1
|
Huang J, Wang S, Lu X, Suo L, Wang M, Yue J, Lin R, Mao X, Li Q, Yan J. Molecular epidemiology of Burkholderia pseudomallei in Hainan Province of China based on O-antigen. INFECTIOUS MEDICINE 2024; 3:100150. [PMID: 39697185 PMCID: PMC11652903 DOI: 10.1016/j.imj.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 12/20/2024]
Abstract
Background Burkholderia pseudomallei is a gram-negative bacterium widely found in Southeast Asia and northern Australia. This bacterium, which lacks an available vaccine, is the causative agent of melioidosis and has properties that potentially enable its exploitation as a bioweapon. Methods Polymerase chain reaction assays targeting each of the lipopolysaccharide (LPS) genetic types were used to investigate genotype frequencies in B. pseudomallei populations. Silver staining, gas chromatography-mass spectrometry (GC-MS), and immunofluorescence were used to characterize LPS. Results In our study, a total of 169 clinical B. pseudomallei isolates were collected from Hainan Province, China between 2004 and 2016. The results showed that LPS genotype A was the predominant type, comprising 91.1% of the samples, compared with only 8.9% of LPS genotype B. The majority of patients were male and were diagnosed with sepsis or pneumonia. Silver staining and GC-MS demonstrated that LPS genotypes A and B exhibited distinct phenotypes and molecular structures. Immunofluorescence tests showed there was no cross-reaction between LPS genotypes A and B. Conclusions This is the first report on the molecular epidemiology of B. pseudomallei based on O-antigen in China. Tracking the regional distribution of different LPS genotypes offers significant insights relevant to the development and administration of LPS-based vaccines.
Collapse
Affiliation(s)
- Jinzhu Huang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwei Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoxue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Liangpeng Suo
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Minyang Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Juanjuan Yue
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rong Lin
- Department of Pneumology, People's Hospital of Sanya, Sanya 572022, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
2
|
Celona KR, Shannon AB, Sonderegger D, Yi J, Monroy FP, Allender C, Hornstra H, Barnes MB, Didier ES, Bohm RP, Phillippi-Falkenstein K, Sanford D, Keim P, Settles EW. NHP BurkPx: A multiplex serodiagnostic bead assay to monitor Burkholderia pseudomallei exposures in non-human primates. PLoS Negl Trop Dis 2023; 17:e0011067. [PMID: 36753522 PMCID: PMC9907805 DOI: 10.1371/journal.pntd.0011067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/02/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Melioidosis is a disease caused by the bacterium Burkholderia pseudomallei, infecting humans and non-human primates (NHP) through contaminated soil or water. World-wide there are an estimated 165,000 human melioidosis cases each year, but recordings of NHP cases are sporadic. Clinical detection of melioidosis in humans is primarily by culturing B. pseudomallei, and there are no standardized detection protocols for NHP. NHP are an important animal model for melioidosis research including clinical trials and development of biodefense countermeasures. METHODOLOGY/PRINCIPLE FINDINGS We evaluated the diagnostic potential of the multiple antigen serological assay, BurkPx, in NHP using two sera sets: (i) 115 B. pseudomallei-challenged serum samples from 80 NHP collected each week post-exposure (n = 52) and at euthanasia (n = 47), and (ii) 126 B. pseudomallei-naïve/negative serum samples. We observed early IgM antibody responses to carbohydrate antigens followed by IgG antibody recognition to multiple B. pseudomallei protein antigens during the second week of infection. B. pseudomallei negative serum samples had low to intermediate antibody cross reactivity to the antigens in this assay. Infection time was predicted as the determining factor in the variation of antibody responses, with 77.67% of variation explained by the first component of the principal component analysis. A multiple antigen model generated a binary prediction metric ([Formula: see text]), which when applied to all data resulted in 100% specificity and 63.48% sensitivity. Removal of week 1 B. pseudomallei challenged serum samples increased the sensitivity of the model to 95%. CONCLUSION/SIGNIFICANCE We employed a previously standardized assay for humans, the BurkPx assay, and assessed its diagnostic potential for detection of B. pseudomallei exposure in NHP. The assay is expected to be useful for surveillance in NHP colonies, in investigations of suspected accidental releases or exposures, and for identifying vaccine correlates of protection.
Collapse
Affiliation(s)
- Kimberly R. Celona
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Austin B. Shannon
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Derek Sonderegger
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jinhee Yi
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Fernando P. Monroy
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Christopher Allender
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Heidie Hornstra
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mary B. Barnes
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Elizabeth S. Didier
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Rudolf P. Bohm
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | | | - Daniel Sanford
- Battelle Memorial Institute, Columbus, Ohio, United States of America
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Erik W. Settles
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
3
|
Shafiq M, Ke B, Li X, Zeng M, Yuan Y, He D, Deng X, Jiao X. Genomic diversity of resistant and virulent factors of Burkholderia pseudomallei clinical strains recovered from Guangdong using whole genome sequencing. Front Microbiol 2022; 13:980525. [PMID: 36386717 PMCID: PMC9649843 DOI: 10.3389/fmicb.2022.980525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/04/2022] [Indexed: 02/05/2023] Open
Abstract
Background Burkholderia pseudomallei (B. pseudomallei) is a highly infectious agent and causes melioidosis, in both humans and animals, which is endemic in Southeast Asia and Northern Australia. Objectives This study aims to determine the molecular epidemiology, resistant determinants, and genomic diversity of the clinical isolates of B. pseudomallei to further elucidate the phylogenetic and evolutionary relationship of the strains with those in other endemic regions. Methods In this study, we obtained eight clinical B. pseudomallei isolates from Guangdong province from 2018 to 2019. All the isolates were sequenced using the Illumina NovaSeq platform. The draft genomes of B. pseudomallei were further used to find antibiotic-resistant genes (ARGs), virulence factors, and gene mutations. Multilocus sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis were performed to characterize the diversity and epidemiology of the strains. Results All isolates were susceptible to antibiotics commonly used for melioidosis treatment. Class D beta-lactamases genes OXA-57 and OXA-59, as well as various mutation factors such as amrA, amrB, omp38, gyrA, and ceoB were identified. MLST analysis of the B. pseudomallei strains identified eight different sequence types (STs): ST1774, ST1775, ST271, ST562, ST46, ST830, ST1325, and ST10. Phylogenetic analysis found that the strains used in this study showed high genetic diversity. We also report 165 virulence factors among B. pseudomallei strains responsible for different neurological disorders, pneumonia, skin lesions, and abscesses. All strains recovered in this study were susceptible to commonly used antibiotics. However, high genetic diversity exists among the isolates. The surveillance, diagnosis, and clinical features of melioidosis varied in different geographical locations. These regional differences in the clinical manifestations have implications for the practical management of the disease. Conclusion The present study reports the identification of different mutation and virulence factors among B. pseudomallei strains responsible for different neurological disorders, pneumonia, skin lesions, and abscesses.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Bixia Ke
- Center for Disease Control and Prevention of Guangdong Province, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Dongmei He
- Center for Disease Control and Prevention of Guangdong Province, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoling Deng
- Center for Disease Control and Prevention of Guangdong Province, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Abstract
The soil saprophyte, Burkholderia pseudomallei, is the causative agent of melioidosis, a disease endemic in South East Asia and northern Australia. Exposure to B. pseudomallei by either inhalation or inoculation can lead to severe disease. B. pseudomallei rapidly shifts from an environmental organism to an aggressive intracellular pathogen capable of rapidly spreading around the body. The expression of multiple virulence factors at every stage of intracellular infection allows for rapid progression of infection. Following invasion or phagocytosis, B. pseudomallei resists host-cell killing mechanisms in the phagosome, followed by escape using the type III secretion system. Several secreted virulence factors manipulate the host cell, while bacterial cells undergo a shift in energy metabolism allowing for overwhelming intracellular replication. Polymerisation of host cell actin into “actin tails” propels B. pseudomallei to the membranes of host cells where the type VI secretion system fuses host cells into multinucleated giant cells (MNGCs) to facilitate cell-to-cell dissemination. This review describes the various mechanisms used by B. pseudomallei to survive within cells.
Collapse
Affiliation(s)
- Nicole M Bzdyl
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Clare L Moran
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Justine Bendo
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mitali Sarkar-Tyson
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
5
|
Wongpalee SP, Thananchai H, Chewapreecha C, Roslund HB, Chomkatekaew C, Tananupak W, Boonklang P, Pakdeerat S, Seng R, Chantratita N, Takarn P, Khamnoi P. Highly specific and sensitive detection of Burkholderia pseudomallei genomic DNA by CRISPR-Cas12a. PLoS Negl Trop Dis 2022; 16:e0010659. [PMID: 36037185 PMCID: PMC9423629 DOI: 10.1371/journal.pntd.0010659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Detection of Burkholderia pseudomallei, a causative bacterium for melioidosis, remains a challenging undertaking due to long assay time, laboratory requirements, and the lack of specificity and sensitivity of many current assays. In this study, we are presenting a novel method that circumvents those issues by utilizing CRISPR-Cas12a coupled with isothermal amplification to identify B. pseudomallei DNA from clinical isolates. Through in silico search for conserved CRISPR-Cas12a target sites, we engineered the CRISPR-Cas12a to contain a highly specific spacer to B. pseudomallei, named crBP34. The crBP34-based detection assay can detect as few as 40 copies of B. pseudomallei genomic DNA while discriminating against other tested common pathogens. When coupled with a lateral flow dipstick, the assay readout can be simply performed without the loss of sensitivity and does not require expensive equipment. This crBP34-based detection assay provides high sensitivity, specificity and simple detection method for B. pseudomallei DNA. Direct use of this assay on clinical samples may require further optimization as these samples are complexed with high level of human DNA. Melioidosis is a fatal infectious disease caused by a Gram-negative bacterium called Burkholderia pseudomallei. The bacteria can be found in many parts of the world, especially in the tropical and subtropical regions. Infection displays a variety of symptoms such as pneumonia, organ abscess and septicemia. The latter can lead to death within 24–48 hours if not properly diagnosed and treated. Rapid and accurate diagnosis, consequently, are essential for saving patients’ lives. Currently, culturing B. pseudomallei is a gold standard diagnostic method, but the assay turnaround time is 2–4 days, and the result could be of low sensitivity. Other detection methods such as real-time PCR and serological assays are limited by availability of equipment and by low specificity in endemic areas, respectively. For these reasons, in this study we developed a specific, sensitive and rapid detection assay for B. pseudomallei DNA, that is based on CRISPR-Cas12a system. The CRISPR-Cas12a is a protein-RNA complex that recognizes DNA. The RNA can be reprogramed to guide the detection of any DNA of interest, which in our case B. pseudomallei genomic DNA. Our data showed that this assay exhibited a 100% specificity to B. pseudomallei while discriminating against 10 other pathogens and human. The assay can detect B. pseudomallei DNA in less than one hour and does not require sophisticated equipment.
Collapse
Affiliation(s)
- Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| | - Hathairat Thananchai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Claire Chewapreecha
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Henrik B. Roslund
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chalita Chomkatekaew
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Warunya Tananupak
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phumrapee Boonklang
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sukritpong Pakdeerat
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rathanin Seng
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Piyawan Takarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phadungkiat Khamnoi
- Microbiology Unit, Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand
| |
Collapse
|
6
|
Recipient Cell Factors Influence Interbacterial Competition Mediated by Two Distinct Burkholderia dolosa Contact-Dependent Growth Inhibition Systems. J Bacteriol 2022; 204:e0054121. [PMID: 36000834 PMCID: PMC9487645 DOI: 10.1128/jb.00541-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) systems mediate interbacterial antagonism between Gram-negative bacteria by delivering the toxic portion of a large surface protein (termed BcpA in Burkholderia species) to the cytoplasm of neighboring bacteria. Translocation of the antibacterial polypeptide into recipient cells requires specific recipient outer and inner membrane proteins, but the identity of these factors outside several model organisms is unknown. To identify genes involved in CDI susceptibility in the Burkholderia cepacia complex member Burkholderia dolosa, a transposon mutagenesis selection approach was used to enrich for mutants resistant to BcpA-1 or BcpA-2. Subsequent analysis showed that candidate regulatory genes contributed modestly to recipient cell susceptibility to B. dolosa CDI. However, most candidate deletion mutants did not show the same phenotypes as the corresponding transposon mutants. Whole-genome resequencing revealed that these transposon mutants also contained unique mutations within a three gene locus (wabO, BDAG_01006, and BDAG_01005) encoding predicted lipopolysaccharide (LPS) biosynthesis enzymes. B. dolosa wabO, BDAG_01006, or BDAG_01005 mutants were resistant to CDI and produced LPS with altered core oligosaccharide and O-antigen. Although BcpA-1 and BcpA-2 are dissimilar and expected to utilize different outer membrane receptors, intoxication by both proteins was similarly impacted by LPS changes. Together, these findings suggest that alterations in cellular regulation may indirectly impact the efficiency of CDI-mediated competition and demonstrate that LPS is required for intoxication by two distinct B. dolosa BcpA proteins. IMPORTANCEContact-dependent growth inhibition (CDI) system proteins, produced by many Gram-negative bacteria, are narrow spectrum antimicrobials that inhibit the growth of closely related neighboring bacteria. Here, we use the opportunistic pathogen Burkholderia dolosa to identify genes required for intoxication by two distinct CDI system proteins. Our findings suggest that B. dolosa recipient cells targeted by CDI systems are only intoxicated if they produce full-length lipopolysaccharide. Understanding the mechanisms underlying antagonistic interbacterial interactions may contribute to future therapeutic development.
Collapse
|
7
|
Clinical Burkholderia pseudomallei isolates from north Queensland carry diverse bimABm genes that are associated with central nervous system disease and are phylogenomically distinct from other Australian strains. PLoS Negl Trop Dis 2022; 16:e0009482. [PMID: 35700198 PMCID: PMC9236262 DOI: 10.1371/journal.pntd.0009482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Background Burkholderia pseudomallei is an environmental gram-negative bacterium that causes the disease melioidosis and is endemic in many countries of the Asia-Pacific region. In Australia, the mortality rate remains high at approximately 10%, despite curative antibiotic treatment being available. The bacterium is almost exclusively found in the endemic region, which spans the tropical Northern Territory and North Queensland, with clusters occasionally present in more temperate climates. Despite being endemic to North Queensland, these infections remain understudied compared to those of the Northern Territory. Methodology/Principal findings This study aimed to assess the prevalence of central nervous system (CNS) disease associated variant bimABm, identify circulating antimicrobial resistance mutations and genetically distinct strains from Queensland, via comparative genomics. From 76 clinical isolates, we identified the bimABm variant in 20 (26.3%) isolates and in 9 (45%) of the isolates with documented CNS infection (n = 18). Explorative analysis suggests a significant association between isolates carrying the bimABm variant and CNS disease (OR 2.8, 95% CI 1.3–6.0, P = 0.009) compared with isolates carrying the wildtype bimABp. Furthermore, 50% of isolates were identified as novel multi-locus sequence types, while the bimABm variant was more commonly identified in isolates with novel sequence types, compared to those with previously described. Additionally, mutations associated with acquired antimicrobial resistance were only identified in 14.5% of all genomes. Conclusions/Significance The findings of this research have provided clinically relevant genomic data of B. pseudomallei in Queensland and suggest that the bimABm variant may enable risk stratification for the development CNS complications and be a potential therapeutic target. Melioidosis is a life-threatening infection, caused by the Gram-negative bacterium Burkholderia pseudomallei, which is endemic to tropical regions in Australia. Variants of the bimA gene have been proposed as a virulence factor associated with more severe disease. In a genomic analysis of 76 clinical B. pseudomallei isolates from Queensland, Australia, we identified that the bimABm variant was associated with infection involving the central nervous system (odds ratio 2.8, 95% Confidence Interval: 1.3–6.0, P = 0.009), compared to isolates with the wild-type allele bimABp. Half of the isolates from this region were novel multi-locus sequence types, and bimABm was more commonly seen in these novel sequence types. Early genomic characterisation to identify virulence factors such as bimABm, may be useful as an early marker of more complex disease that could guide further investigation and help determine optimal treatment. Further investigation of a “genomics-guided” approach to the clinical management of this complex infectious disease are warranted.
Collapse
|
8
|
Jayasinghearachchi HS, Corea EM, Jayaratne KI, Fonseka RA, Muthugama TA, Masakorala J, Ramasinghe RYC, De Silva AD. Biogeography and genetic diversity of clinical isolates of Burkholderia pseudomallei in Sri Lanka. PLoS Negl Trop Dis 2021; 15:e0009917. [PMID: 34851950 PMCID: PMC8824316 DOI: 10.1371/journal.pntd.0009917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/08/2022] [Accepted: 10/16/2021] [Indexed: 11/19/2022] Open
Abstract
Background Melioidosis is a potentially fatal infectious disease caused by Burkholderia pseudomallei and the disease is endemic in Southeast Asia and Northern Australia. It has been confirmed as endemic in Sri Lanka. Genomic epidemiology of B. pseudomallei in Sri Lanka is largely unexplored. This study aims to determine the biogeography and genetic diversity of clinical isolates of B. pseudomallei and the phylogenetic and evolutionary relationship of Sri Lankan sequence types (STs) to those found in other endemic regions of Southeast Asia and Oceania. Methods The distribution of variably present genetic markers [Burkholderia intracellular motility A (bimA) gene variants bimABP/bimABM, filamentous hemagglutinin 3 (fhaB3), Yersinia-like fimbrial (YLF) and B. thailandensis-like flagellum and chemotaxis (BTFC) gene clusters and lipopolysaccharide O-antigen type A (LPS type A)] was examined among 310 strains. Multilocus sequence typing (MLST) was done for 84 clinical isolates. The phylogenetic and evolutionary relationship of Sri Lankan STs within Sri Lanka and in relation to those found in other endemic regions of Southeast Asia and Oceania were studied using e BURST, PHYLOViZ and minimum evolutionary analysis. Results The Sri Lankan B. pseudomallei population contained a large proportion of the rare BTFC clade (14.5%) and bimABM allele variant (18.5%) with differential geographic distribution. Genotypes fhaB3 and LPSA were found in 80% and 86% respectively. This study reported 43 STs (including 22 novel). e-BURST analysis which include all Sri Lankan STs (71) resulted in four groups, with a large clonal group (group 1) having 46 STs, and 17 singletons. ST1137 was the commonest ST. Several STs were shared with India, Bangladesh and Cambodia. Conclusion This study demonstrates the usefulness of high-resolution molecular typing to locate isolates within the broad geographical boundaries of B. pseudomallei at a global level and reveals that Sri Lankan isolates are intermediate between Southeast Asia and Oceania. Burkholderia pseudomallei is an important cause of community acquired pneumonia, septicemia and abscesses in Sri Lanka. The risk of infection is increased after flooding following heavy rainfall. Risk groups include rice farmers and rural populations engaged in subsistence cultivation in home gardens. Nationwide surveillance has been carried out since 2006 and the state public health system offers free diagnostics and free antibiotic therapy. The incidence of melioidosis in Sri Lanka has increased in tandem with increased awareness among clinicians. This study reports the genetic diversity among Sri Lankan B. pseudomallei clinical isolates and shows that some variably present genes are regionally distributed. The population is intermediate between Southeast Asia and Oceania. This may reflect its past geological history.
Collapse
Affiliation(s)
- Himali S. Jayasinghearachchi
- Institute for Combinatorial Advance Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
- * E-mail: (ASJ); (ADDeS)
| | - Enoka M. Corea
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Kumari I. Jayaratne
- Biomedical Laboratory 2, Faculty of Medicine, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Regina A. Fonseka
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Thilini A. Muthugama
- Biomedical Laboratory 2, Faculty of Medicine, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Jayanthi Masakorala
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Ravija YC. Ramasinghe
- Biomedical Laboratory 2, Faculty of Medicine, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
| | - Aruna D. De Silva
- Biomedical Laboratory 2, Faculty of Medicine, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
- Department of Para-Clinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka
- * E-mail: (ASJ); (ADDeS)
| |
Collapse
|
9
|
Trevino SR, Dankmeyer JL, Fetterer DP, Klimko CP, Raymond JLW, Moreau AM, Soffler C, Waag DM, Worsham PL, Amemiya K, Ruiz SI, Cote CK, Krakauer T. Comparative virulence of three different strains of Burkholderia pseudomallei in an aerosol non-human primate model. PLoS Negl Trop Dis 2021; 15:e0009125. [PMID: 33571211 PMCID: PMC7904162 DOI: 10.1371/journal.pntd.0009125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/24/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a major cause of sepsis and mortality in endemic regions of Southeast Asia and Northern Australia. B. pseudomallei is a potential bioterrorism agent due to its high infectivity, especially via inhalation, and its inherent resistance to antimicrobials. There is currently no vaccine for melioidosis and antibiotic treatment can fail due to innate drug resistance, delayed diagnosis and treatment, or insufficient duration of treatment. A well-characterized animal model that mimics human melioidosis is needed for the development of new medical countermeasures. This study first characterized the disease progression of melioidosis in the African green monkey (AGM) and rhesus macaque (RM) for non-human primate model down-selection. All AGMs developed acute lethal disease similar to that described in human acute infection following exposure to aerosolized B. pseudomallei strain HBPUB10134a. Only 20% of RMs succumbed to acute disease. Disease progression, immune response and pathology of two other strains of B. pseudomallei, K96243 and MSHR5855, were also compared using AGMs. These three B. pseudomallei strains represent a highly virulent strain from Thailand (HBPUB101034a), a highly virulent strains from Australia (MSHR5855), and a commonly used laboratory strains originating from Thailand (K96243). Animals were observed for clinical signs of infection and blood samples were analyzed for cytokine responses, blood chemistry and leukocyte changes in order to characterize bacterial infection. AGMs experienced fever after exposure to aerosolized B. pseudomallei at the onset of acute disease. Inflammation, abscesses and/or pyogranulomas were observed in lung with all three strains of B. pseudomallei. Inflammation, abscesses and/or pyogranulomas were observed in lymph nodes, spleen, liver and/or kidney with B. pseudomallei, HBPUB10134a and K96243. Additionally, the Australian strain MSHR5855 induced brain lesions in one AGM similar to clinical cases of melioidosis seen in Australia. Elevated serum levels of IL-1β, IL-1 receptor antagonist, IL-6, MCP-1, G-CSF, HGF, IFNγ, MIG, I-TAC, and MIP-1β at terminal end points can be significantly correlated with non-survivors with B. pseudomallei infection in AGM. The AGM model represents an acute model of B. pseudomallei infection for all three strains from two geographical locations and will be useful for efficacy testing of vaccines and therapeutics against melioidosis. In summary, a dysregulated immune response leading to excessive persistent inflammation and inflammatory cell death is the key driver of acute melioidosis. Early intervention in these pathways will be necessary to counter B. pseudomallei and mitigate the pathological consequences of melioidosis. Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is endemic in tropical regions globally and is an emerging threat in non-tropical areas worldwide. Its mortality rate is high in endemic areas due to its high infectivity, antimicrobial resistance, lack of available vaccines and limited treatment options. Animal model development and pathogenicity studies of various isolates are critical for the development of countermeasures against this pathogen. In this study, we compared the virulence of three different isolates of B. pseudomallei from two geographical locations in an aerosol non-human primate model. We found that early elevations of both pro-inflammatory and anti-inflammatory mediators, as well as the persistence of these mediators in the terminal phase of bacterial infection correlate with mortality. Histopathological analysis showed that the severity of lesions in various organs also correlates with the virulence of the B. pseudomallei strains, HBPUB10134a, MSHR5855 and K96243. Thus, a dysregulated immune response leading to excessive IL-1β and IL-6 at terminal end points and necrosis are key drivers of acute melioidosis. Development of drugs targeting these host response processes will be necessary to counter B. pseudomallei and mitigate the pathological consequences of melioidosis. This non-human primate model will facilitate the screening of vaccines and novel therapeutics.
Collapse
Affiliation(s)
- Sylvia R. Trevino
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Jo Lynne W. Raymond
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Alicia M. Moreau
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Carl Soffler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - David M. Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Patricia L. Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Sara I. Ruiz
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
- * E-mail: (CKC); (TK)
| | - Teresa Krakauer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
- * E-mail: (CKC); (TK)
| |
Collapse
|
10
|
Chomkatekaew C, Boonklang P, Sangphukieo A, Chewapreecha C. An Evolutionary Arms Race Between Burkholderia pseudomallei and Host Immune System: What Do We Know? Front Microbiol 2021; 11:612568. [PMID: 33552023 PMCID: PMC7858667 DOI: 10.3389/fmicb.2020.612568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
A better understanding of co-evolution between pathogens and hosts holds promise for better prevention and control strategies. This review will explore the interactions between Burkholderia pseudomallei, an environmental and opportunistic pathogen, and the human host immune system. B. pseudomallei causes "Melioidosis," a rapidly fatal tropical infectious disease predicted to affect 165,000 cases annually worldwide, of which 89,000 are fatal. Genetic heterogeneities were reported in both B. pseudomallei and human host population, some of which may, at least in part, contribute to inter-individual differences in disease susceptibility. Here, we review (i) a multi-host-pathogen characteristic of the interaction; (ii) selection pressures acting on B. pseudomallei and human genomes with the former being driven by bacterial adaptation across ranges of ecological niches while the latter are driven by human encounter of broad ranges of pathogens; (iii) the mechanisms that generate genetic diversity in bacterial and host population particularly in sequences encoding proteins functioning in host-pathogen interaction; (iv) reported genetic and structural variations of proteins or molecules observed in B. pseudomallei-human host interactions and their implications in infection outcomes. Together, these predict bacterial and host evolutionary trajectory which continues to generate genetic diversity in bacterium and operates host immune selection at the molecular level.
Collapse
Affiliation(s)
| | | | - Apiwat Sangphukieo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
11
|
Arushothy R, Amran F, Samsuddin N, Ahmad N, Nathan S. Multi locus sequence typing of clinical Burkholderia pseudomallei isolates from Malaysia. PLoS Negl Trop Dis 2020; 14:e0008979. [PMID: 33370273 PMCID: PMC7793247 DOI: 10.1371/journal.pntd.0008979] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 01/08/2021] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
Background Melioidosis is a neglected tropical disease with rising global public health and clinical importance. Melioidosis is endemic in Southeast Asia and Northern Australia and is of increasing concern in Malaysia. Despite a number of reported studies from Malaysia, these reports are limited to certain parts of the country and do not provide a cohesive link between epidemiology of melioidosis cases and the nation-wide distribution of the causative agent Burkholderia pseudomallei. Methodology/principle findings Here we report on the distribution of B. pseudomallei sequence types (STs) in Malaysia and how the STs are related to STs globally. We obtained 84 culture-confirmed B. pseudomallei from confirmed septicaemic melioidosis patients from all over Malaysia. Prior to performing Multi Locus Sequence Typing, the isolates were subjected to antimicrobial susceptibility testing and detection of the YLF/BTFC genes and BimA allele. Up to 90.5% of the isolates were sensitive to all antimicrobials tested while resistance was observed for antimicrobials typically administered during the eradication stage of treatment. YLF gene cluster and bimABp allele variant were detected in all the isolates. The epidemiological distribution patterns of the Malaysian B. pseudomallei isolates were analysed in silico using phylogenetic tools and compared to Southeast Asian and world-wide isolates. Genotyping of the 84 Malaysian B. pseudomallei isolates revealed 29 different STs of which 6 (7.1%) were novel. ST50 was identified as the group founder followed by subgroup founders ST376, ST211 and ST84. A low-level diversity is noted for the B. pseudomallei isolates described in this study while phylogenetic analysis associated the Malaysian STs to Southeast Asian isolates especially isolates from Thailand. Further analysis also showed a strong association that implicates agriculture and domestication activities as high-risk routes of infection. Conclusions/significance In conclusion, MLST analysis of B. pseudomallei clinical isolates from all states in Malaysia revealed low diversity and a close association to Southeast Asian isolates. Burkholderia pseudomallei, a Gram-negative saprophytic bacterium, is the causative agent of melioidosis. The burden of human melioidosis globally is predicted at 165,000 cases and 89,000 deaths annually and in Malaysia, it is estimated that more than 2000 patients die per year which is much higher than nation-wide deaths resulting from dengue or tuberculosis. Clinical presentation and antibiotic resistance vary by geographical regions making it difficult for public health officials to outline definitive diagnostic, treatment and outbreak management options for the country. This study provides information on the genetic diversity among Malaysian B. pseudomallei clinical isolates. The epidemiological analysis shows strong correlation of the Malaysian isolates with strains from Southeast Asia especially Thailand, reflecting the regional endemicity.
Collapse
Affiliation(s)
- Revathy Arushothy
- Institute for Medical Research, National Institutes of Health, Shah Alam, Selangor, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- * E-mail: (RA); (SN)
| | - Fairuz Amran
- Institute for Medical Research, National Institutes of Health, Shah Alam, Selangor, Malaysia
| | - Nazirah Samsuddin
- Institute for Medical Research, National Institutes of Health, Shah Alam, Selangor, Malaysia
| | - Norazah Ahmad
- Institute for Medical Research, National Institutes of Health, Shah Alam, Selangor, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- * E-mail: (RA); (SN)
| |
Collapse
|
12
|
Webb JR, Win MM, Zin KN, Win KKN, Wah TT, Ashley EA, Smithuis F, Swe MMM, Mayo M, Currie BJ, Dance DAB. Myanmar Burkholderia pseudomallei strains are genetically diverse and originate from Asia with phylogenetic evidence of reintroductions from neighbouring countries. Sci Rep 2020; 10:16260. [PMID: 33004984 PMCID: PMC7530998 DOI: 10.1038/s41598-020-73545-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Melioidosis was first identified in Myanmar in 1911 but for the last century it has remained largely unreported there. Burkholderia pseudomallei was first isolated from the environment of Myanmar in 2016, confirming continuing endemicity. Recent genomic studies showed that B. pseudomallei originated in Australia and spread to Asia, with phylogenetic evidence of repeated reintroduction of B. pseudomallei across countries bordered by the Mekong River and the Malay Peninsula. We present the first whole-genome sequences of B. pseudomallei isolates from Myanmar: nine clinical and seven environmental isolates. We used large-scale comparative genomics to assess the genetic diversity, phylogeography and potential origins of B. pseudomallei in Myanmar. Global phylogenetics demonstrated that Myanmar isolates group in two distantly related clades that reside in a more ancestral Asian clade with high amounts of genetic diversity. The diversity of B. pseudomallei from Myanmar and divergence within our global phylogeny suggest that the original introduction of B. pseudomallei to Myanmar was not a recent event. Our study provides new insights into global patterns of B. pseudomallei dissemination, most notably the dynamic nature of movement of B. pseudomallei within densely populated Southeast Asia. The role of anthropogenic influences in both ancient and more recent dissemination of B. pseudomallei to Myanmar and elsewhere in Southeast Asia and globally requires further study.
Collapse
Affiliation(s)
- Jessica R Webb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Mo Mo Win
- Department of Medical Research, Yangon, Myanmar
| | - Khwar Nyo Zin
- Microbiology Laboratory, Yangon General Hospital, Yangon, Myanmar
| | | | | | - Elizabeth A Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
| | - Frank Smithuis
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar
| | - Myo Maung Maung Swe
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, NT, Australia
| | - David A B Dance
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
13
|
Kaestli M, O’Donnell M, Rose A, Webb JR, Mayo M, Currie BJ, Gibb K. Opportunistic pathogens and large microbial diversity detected in source-to-distribution drinking water of three remote communities in Northern Australia. PLoS Negl Trop Dis 2019; 13:e0007672. [PMID: 31487283 PMCID: PMC6728021 DOI: 10.1371/journal.pntd.0007672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
In the wet-dry tropics of Northern Australia, drinking water in remote communities is mostly sourced from bores accessing groundwater. Many aquifers contain naturally high levels of iron and some are shallow with surface water intrusion in the wet season. Therefore, environmental bacteria such as iron-cycling bacteria promoting biofilm formation in pipes or opportunistic pathogens can occur in these waters. An opportunistic pathogen endemic to northern Australia and Southeast Asia and emerging worldwide is Burkholderia pseudomallei. It causes the frequently fatal disease melioidosis in humans and animals. As we know very little about the microbial composition of drinking water in remote communities, this study aimed to provide a first snapshot of the microbiota and occurrence of opportunistic pathogens in bulk water and biofilms from the source and through the distribution system of three remote water supplies with varying iron levels. Using 16s-rRNA gene sequencing, we found that the geochemistry of the groundwater had a substantial impact on the untreated microbiota. Different iron-cycling bacteria reflected differences in redox status and nutrients. We cultured and sequenced B. pseudomallei from bores with elevated iron and from a multi-species biofilm which also contained iron-oxidizing Gallionella, nitrifying Nitrospira and amoebae. Gallionella are increasingly used in iron-removal filters in water supplies and more research is needed to examine these interactions. Similar to other opportunistic pathogens, B. pseudomallei occurred in water with low organic carbon levels and with low heterotrophic microbial growth. No B. pseudomallei were detected in treated water; however, abundant DNA of another opportunistic pathogen group, non-tuberculous mycobacteria was recovered from treated parts of one supply. Results from this study will inform future studies to ultimately improve management guidelines for water supplies in the wet-dry tropics.
Collapse
Affiliation(s)
- Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | | | - Alea Rose
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jessica R. Webb
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Global and Tropical Health, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|