1
|
Llovera A, Abras A, Fernández-Arévalo A, Ballart C, Heras S, Muñoz C, Gállego M. Genetic Diversity of Trypanosoma cruzi in the United States of America: The Least Endemic Country for Chagas Disease. Life (Basel) 2024; 14:901. [PMID: 39063654 PMCID: PMC11278504 DOI: 10.3390/life14070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi and endemic in Latin America, has become an emergent health problem in non-endemic countries due to human migration. The United States (US) is the non-Latin American country with the highest CD burden and cannot be considered as non-endemic, since triatomine vectors and reservoir animals have been found. Populations of T. cruzi are divided into genetic subdivisions, which are known as discrete typing units (DTUs): TcI to TcVI and TcBat. Autochthonous human T. cruzi infection in the US is sporadic, but it may change due to environmental factors affecting the geographic distribution of triatomines. We aimed to perform a literature review of the genetic diversity of T. cruzi in triatomine vectors and mammalian hosts, including human cases, in the US. The 34 analyzed studies revealed the presence of T. cruzi in 18 states, which was mainly concentrated in Texas, Louisiana and New Mexico. TcI and TcIV were the principal DTUs identified, being TcI the most genotyped (42.4%; 917/2164). This study represents a first attempt to compile the molecular epidemiology of T. cruzi in the US, which is fundamental for predicting the progression of the infection in the country and could be of great help in its future management.
Collapse
Affiliation(s)
| | - Alba Abras
- Laboratori d’Ictiologia Genètica, Departament de Biologia, Universitat de Girona, 17003 Girona, Spain;
| | - Anna Fernández-Arévalo
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (A.F.-A.); (C.B.); (M.G.)
| | - Cristina Ballart
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (A.F.-A.); (C.B.); (M.G.)
- Institut de Salut Global de Barcelona (ISGlobal), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sandra Heras
- Laboratori d’Ictiologia Genètica, Departament de Biologia, Universitat de Girona, 17003 Girona, Spain;
| | - Carmen Muñoz
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Biomèdica Sant Pau, 08041 Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Montserrat Gállego
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (A.F.-A.); (C.B.); (M.G.)
- Institut de Salut Global de Barcelona (ISGlobal), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBERINFEC (Centro de Investigación Biomédica en Red de Enfermedades Infecciosas), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
3
|
Gómez-Palacio A, Cruz-Saavedra L, Van den Broeck F, Geerts M, Pita S, Vallejo GA, Carranza JC, Ramírez JD. High-throughput analysis of the Trypanosoma cruzi minicirculome (mcDNA) unveils structural variation and functional diversity. Sci Rep 2024; 14:5578. [PMID: 38448494 PMCID: PMC10917808 DOI: 10.1038/s41598-024-56076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Trypanosoma cruzi causes Chagas disease and has a unique extranuclear genome enclosed in a structure called the kinetoplast, which contains circular genomes known as maxi- and minicircles. While the structure and function of maxicircles are well-understood, many aspects of minicircles remain to be discovered. Here, we performed a high-throughput analysis of the minicirculome (mcDNA) in 50 clones isolated from Colombia's diverse T. cruzi I populations. Results indicate that mcDNA comprises four diverse subpopulations with different structures, lengths, and numbers of interspersed semi-conserved (previously termed ultra-conserved regions mHCV) and hypervariable (mHVPs) regions. Analysis of mcDNA ancestry and inter-clone differentiation indicates the interbreeding of minicircle sequence classes is placed along diverse strains and hosts. These results support evidence of the multiclonal dynamics and random bi-parental segregation. Finally, we disclosed the guide RNA repertoire encoded by mcDNA at a clonal scale, and several attributes of its abundance and function are discussed.
Collapse
Affiliation(s)
- Andrés Gómez-Palacio
- Laboratorio de Investigación en Genética Evolutiva, Universidad Pedagógica y Tecnológica de Colombia, Boyacá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Frederik Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Manon Geerts
- Fish Eco-Evo-Devo and Conservation, KU Leuven, 3000, Leuven, Belgium
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute for Natural Sciences, 1000, Brussels, Belgium
| | - Sebastián Pita
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
| | - Gustavo A Vallejo
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Julio C Carranza
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA.
| |
Collapse
|
4
|
Rusman F, Díaz AG, Ponce T, Floridia-Yapur N, Barnabé C, Diosque P, Tomasini N. Wide reference databases for typing Trypanosoma cruzi based on amplicon sequencing of the minicircle hypervariable region. PLoS Negl Trop Dis 2023; 17:e0011764. [PMID: 37956210 PMCID: PMC10681310 DOI: 10.1371/journal.pntd.0011764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/27/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiological agent of Chagas Disease, exhibits remarkable genetic diversity and is classified into different Discrete Typing Units (DTUs). Strain typing techniques are crucial for studying T. cruzi, because their DTUs have significant biological differences from one another. However, there is currently no methodological strategy for the direct typing of biological materials that has sufficient sensitivity, specificity, and reproducibility. The high diversity and copy number of the minicircle hypervariable regions (mHVRs) makes it a viable target for typing. METHODOLOGY/PRINCIPAL FINDINGS Approximately 24 million reads obtained by amplicon sequencing of the mHVR were analyzed for 62 strains belonging to the six main T. cruzi DTUs. To build reference databases of mHVR diversity for each DTU and to evaluate this target as a typing tool. Strains of the same DTU shared more mHVR clusters than strains of different DTUs, and clustered together. Different identity thresholds were used to build the reference sets of the mHVR sequences (85% and 95%, respectively). The 95% set had a higher specificity and was more suited for detecting co-infections, whereas the 85% set was excellent for identifying the primary DTU of a sample. The workflow's capacity for typing samples obtained from cultures, a set of whole-genome data, under various simulated PCR settings, in the presence of co-infecting lineages and for blood samples was also assessed. CONCLUSIONS/SIGNIFICANCE We present reference databases of mHVR sequences and an optimized typing workflow for T. cruzi including a simple online tool for deep amplicon sequencing analysis (https://ntomasini.github.io/cruzityping/). The results show that the workflow displays an equivalent resolution to that of the other typing methods. Owing to its specificity, sensitivity, relatively low cost, and simplicity, the proposed workflow could be an alternative for screening different types of samples.
Collapse
Affiliation(s)
- Fanny Rusman
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Anahí G. Díaz
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Tatiana Ponce
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Noelia Floridia-Yapur
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Christian Barnabé
- Institut de Recherche pour le Développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
| | - Patricio Diosque
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Nicolás Tomasini
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental Dr. Miguel Ángel Basombrío, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| |
Collapse
|
5
|
Geerts M, Chen Z, Bebronne N, Savill NJ, Schnaufer A, Büscher P, Van Reet N, Van den Broeck F. Deep kinetoplast genome analyses result in a novel molecular assay for detecting Trypanosoma brucei gambiense-specific minicircles. NAR Genom Bioinform 2022; 4:lqac081. [PMID: 36285287 PMCID: PMC9582789 DOI: 10.1093/nargab/lqac081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/14/2022] Open
Abstract
The World Health Organization targeted Trypanosoma brucei gambiense (Tbg) human African trypanosomiasis for elimination of transmission by 2030. Sensitive molecular markers that specifically detect Tbg type 1 (Tbg1) parasites will be important tools to assist in reaching this goal. We aim at improving molecular diagnosis of Tbg1 infections by targeting the abundant mitochondrial minicircles within the kinetoplast of these parasites. Using Next-Generation Sequencing of total cellular DNA extracts, we assembled and annotated the kinetoplast genome and investigated minicircle sequence diversity in 38 animal- and human-infective trypanosome strains. Computational analyses recognized a total of 241 Minicircle Sequence Classes as Tbg1-specific, of which three were shared by the 18 studied Tbg1 strains. We developed a minicircle-based assay that is applicable on animals and as specific as the TgsGP-based assay, the current golden standard for molecular detection of Tbg1. The median copy number of the targeted minicircle was equal to eight, suggesting our minicircle-based assay may be used for the sensitive detection of Tbg1 parasites. Annotation of the targeted minicircle sequence indicated that it encodes genes essential for the survival of the parasite and will thus likely be preserved in natural Tbg1 populations, the latter ensuring the reliability of our novel diagnostic assay.
Collapse
Affiliation(s)
- Manon Geerts
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Zihao Chen
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Nicolas Bebronne
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Nicholas J Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | | | | |
Collapse
|
6
|
Callejas-Hernández F, Herreros-Cabello A, Del Moral-Salmoral J, Fresno M, Gironès N. The Complete Mitochondrial DNA of Trypanosoma cruzi: Maxicircles and Minicircles. Front Cell Infect Microbiol 2021; 11:672448. [PMID: 34268138 PMCID: PMC8277381 DOI: 10.3389/fcimb.2021.672448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial DNA of Trypanosomatids, known as the kinetoplast DNA or kDNA or mtDNA, consists of a few maxicircles and thousands of minicircles concatenated together into a huge complex network. These structures present species-specific sizes, from 20 to 40 Kb in maxicircles and from 0.5 to 10 Kb in minicircles. Maxicircles are equivalent to other eukaryotic mitochondrial DNAs, while minicircles contain coding guide RNAs involved in U-insertion/deletion editing processes exclusive of Trypanosomatids that produce the maturation of the maxicircle-encoded transcripts. The knowledge about this mitochondrial genome is especially relevant since the expression of nuclear and mitochondrial genes involved in oxidative phosphorylation must be coordinated. In Trypanosoma cruzi (T. cruzi), the mtDNA has a dual relevance; the production of energy, and its use as a phylogenetic marker due to its high conservation among strains. Therefore, this study aimed to assemble, annotate, and analyze the complete repertoire of maxicircle and minicircle sequences of different T. cruzi strains by using DNA sequencing. We assembled and annotated the complete maxicircle sequence of the Y and Bug2148 strains. For Bug2148, our results confirm that the maxicircle sequence is the longest assembled to date, and is composed of 21 genes, most of them conserved among Trypanosomatid species. In agreement with previous results, T. cruzi minicircles show a conserved structure around 1.4 Kb, with four highly conserved regions and other four hypervariable regions interspersed between them. However, our results suggest that the parasite minicircles display several sizes and numbers of conserved and hypervariable regions, contrary to those previous studies. Besides, this heterogeneity is also reflected in the three conserved sequence blocks of the conserved regions that play a key role in the minicircle replication. Our results using sequencing technologies of second and third-generation indicate that the different consensus sequences of the maxicircles and minicircles seem to be more complex than previously described indicating at least four different groups in T. cruzi minicircles.
Collapse
Affiliation(s)
- Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Del Moral-Salmoral
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación de la Princesa, Group 12, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación de la Princesa, Group 12, Madrid, Spain
| |
Collapse
|
7
|
Rusman F, Floridia-Yapur N, Tomasini N, Diosque P. Guide RNA Repertoires in the Main Lineages of Trypanosoma cruzi: High Diversity and Variable Redundancy Among Strains. Front Cell Infect Microbiol 2021; 11:663416. [PMID: 34136416 PMCID: PMC8202002 DOI: 10.3389/fcimb.2021.663416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi, as other kinetoplastids, has a complex mechanism of editing of mitochondrial mRNAs that requires guide RNAs (gRNAs) coded in DNA minicircles in the kinetoplast. There are many variations on this mechanism among species. mRNA editing and gRNA repertoires are almost unknown in T. cruzi. Here, gRNAs were inferred based on deep-sequenced minicircle hypervariable regions (mHVRs) and editing cascades were rebuilt in strains belonging to the six main T. cruzi lineages. Inferred gRNAs were clustered according to their sequence similarity to constitute gRNA classes. Extreme diversity of gRNA classes was observed, which implied highly divergent gRNA repertoires among different lineages, even within some lineages. In addition, a variable gRNA class redundancy (i.e., different gRNA classes editing the same mRNA region) was detected among strains. Some strains had upon four times more gRNA classes than others. Such variations in redundancy affected gRNA classes of all mRNAs in a concerted way, i.e., there are correlated variations in the number of gRNAs classes editing each mRNA. Interestingly, cascades were incomplete for components of the respiratory complex I in several strains. Finally, gRNA classes of different strains may potentially edit mitochondrial mRNAs from other lineages in the same way as they edit their own mitochondrial mRNAs, which is a prerequisite for biparental inheritance of minicircle in hybrids. We propose that genetic exchange and biparental inheritance of minicircles combined with minicircle drift due to (partial) random segregation of minicircles during kDNA replication is a suitable hypothesis to explain the divergences among strains and the high levels of gRNA redundancy in some strains. In addition, our results support that the complex I may not be required in some stages in the life cycle as previously shown and that linkage (in the same minicircle) of gRNAs that edit different mRNAs may prevent gRNA class lost in such stage.
Collapse
|
8
|
Reproduction in Trypanosomatids: Past and Present. BIOLOGY 2021; 10:biology10060471. [PMID: 34071741 PMCID: PMC8230138 DOI: 10.3390/biology10060471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
Simple Summary The reproduction of trypanosomatids is a fundamental issue for host–parasite interaction, and its biological importance lies in knowing how these species acquire new defense mechanisms against the countermeasures imposed by the host, which is consistent with the theory of the endless race or the Red Queen hypothesis for the existence of meiotic sex. Moreover, the way these species re-produce may also be at the origin of novel and more virulent clades and is relevant from a thera-peutic or vaccination point of view, as sex may contribute to increased tolerance and even to the rapid acquisition of drug resistance mechanisms. Kinetoplastids are single-celled organisms, many of them being responsible for important parasitic diseases, globally termed neglected diseases, which are endemic in low-income countries. Leishmaniasis, African (sleeping sickness) and American trypanosomiasis (Chagas disease) caused by trypanosomatids are among the most ne-glected tropical scourges related to poverty and poor health systems. The reproduction of these microorganisms has long been considered to be clonal due to population genetic observations. However, there is increasing evidence of true sex and genetic exchange events under laboratory conditions. We would like to highlight the importance of this topic in the field of host/parasite in-terplay, virulence, and drug resistance. Abstract Diseases caused by trypanosomatids (Sleeping sickness, Chagas disease, and leishmaniasis) are a serious public health concern in low-income endemic countries. These diseases are produced by single-celled parasites with a diploid genome (although aneuploidy is frequent) organized in pairs of non-condensable chromosomes. To explain the way they reproduce through the analysis of natural populations, the theory of strict clonal propagation of these microorganisms was taken as a rule at the beginning of the studies, since it partially justified their genomic stability. However, numerous experimental works provide evidence of sexual reproduction, thus explaining certain naturally occurring events that link the number of meiosis per mitosis and the frequency of mating. Recent techniques have demonstrated genetic exchange between individuals of the same species under laboratory conditions, as well as the expression of meiosis specific genes. The current debate focuses on the frequency of genomic recombination events and its impact on the natural parasite population structure. This paper reviews the results and techniques used to demonstrate the existence of sex in trypanosomatids, the inheritance of kinetoplast DNA (maxi- and minicircles), the impact of genetic exchange in these parasites, and how it can contribute to the phenotypic diversity of natural populations.
Collapse
|
9
|
Gibson W. The sexual side of parasitic protists. Mol Biochem Parasitol 2021; 243:111371. [PMID: 33872659 DOI: 10.1016/j.molbiopara.2021.111371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
Much of the vast evolutionary landscape occupied by Eukaryotes is dominated by protists. Though parasitism has arisen in many lineages, there are three main groups of parasitic protists of relevance to human and livestock health: the Apicomplexa, including the malaria parasite Plasmodium and coccidian pathogens of livestock such as Eimeria; the excavate flagellates, encompassing a diverse range of protist pathogens including trypanosomes, Leishmania, Giardia and Trichomonas; and the Amoebozoa, including pathogenic amoebae such as Entamoeba. These three groups represent separate, deep branches of the eukaryote tree, underlining their divergent evolutionary histories. Here, I explore what is known about sex in these three main groups of parasitic protists.
Collapse
Affiliation(s)
- Wendy Gibson
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, United Kingdom.
| |
Collapse
|
10
|
Serological Approaches for Trypanosoma cruzi Strain Typing. Trends Parasitol 2021; 37:214-225. [PMID: 33436314 DOI: 10.1016/j.pt.2020.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/23/2022]
Abstract
Trypanosoma cruzi, the protozoan agent of Chagas' disease, displays a complex population structure made up of multiple strains showing a diverse ecoepidemiological distribution. Parasite genetic variability may be associated with disease outcome, hence stressing the need to develop methods for T. cruzi typing in vivo. Serological typing methods that exploit the presence of host antibodies raised against polymorphic parasite antigens emerge as an appealing approach to address this issue. These techniques are robust, simple, cost-effective, and are not curtailed by methodological/biological limitations intrinsic to available genotyping methods. Here, we critically assess the progress towards T. cruzi serotyping and discuss the opportunity provided by high-throughput immunomics to improve this field.
Collapse
|
11
|
Abstract
Parasites are interesting models for studying speciation processes because they have a high potential for specialization, thanks to the intimate ecological association with their hosts and vectors. Yet little is known about the circumstances under which new parasite lineages emerge. Here we studied the genome diversity of parasites of the Leishmania braziliensis species complex that inhabit both Amazonian and Andean biotas in Peru. We identify three major parasite lineages that occupy particular ecological niches and show that these emerged during forestation changes over the past 150,000 y. We furthermore discovered that meiotic recombination between Amazonian and Andean lineages resulted in full-genome hybrids presenting mixed mitochondrial genomes, providing insights into the genetic consequences of hybridization in parasitic protozoa. The tropical Andes are an important natural laboratory to understand speciation in many taxa. Here we examined the evolutionary history of parasites of the Leishmania braziliensis species complex based on whole-genome sequencing of 67 isolates from 47 localities in Peru. We first show the origin of Andean Leishmania as a clade of near-clonal lineages that diverged from admixed Amazonian ancestors, accompanied by a significant reduction in genome diversity and large structural variations implicated in host–parasite interactions. Within the Andean species, patterns of population structure were strongly associated with biogeographical origin. Molecular clock and ecological niche modeling suggested that the history of diversification of the Andean lineages is limited to the Late Pleistocene and intimately associated with habitat contractions driven by climate change. These results suggest that changes in forestation over the past 150,000 y have influenced speciation and diversity of these Neotropical parasites. Second, genome-scale analyses provided evidence of meiotic-like recombination between Andean and Amazonian Leishmania species, resulting in full-genome hybrids. The mitochondrial genome of these hybrids consisted of homogeneous uniparental maxicircles, but minicircles originated from both parental species. We further show that mitochondrial minicircles—but not maxicircles—show a similar evolutionary pattern to the nuclear genome, suggesting that compatibility between nuclear-encoded mitochondrial genes and minicircle-encoded guide RNA genes is essential to maintain efficient respiration. By comparing full nuclear and mitochondrial genome ancestries, our data expand our appreciation on the genetic consequences of diversification and hybridization in parasitic protozoa.
Collapse
|
12
|
Monje-Rumi MM, Floridia-Yapur N, Zago MP, Ragone PG, Pérez Brandán CM, Nuñez S, Barrientos N, Tomasini N, Diosque P. Potential association of Trypanosoma cruzi DTUs TcV and TcVI with the digestive form of Chagas disease. INFECTION GENETICS AND EVOLUTION 2020; 84:104329. [PMID: 32339759 DOI: 10.1016/j.meegid.2020.104329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/28/2022]
Abstract
The relationship among genetic diversity of Trypanosoma cruzi and clinical forms of Chagas disease remain elusive. In order to assess the possible association between different T. cruzi Discrete Typing Units (DTUs) and the clinical pictures of the disease, 205 chronic patients from Salta province, Argentina, were analysed. One hundred and twenty-two of these patients were clinically categorized as: cardiac 38.5% (47/122), digestive 15% (18/122), cardio-digestive 16% (20/122) and asymptomatic 30% (37/122). From each patient, blood samples were taken for both, Polymerase Chain Reaction (PCR) targeting kDNA and blood culture analyses. The presence of T. cruzi kDNA was detected in 43% (88/205) of the patients. T. cruzi DTUs were identified in 74% (65/88) of the kDNA positive patients by PCR-hybridization using specific probes. We detected the presence of DTUs TcI, TcII, TcV and TcVI. Single infections (i.e. presence of only one DTU in the sample) were detected in 38.64% of the samples (34/88), while mixed infections were 35.23% (31/88). TcV was the most prevalent DTU (60.3%- 53/88). The association analyses showed, for the first time to the best of our knowledge, that TcV and TcVI were associated with the digestive form of Chagas Disease (Fisher p = .0001).
Collapse
Affiliation(s)
- M M Monje-Rumi
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - N Floridia-Yapur
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - M P Zago
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - P G Ragone
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - C M Pérez Brandán
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - S Nuñez
- Servicio de Cardiología, Hospital San Bernardo, Av. José Tobias 69, Salta, Argentina
| | - N Barrientos
- Servicio de Cardiología, Hospital San Bernardo, Av. José Tobias 69, Salta, Argentina
| | - N Tomasini
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina
| | - P Diosque
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Argentina. Av. Bolivia, 5150 Salta, Argentina.
| |
Collapse
|
13
|
Rusman F, Floridia-Yapur N, Ragone PG, Diosque P, Tomasini N. Evidence of hybridization, mitochondrial introgression and biparental inheritance of the kDNA minicircles in Trypanosoma cruzi I. PLoS Negl Trop Dis 2020; 14:e0007770. [PMID: 32004318 PMCID: PMC7015434 DOI: 10.1371/journal.pntd.0007770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/12/2020] [Accepted: 01/13/2020] [Indexed: 11/21/2022] Open
Abstract
Background Genetic exchange in Trypanosoma cruzi is controversial not only in relation to its frequency, but also to its mechanism. Parasexual genetic exchange has been proposed based on laboratory hybrids, but population genomics strongly suggests meiosis in T. cruzi. In addition, mitochondrial introgression has been reported several times in natural isolates although its mechanism is not fully understood yet. Moreover, hybrid T. cruzi DTUs (TcV and TcVI) have inherited at least part of the kinetoplastic DNA (kDNA = mitochondrial DNA) from both parents. Methodology/Principal findings In order to address such topics, we sequenced and analyzed fourteen nuclear DNA fragments and three kDNA maxicircle genes in three TcI stocks which are natural clones potentially involved in events of genetic exchange. We also deep-sequenced (a total of 6,146,686 paired-end reads) the minicircle hypervariable region (mHVR) of the kDNA in such three strains. In addition, we analyzed the DNA content by flow cytometry to address cell ploidy. We observed that most polymorphic sites in nuclear loci showed a hybrid pattern in one cloned strain and the other two cloned strains were compatible as parental strains (or nearly related to the true parents). The three clones had almost the same ploidy and the DNA content was similar to the reference strain Sylvio (a nearly diploid strain). Despite maxicircle genes evolve faster than nuclear housekeeping ones, we detected no polymorphisms in the sequence of three maxicircle genes showing mito-nuclear discordance. Lastly, the hybrid stock shared 66% of its mHVR clusters with one putative parent and 47% with the other one; in contrast, the putative parental stocks shared less than 30% of the mHVR clusters between them. Conclusions/significance The results suggest a reductive division, a natural hybridization, biparental inheritance of the minicircles in the hybrid and maxicircle introgression. The models including such phenomena and explaining the relationships between these three clones are discussed. Chagas disease, an important public health problem in Latin America, is caused by the parasite Trypanosoma cruzi. Despite being a widely studied parasite, several questions on the biology of genetic exchange remain unanswered. Population genomic studies have inferred meiosis in T. cruzi, but this cellular division mechanism has not been observed in laboratory yet. In addition, previous results suggest that mitochondrial DNA (called kDNA) may be inherited from both parents in hybrids. Here, we analyzed a hybrid strain and its potential parents to address the mechanisms of genetic exchange at nuclear and mitochondrial levels. We observed that the hybrid strain had heterozygous patterns and DNA content compatible with a meiosis event. Also, we observed that the evolutionary histories of nuclear DNA and kDNA maxicircles were discordant and that the three strains shared identical DNA sequences. Mitochondrial introgression of maxicircle DNA from one genotype to another may explain this observation. In addition, we demonstrated that the hybrid strain shared kDNA minicircles with both parental strains. Our results suggest that hybridization implied meiosis and biparental inheritance of the kDNA. Further research is required to address such phenomena in detail.
Collapse
Affiliation(s)
- Fanny Rusman
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Noelia Floridia-Yapur
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Paula G. Ragone
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Patricio Diosque
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Nicolás Tomasini
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
- * E-mail:
| |
Collapse
|