Kun Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Fang Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yongchang Miao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Weiguo Zhao, ; Yongchang Miao, ; Xuzhu Gao,
| | - Weiguo Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Weiguo Zhao, ; Yongchang Miao, ; Xuzhu Gao,
| | - Xuzhu Gao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Weiguo Zhao, ; Yongchang Miao, ; Xuzhu Gao,
| |
Collapse
|
5
|
Wang F, Ge D, Wang L, Li N, Chen H, Zhang Z, Zhu W, Wang S, Liang W. Rapid and sensitive recombinase polymerase amplification combined with lateral flow strips for detecting Candida albicans. Anal Biochem 2021; 633:114428. [PMID: 34678249 DOI: 10.1016/j.ab.2021.114428] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/30/2022]
Abstract
Owing to modern lifestyles and increasing amounts of medical intervention, clinical infections caused by conditionally pathogenic fungi are becoming increasingly serious. Among these, Candida albicans is the most common. Therefore, the rapid and accurate detection of this pathogenic fungus is important to guiding the selection of clinical therapeutic agents. Recombinase polymerase amplification (RPA) combined with lateral flow strips (LFS) is a promising molecular detection method with the advantages of rapidity, simplicity of operation and high sensitivity. However, this simplicity brings with it the inherent and non-negligible risk of false-positive signals from primer-dimers. In this study, primer-dependent artifacts were eliminated by using probes in the RPA reaction, introducing specific base substitutions to the primer and probe sequences and analyzing and screening the formation of primer-probe complexes. These measures were rigorously tested for efficacy, leading to the creation of an improved RPA-LFS system. The standardized method enabled the specific detection of C. albicans within 25 min at 37 °C without interference. The system had a detection limit of 1 CFU per reaction without DNA purification or 102 fg genomic DNA/50 μL. The detection sensitivity was not affected by the presence of other fungal DNA. The RPA-LFS method can therefore be used to detect clinical samples, and the results are accurate and consistent in comparison with those obtained using quantitative PCR. This study provides a paradigm for eliminating the risk of false-positive primer dimers in isothermal amplification assays and establishes a simple and easy method for the detection of C. albicans.
Collapse
Affiliation(s)
- Fang Wang
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Duobao Ge
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Lei Wang
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Na Li
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Huimin Chen
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Zhexiong Zhang
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Wenjun Zhu
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China
| | - Siming Wang
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China.
| | - Wei Liang
- Department of Central Laboratory, the Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Affiliated to Bengbu Medical College, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
6
|
Evaluation of a real-time recombinase polymerase amplification assay for rapid detection of Schistosoma haematobium infection in resource-limited setting. Acta Trop 2021; 216:105847. [PMID: 33497617 DOI: 10.1016/j.actatropica.2021.105847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
Accurate diagnosis of urogenital schistosomiasis is vital for surveillance/control programs as well as achieving the WHO 2012-2020 road map for the total eradication of schistosomiasis. Recombinase polymerase amplification (RPA) has emerged as a rapid and simple molecular tool adaptable for fewer resources with diagnostic accuracy similar to polymerase chain reaction (PCR). This rapid molecular assay employs the use of enzymes for the amplification of nucleic acid taget at a constant temperature. The aim of this study was to validate a real-time RPA assay targeting the Dra 1 repittitive sequence of Schistosoma (S.) haematobium and evaluate its use in urogenital schistosomiasis diagnosis. S. haematobium Dra 1 molecular DNA standard was applied to determine the assay's analytical sensitivity. DNA extracts of S. haematobium, other Schistosoma species, protozoa and bacteria species were used to determine the specificity of the RPA assay. Clinical performance of the assay was validated with a panel of 135 urine samples from volunteers of schistosomiasis endemic communities. The developed assay was evaluated with urine samples extracted by just boiling and with SpeedXtract® DNA extraction kit. A specific fragment of S. haematobium Dra 1 repetitive sequence was amplified within 15 minutes at a constant 42˚C using the developed S. haematobium RPA assay. The detection limit was 15 copies of Dra1 molecular DNA standard per reaction. There was no cross-reaction with other protozoan and bacterial species except Schistosoma species, S. mansoni and S. japonicum. Using 135 urine samples, Schistosoma RPA assay had a clinical sensitivity and specificity of 98.4% (95% CI, 91.6-100) and 100% (95% CI, 94.9-99) respectively when compared to S. haematobium Dra 1 qPCR assay. The diagnostic performance of S. haematobium real-time RPA assay was not affected by the use of crude DNA extracted samples. The S. haematobium RPA assay can serve as an alternative to PCR, especially in low resource settings.
Collapse
|
7
|
Zhang B, Zhu Z, Li F, Xie X, Ding A. Rapid and sensitive detection of hepatitis B virus by lateral flow recombinase polymerase amplification assay. J Virol Methods 2021; 291:114094. [PMID: 33549573 DOI: 10.1016/j.jviromet.2021.114094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is a major public health priority. In the present study, a lateral flow strip combined with the recombinase polymerase amplification (LF-RPA) assay was developed and evaluated for rapid HBV detection. A primer/probe pair targeting the conserved region of the HBV genome was designed and applied to the LF-RPA. TheRPA was achieved at the isothermal temperature of 39℃ for 30 min, and the RPA products were detected using the LF test. DNA extraction, RPA reaction and endpoint detection will take about 70 min. The LF-RPA assay could detect HBV at as low as 10 copies/reaction, with no cross-reactions with other common pathogens. The LF-RPA assay was performed on 85 samples. Of these, 36 samples tested HBV positive, whereas 49 were negative. Similar results were obtained using the conventional polymerase chain reaction method. Thus, the newly developed LF-RPA assay can be an improved diagnostic tool for rapid and simple HBV detection.
Collapse
Affiliation(s)
- Bashan Zhang
- Department of Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China.
| | - Zinian Zhu
- Department of Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Fei Li
- Department of Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Xiaoyan Xie
- Department of Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Aijiao Ding
- Department of Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523059, China
| |
Collapse
|
8
|
El Wahed AA, Patel P, Maier M, Pietsch C, Rüster D, Böhlken-Fascher S, Kissenkötter J, Behrmann O, Frimpong M, Diagne MM, Faye M, Dia N, Shalaby MA, Amer H, Elgamal M, Zaki A, Ismail G, Kaiser M, Corman VM, Niedrig M, Landt O, Faye O, Sall AA, Hufert FT, Truyen U, Liebert UG, Weidmann M. Suitcase Lab for Rapid Detection of SARS-CoV-2 Based on Recombinase Polymerase Amplification Assay. Anal Chem 2021; 93:2627-2634. [PMID: 33471510 PMCID: PMC7839158 DOI: 10.1021/acs.analchem.0c04779] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022]
Abstract
In March 2020, the SARS-CoV-2 virus outbreak was declared as a world pandemic by the World Health Organization (WHO). The only measures for controlling the outbreak are testing and isolation of infected cases. Molecular real-time polymerase chain reaction (PCR) assays are very sensitive but require highly equipped laboratories and well-trained personnel. In this study, a rapid point-of-need detection method was developed to detect the RNA-dependent RNA polymerase (RdRP), envelope protein (E), and nucleocapsid protein (N) genes of SARS-CoV-2 based on the reverse transcription recombinase polymerase amplification (RT-RPA) assay. RdRP, E, and N RT-RPA assays required approximately 15 min to amplify 2, 15, and 15 RNA molecules of molecular standard/reaction, respectively. RdRP and E RT-RPA assays detected SARS-CoV-1 and 2 genomic RNA, whereas the N RT-RPA assay identified only SARS-CoV-2 RNA. All established assays did not cross-react with nucleic acids of other respiratory pathogens. The RT-RPA assay's clinical sensitivity and specificity in comparison to real-time RT-PCR (n = 36) were 94 and 100% for RdRP; 65 and 77% for E; and 83 and 94% for the N RT-RPA assay. The assays were deployed to the field, where the RdRP RT-RPA assays confirmed to produce the most accurate results in three different laboratories in Africa (n = 89). The RPA assays were run in a mobile suitcase laboratory to facilitate the deployment at point of need. The assays can contribute to speed up the control measures as well as assist in the detection of COVID-19 cases in low-resource settings.
Collapse
Affiliation(s)
- Ahmed Abd El Wahed
- Institute
of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany
- Division
of Microbiology and Animal Hygiene, Georg-August-University, 37077 Goettingen, Germany
| | - Pranav Patel
- Expert
Molecular Diagnostics, 82256Fürstenfeldbruck, Germany
| | - Melanie Maier
- Institute
of Medical Microbiology and VirologyLeipzig
University Hospital, 04103 Leipzig, Germany
| | - Corinna Pietsch
- Institute
of Medical Microbiology and VirologyLeipzig
University Hospital, 04103 Leipzig, Germany
| | - Dana Rüster
- Institute
of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany
| | - Susanne Böhlken-Fascher
- Division
of Microbiology and Animal Hygiene, Georg-August-University, 37077 Goettingen, Germany
| | - Jonas Kissenkötter
- Division
of Microbiology and Animal Hygiene, Georg-August-University, 37077 Goettingen, Germany
| | - Ole Behrmann
- Institute
of Microbiology & Virology, Brandenburg Medical School, 01968 Senftenberg, Germany
| | - Michael Frimpong
- Kumasi Centre
for Collaborative Research in Tropical Medicine, Department of Molecular
Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Martin Faye
- Virology
Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
| | - Ndongo Dia
- Virology
Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
| | - Mohamed A. Shalaby
- Virology
Department, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Haitham Amer
- Virology
Department, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Mahmoud Elgamal
- Virology
Department, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Ali Zaki
- Department
of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, 11591 Cairo, Egypt
| | - Ghada Ismail
- Department
of Clinical Pathology, Faculty of Medicine, Ain Shams University, 11591 Cairo, Egypt
| | - Marco Kaiser
- GenExpress Gesellschaft für Proteindesign, 12103 Berlin, Germany
| | - Victor M. Corman
- Charité−Universitätsmedizin
Berlin, Institute
of Virology, Berlin, Germany
- German Centre for Infection Research (DZIF), 10117 Berlin, Germany
| | | | | | - Ousmane Faye
- Virology
Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
| | - Amadou A. Sall
- Virology
Department, Institute Pasteur de Dakar, BP 220, Dakar, Senegal
| | - Frank T. Hufert
- Institute
of Microbiology & Virology, Brandenburg Medical School, 01968 Senftenberg, Germany
| | - Uwe Truyen
- Institute
of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany
| | - Uwe G. Liebert
- Institute
of Medical Microbiology and VirologyLeipzig
University Hospital, 04103 Leipzig, Germany
| | - Manfred Weidmann
- Institute
of Microbiology & Virology, Brandenburg Medical School, 01968 Senftenberg, Germany
| |
Collapse
|
9
|
McMahon DE, Oyesiku L, Semeere A, Kang D, Freeman EE. Novel Diagnostics for Kaposi Sarcoma and Other Skin Diseases in Resource-Limited Settings. Dermatol Clin 2020; 39:83-90. [PMID: 33228864 DOI: 10.1016/j.det.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In resource-limited settings, point-of-care diagnostic devices have the potential to reduce diagnostic delays and improve epidemiologic surveillance of dermatologic conditions. We outline novel-point-of care diagnostics that have recently been developed for dermatologic conditions that primarily affect patients living in resource-limited settings, namely, Kaposi sarcoma, cutaneous leishmaniasis, leprosy, Buruli ulcer, yaws, onchocerciasis, and lymphatic filariasis. All of the technologies described in this article are prototypes, and some have undergone field testing. These devices still require validation in real-world settings and effective pricing to have a major impact on dermatologic care in resource-limited settings.
Collapse
Affiliation(s)
- Devon E McMahon
- Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, 50 Staniford Street, Boston, MA 02114, USA
| | - Linda Oyesiku
- Department of Dermatology, Massachusetts General Hospital, 50 Staniford Street, Boston, MA 02114, USA; University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | - Esther E Freeman
- Department of Dermatology, Harvard Medical School, Massachusetts General Hospital, 50 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Liu Y, Fang X, Sun X, Niu B, Chen Q. Detection of Allergen Genes in Peanut and Soybean by Circular Fluorescence Probe-Mediated Isothermal Amplification. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01883-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Frimpong M, Simpson SV, Ahor HS, Agbanyo A, Gyabaah S, Agbavor B, Amanor IB, Addo KK, Böhlken-Fascher S, Kissenkötter J, Wahed AAE, Phillips RO. Multiplex Recombinase Polymerase Amplification Assay for Simultaneous Detection of Treponema pallidum and Haemophilus ducreyi in Yaws-Like Lesions. Trop Med Infect Dis 2020; 5:tropicalmed5040157. [PMID: 33036234 PMCID: PMC7709673 DOI: 10.3390/tropicalmed5040157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022] Open
Abstract
Yaws is a skin debilitating disease caused by Treponema pallidum subspecies pertenue with most cases reported in children. World Health Organization (WHO) aims at total eradication of this disease through mass treatment of suspected cases followed by an intensive follow-up program. However, effective diagnosis is pivotal in the successful implementation of this control program. Recombinase polymerase amplification (RPA), an isothermal nucleic acid amplification technique offers a wider range of differentiation of pathogens including those isolated from chronic skin ulcers with similar characteristics such as Haemophilus ducreyi (H. ducreyi). We have developed a RPA assay for the simultaneous detection of Treponema pallidum (T. pallidum) and H. ducreyi (TPHD-RPA). The assay demonstrated no cross-reaction with other pathogens and enable detection of T. pallidum and H. ducreyi within 15 min at 42 °C. The RPA assay was validated with 49 clinical samples from individuals confirmed to have yaws by serological tests. Comparing the developed assay with commercial multiplex real-time PCR, the assay demonstrated 94% and 95% sensitivity for T. pallidum and H. ducreyi, respectively and 100% specificity. This simple novel TPHD-RPA assay enables the rapid detection of both T. pallidum and H. ducreyi in yaws-like lesions. This test could support the yaws eradication efforts by ensuring reliable diagnosis, to enable monitoring of program success and planning of follow-up interventions at the community level.
Collapse
Affiliation(s)
- Michael Frimpong
- Department of Molecular Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi AK-448, Ghana;
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK-312, Ghana; (A.A.); (S.G.); (B.A.); (R.O.P.)
- Correspondence:
| | - Shirley Victoria Simpson
- Bacteriology Department, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra GA-337, Ghana; (S.V.S.); (I.B.A.); (K.K.A.)
| | - Hubert Senanu Ahor
- Department of Molecular Medicine, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi AK-448, Ghana;
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK-312, Ghana; (A.A.); (S.G.); (B.A.); (R.O.P.)
| | - Abigail Agbanyo
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK-312, Ghana; (A.A.); (S.G.); (B.A.); (R.O.P.)
| | - Solomon Gyabaah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK-312, Ghana; (A.A.); (S.G.); (B.A.); (R.O.P.)
| | - Bernadette Agbavor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK-312, Ghana; (A.A.); (S.G.); (B.A.); (R.O.P.)
| | - Ivy Brago Amanor
- Bacteriology Department, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra GA-337, Ghana; (S.V.S.); (I.B.A.); (K.K.A.)
| | - Kennedy Kwasi Addo
- Bacteriology Department, Noguchi Memorial Institute of Medical Research, University of Ghana, Accra GA-337, Ghana; (S.V.S.); (I.B.A.); (K.K.A.)
| | - Susanne Böhlken-Fascher
- Division of Microbiology and Animal Hygiene, Georg-August University, D-37077 Goettingen, Germany; (S.B.-F.); (J.K.); (A.A.E.W.)
| | - Jonas Kissenkötter
- Division of Microbiology and Animal Hygiene, Georg-August University, D-37077 Goettingen, Germany; (S.B.-F.); (J.K.); (A.A.E.W.)
| | - Ahmed Abd El Wahed
- Division of Microbiology and Animal Hygiene, Georg-August University, D-37077 Goettingen, Germany; (S.B.-F.); (J.K.); (A.A.E.W.)
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, D-04103 Leipzig, Germany
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK-312, Ghana; (A.A.); (S.G.); (B.A.); (R.O.P.)
| |
Collapse
|
12
|
Collinson S, Frimpong VNB, Agbavor B, Montgomery B, Oppong M, Frimpong M, Amoako YA, Marks M, Phillips RO. Barriers to Buruli ulcer treatment completion in the Ashanti and Central Regions, Ghana. PLoS Negl Trop Dis 2020; 14:e0008369. [PMID: 32453800 PMCID: PMC7274448 DOI: 10.1371/journal.pntd.0008369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 05/06/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Buruli ulcer is a chronic ulcerating skin condition, with the highest burden found in Central and West Africa where it disproportionately affects the most vulnerable populations. Treatment is demanding, comprising eight-weeks of daily antibiotics, regular wound care and possible surgical intervention. Treatment completion is key to optimising outcomes, however the degree of and barriers to this are not well understood. Recent change from injectable treatment (SR8) to oral treatment (CR8) has made it feasible to further decentralise care, potentially improving treatment access and completion. However, the impact of this and of other demographic and clinical influences on treatment completion must be explored first to ensure appropriate models of care are developed. METHODOLOGY/PRINCIPAL FINDINGS A retrospective clinical notes review and secondary data analysis of records from patients diagnosed between 1 January 2006-31 December 2018 at four district hospital clinics in the Ashanti and Central Regions, Ghana. Univariable analyses and multivariable logistic regression were performed to assess the association between explanatory variables and treatment completion. There were 931 patient episodes across the four clinics with overall treatment completion of 84.4%. CR8 was associated with higher treatment completion compared to SR8 (OR 4.1, P = 0.001). There was no statistically significant association found between distance from patient residence to clinic and treatment completion. CONCLUSIONS/SIGNIFICANCE Improved treatment completion with CR8 supports its use as first line therapy and may enable decentralisation to fully community-based care. We did not find an association between distance to care and treatment completion, though analyses were limited by data availability. However, we did find evidence that distance to care continues to be associated with more severe forms of disease, which may reflect the higher costs of accessing care and lower awareness of the condition the further a patient lives. Decentralised care must therefore also continue to support community engagement and active outreach to identify cases early.
Collapse
Affiliation(s)
- Shelui Collinson
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Venus N. B. Frimpong
- Kumasi Centre for Collaborative Research, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bernadette Agbavor
- Kumasi Centre for Collaborative Research, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bethany Montgomery
- Kumasi Centre for Collaborative Research, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Oppong
- Kumasi Centre for Collaborative Research, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Frimpong
- Kumasi Centre for Collaborative Research, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw A. Amoako
- Kumasi Centre for Collaborative Research, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Marks
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Hospital for Tropical Diseases, London, United Kingdom
| | - Richard O. Phillips
- Kumasi Centre for Collaborative Research, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
13
|
Frimpong M, Ahor HS, Sakyi SA, Agbavor B, Akowuah E, Phillips RO. Rapid Extraction Method of Mycobacterium ulcerans DNA from Clinical Samples of Suspected Buruli Ulcer Patients. Diagnostics (Basel) 2019; 9:diagnostics9040204. [PMID: 31779247 PMCID: PMC6963521 DOI: 10.3390/diagnostics9040204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 01/19/2023] Open
Abstract
Isothermal amplification techniques such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) for diagnosing Buruli ulcer, a necrotic skin disease caused by Mycobacterium ulcerans, have renewed hope for the molecular diagnosis of clinically suspected Buruli ulcer cases in endemic districts. If these techniques are applied at district-level hospitals or clinics, they will help facilitate early case detection with prompt treatment, thereby reducing disability and associated costs of disease management. The accuracy as well as the application of these molecular techniques at point of need is dependent on simple and fast DNA extraction. We have modified and tested a rapid extraction protocol for use with an already developed recombinase polymerase amplification assay. The entire procedure from “sample in, extraction and DNA amplification” was conducted in a mobile suitcase laboratory within 40 min. The DNA extraction procedure was performed within 15 min, with only two manipulation/pipetting steps needed. The diagnostic sensitivity and specificity of this extraction protocol together with M. ulcerans RPA in comparison with standard DNA extraction with real-time PCR was 87% (n = 26) and 100% (n = 13), respectively. We have established a simple, fast and efficient protocol for the extraction and detection of M. ulcerans DNA in clinical samples that is adaptable to field conditions.
Collapse
Affiliation(s)
- Michael Frimpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana; (H.S.A.); (B.A.); (E.A.); (R.O.P.)
- Correspondence: ; Tel.: +233-265940908
| | - Hubert Senanu Ahor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana; (H.S.A.); (B.A.); (E.A.); (R.O.P.)
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana;
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana;
| | - Bernadette Agbavor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana; (H.S.A.); (B.A.); (E.A.); (R.O.P.)
| | - Emmanuel Akowuah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana; (H.S.A.); (B.A.); (E.A.); (R.O.P.)
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana; (H.S.A.); (B.A.); (E.A.); (R.O.P.)
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi AK 312, Ghana;
| |
Collapse
|
14
|
Picado A, Nogaro S, Cruz I, Biéler S, Ruckstuhl L, Bastow J, Ndung’u JM. Access to prompt diagnosis: The missing link in preventing mental health disorders associated with neglected tropical diseases. PLoS Negl Trop Dis 2019; 13:e0007679. [PMID: 31622340 PMCID: PMC6797081 DOI: 10.1371/journal.pntd.0007679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Albert Picado
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
- * E-mail:
| | - Sarah Nogaro
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Israel Cruz
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
- National School of Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Sylvain Biéler
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Laura Ruckstuhl
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Jon Bastow
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | | |
Collapse
|