1
|
Huitink M, de Rooij M, Montarsi F, Salvati MV, Obber F, Da Rold G, Sgubin S, Mazzotta E, di Martino G, Mazzucato M, Salata C, Vonesch N, Tomao P, Mughini-Gras L. Habitat Suitability of Ixodes ricinus Ticks Carrying Pathogens in North-East Italy. Pathogens 2024; 13:836. [PMID: 39452708 PMCID: PMC11510671 DOI: 10.3390/pathogens13100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Ixodes ricinus ticks are ubiquitous in Europe, including in North-East Italy. These ticks are important vectors of several zoonotic pathogens of public health relevance. In this study, the habitat suitability range of I. ricinus ticks infected with zoonotic pathogens was predicted in North-East Italy, and relevant spatial predictors were identified. In 2015-2021, ticks were collected at 26 sampling sites in the study area. The collected ticks were screened for the presence of pathogens using PCR assays. For Borrelia, Rickettsia and Anaplasma/Ehrlichia species, data allowed for ecological niche modelling using Maxent. Environmental determinants potentially related to tick habitat suitability were used as model inputs. Predicted suitable habitat distributions revealed hotspots of the probability of pathogen presence in I. ricinus ticks mainly in the central and upper parts of the study area. Key environmental predictors were temperature, rainfall and altitude, and vegetation index for specific pathogens (Rickettsia and Anaplasma/Ehrlichia species). Increased risk of exposure to tick-borne pathogens upon tick bites in the predicted hotspot areas can, therefore, be expected. This provides useful information for public health risk managers in this and other similar regions.
Collapse
Affiliation(s)
- Maartje Huitink
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CL Utrecht, The Netherlands; (M.H.); (M.d.R.)
| | - Myrna de Rooij
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CL Utrecht, The Netherlands; (M.H.); (M.d.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Maria Vittoria Salvati
- Department of Molecular Medicine, University of Padua, Via Gabelli, 63, 35121 Padua, Italy; (M.V.S.); (C.S.)
| | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Graziana Da Rold
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Sofia Sgubin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Elisa Mazzotta
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Guido di Martino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Matteo Mazzucato
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Viale dell’Università 10, 35020 Legnaro, Italy; (F.M.); (F.O.); (G.D.R.); (S.S.); (E.M.); (G.d.M.); (M.M.)
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Via Gabelli, 63, 35121 Padua, Italy; (M.V.S.); (C.S.)
| | - Nicoletta Vonesch
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, 00078 Monte Porzio Catone, Italy; (N.V.); (P.T.)
| | - Paola Tomao
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, 00078 Monte Porzio Catone, Italy; (N.V.); (P.T.)
| | - Lapo Mughini-Gras
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CL Utrecht, The Netherlands; (M.H.); (M.d.R.)
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
2
|
Ikegawa M, Kano N, Ori D, Fukuta M, Hirano M, Hewson R, Yoshii K, Kawai T, Kawasaki T. HuR (ELAVL1) regulates the CCHFV minigenome and HAZV replication by associating with viral genomic RNA. PLoS Negl Trop Dis 2024; 18:e0012553. [PMID: 39348382 PMCID: PMC11466401 DOI: 10.1371/journal.pntd.0012553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/10/2024] [Accepted: 09/20/2024] [Indexed: 10/02/2024] Open
Abstract
Crimean-Congo Hemorrhagic Fever virus (CCHFV) is a tick-borne pathogen that causes severe acute fever disease in humans and requires a biosafety level 4 laboratory for handling. Hazara virus (HAZV), belonging to the same virus genus as CCHFV, does not exhibit pathogenesis in humans. To investigate host RNA-binding proteins (RBPs) that regulate CCHFV replication, we generated a series of mutant RAW264.7 cells by CRISPR/Cas9 system and these cells were infected with HAZV. The viral titers in the supernatant of these cells was investigated, and HuR (ELAVL1) was identified. HuR KO RAW264.7 cells reduced HAZV replication. HuR is an RBP that enhances mRNA stability by binding to adenyl-uridine (AU)-rich regions in their 3' non-coding region (NCR). HuR regulates innate immune response by binding to host mRNAs of signaling molecules. The expression of cytokine genes such as Ifnb, Il6, and Tnf was reduced in HuR KO cells after HAZV infection. Although HuR supports the innate immune response during HAZV infection, we found that innate immune activation by HAZV infection did not affect its replication. We then investigated whether HuR regulates HAZV genome RNA stability. HAZV RNA genome was precipitated with an anti-HuR antibody, and HAZV genome RNA stability was lowered in HuR KO cells. We found that HuR associated with HAZV RNA and stabilized it to enhance HAZV replication. Furthermore, HuR-deficiency reduced CCHFV minigenome replication. CCHFV is a negative-strand RNA virus and positive-strand RNA is produced during replication. HuR was associated with positive-strand RNA rather than negative-strand RNA, and AU-rich region in 3'-NCR of S segment was responsible for immunoprecipitation with anti-HuR antibody and minigenome replication. Additionally, HuR inhibitor treatment reduced CCHFV minigenome replication. Our results indicate that HuR aids replication of the CCHFV minigenome by associating with the AU-rich region in the 3'-NCR.
Collapse
Affiliation(s)
- Moe Ikegawa
- Immune Dynamics in Viral Infections, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
| | - Norisuke Kano
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
| | - Mizuki Fukuta
- Viral Ecology, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Minato Hirano
- Viral Ecology, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Roger Hewson
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK; and UK-Health Security Agency, Porton Down, Salisbury, United Kingdom
| | - Kentaro Yoshii
- Viral Ecology, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nagasaki, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takumi Kawasaki
- Immune Dynamics in Viral Infections, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
4
|
Monteil VM, Wright SC, Dyczynski M, Kellner MJ, Appelberg S, Platzer SW, Ibrahim A, Kwon H, Pittarokoilis I, Mirandola M, Michlits G, Devignot S, Elder E, Abdurahman S, Bereczky S, Bagci B, Youhanna S, Aastrup T, Lauschke VM, Salata C, Elaldi N, Weber F, Monserrat N, Hawman DW, Feldmann H, Horn M, Penninger JM, Mirazimi A. Crimean-Congo haemorrhagic fever virus uses LDLR to bind and enter host cells. Nat Microbiol 2024; 9:1499-1512. [PMID: 38548922 PMCID: PMC11153131 DOI: 10.1038/s41564-024-01672-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/11/2024] [Indexed: 06/07/2024]
Abstract
Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.
Collapse
Affiliation(s)
- Vanessa M Monteil
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Shane C Wright
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Max J Kellner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Sebastian W Platzer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Hyesoo Kwon
- National Veterinary Institute, Uppsala, Sweden
| | | | - Mattia Mirandola
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Stephanie Devignot
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | | | | | | | - Binnur Bagci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- University Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Nazif Elaldi
- Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Cumhuriyet University, Sivas, Turkey
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Gießen, Germany
| | - Nuria Monserrat
- University of Barcelona, Barcelona, Spain
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - David W Hawman
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Heinz Feldmann
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Moritz Horn
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ali Mirazimi
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
- Public Health Agency of Sweden, Solna, Sweden.
- National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|
5
|
Xu ZS, Du WT, Wang SY, Wang MY, Yang YN, Li YH, Li ZQ, Zhao LX, Yang Y, Luo WW, Wang YY. LDLR is an entry receptor for Crimean-Congo hemorrhagic fever virus. Cell Res 2024; 34:140-150. [PMID: 38182887 PMCID: PMC10837205 DOI: 10.1038/s41422-023-00917-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is the most widespread tick-born zoonotic bunyavirus that causes severe hemorrhagic fever and death in humans. CCHFV enters the cell via clathrin-mediated endocytosis which is dependent on its surface glycoproteins. However, the cellular receptors that are required for CCHFV entry are unknown. Here we show that the low density lipoprotein receptor (LDLR) is an entry receptor for CCHFV. Genetic knockout of LDLR impairs viral infection in various CCHFV-susceptible human, monkey and mouse cells, which is restored upon reconstitution with ectopically-expressed LDLR. Mutagenesis studies indicate that the ligand binding domain (LBD) of LDLR is necessary for CCHFV infection. LDLR binds directly to CCHFV glycoprotein Gc with high affinity, which supports virus attachment and internalization into host cells. Consistently, a soluble sLDLR-Fc fusion protein or anti-LDLR blocking antibodies impair CCHFV infection into various susceptible cells. Furthermore, genetic knockout of LDLR or administration of an LDLR blocking antibody significantly reduces viral loads, pathological effects and death following CCHFV infection in mice. Our findings suggest that LDLR is an entry receptor for CCHFV and pharmacological targeting of LDLR may provide a strategy to prevent and treat Crimean-Congo hemorrhagic fever.
Collapse
Affiliation(s)
- Zhi-Sheng Xu
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Tian Du
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Su-Yun Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Mo-Yu Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Ning Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Hui Li
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen-Qi Li
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Xin Zhao
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Wei Luo
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Yi Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-science, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Key Laboratory of Virology and Biosafety, Chinese Academy of Sciences, Wuhan, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Hartman AL, Myler PJ. Bunyavirales: Scientific Gaps and Prototype Pathogens for a Large and Diverse Group of Zoonotic Viruses. J Infect Dis 2023; 228:S376-S389. [PMID: 37849397 PMCID: PMC10582323 DOI: 10.1093/infdis/jiac338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Research directed at select prototype pathogens is part of the approach put forth by the National Institute of Allergy and Infectious Disease (NIAID) to prepare for future pandemics caused by emerging viruses. We were tasked with identifying suitable prototypes for four virus families of the Bunyavirales order (Phenuiviridae, Peribunyaviridae, Nairoviridae, and Hantaviridae). This is a challenge due to the breadth and diversity of these viral groups. While there are many differences among the Bunyavirales, they generally have complex ecological life cycles, segmented genomes, and cause a range of human clinical outcomes from mild to severe and even death. Here, we delineate potential prototype species that encompass the breadth of clinical outcomes of a given family, have existing reverse genetics tools or animal disease models, and can be amenable to a platform approach to vaccine testing. Suggested prototype pathogens outlined here can serve as a starting point for further discussions.
Collapse
Affiliation(s)
- Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Peter J Myler
- Department of Pediatrics and the Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| |
Collapse
|
7
|
Li H, Smith G, Goolia M, Marszal P, Pickering BS. Comparative characterization of Crimean-Congo hemorrhagic fever virus cell culture systems with application to propagation and titration methods. Virol J 2023; 20:128. [PMID: 37337294 DOI: 10.1186/s12985-023-02089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is a biosafety level 4 and World Health Organization top priority pathogen. Infection leads to an often fatal hemorrhagic fever disease in humans. The tick-borne virus is endemic in countries across Asia, Europe and Africa, with signs of spreading into new regions. Despite the severity of disease and the potential of CCHFV geographic expansion to cause widespread outbreaks, no approved vaccine or treatment is currently available. Critical for basic research and the development of diagnostics or medical countermeasures, CCHFV viral stocks are commonly produced in Vero E6 and SW-13 cell lines. While a variety of in-house methods are being used across different laboratories, there has been no clear, specific consensus on a standard, optimal system for CCHFV growth and titration. In this study, we perform a systematic, side-by-side characterization of Vero E6 and SW-13 cell lines concerning the replication kinetics of CCHFV under different culture conditions. SW-13 cells are typically cultured in a CO2-free condition (SW-13 CO2-) according to the American Type Culture Collection. However, we identify a CO2-compatible culture condition (SW-13 CO2+) that demonstrates the highest viral load (RNA concentration) and titer (infectious virus concentration) in the culture supernatants, in comparison to SW-13 CO2- and Vero E6 cultures. This optimal viral propagation system also leads to the development of two titration methods: an immunostaining-based plaque assay using a commercial CCHFV antibody and a colorimetric readout, and an antibody staining-free, cytopathic effect-based median tissue culture infectious dose assay using a simple excel calculator. These are anticipated to serve as a basis for a reproducible, standardized and user-friendly platform for CCHFV propagation and titration.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Melissa Goolia
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Peter Marszal
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Bradley S Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
8
|
Virus-Derived DNA Forms Mediate the Persistent Infection of Tick Cells by Hazara Virus and Crimean-Congo Hemorrhagic Fever Virus. J Virol 2021; 95:e0163821. [PMID: 34613808 DOI: 10.1128/jvi.01638-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a severe disease of humans caused by CCHF virus (CCHFV), a biosafety level (BSL)-4 pathogen. Ticks of the genus Hyalomma are the viral reservoir, and they represent the main vector transmitting the virus to its hosts during blood feeding. We have previously shown that CCHFV can persistently infect Hyalomma-derived tick cell lines. However, the mechanism allowing the establishment of persistent viral infections in ticks is still unknown. Hazara virus (HAZV) can be used as a BSL-2 model virus instead of CCHFV to study virus/vector interactions. To investigate the mechanism behind the establishment of a persistent infection, we developed an in vitro model with Hyalomma-derived tick cell lines and HAZV. As expected, HAZV, like CCHFV, persistently infects tick cells without any sign of cytopathic effect, and the infected cells can be cultured for more than 3 years. Most interestingly, we demonstrated the presence of short viral-derived DNA forms (vDNAs) after HAZV infection. Furthermore, we demonstrated that the antiretroviral drug azidothymine triphosphate could inhibit the production of vDNAs, suggesting that vDNAs are produced by an endogenous retrotranscriptase activity in tick cells. Moreover, we collected evidence that vDNAs are continuously synthesized, thereby downregulating viral replication to promote cell survival. Finally, vDNAs were also detected in CCHFV-infected tick cells. In conclusion, vDNA synthesis might represent a strategy to control the replication of RNA viruses in ticks allowing their persistent infection. IMPORTANCE Crimean-Congo hemorrhagic fever (CCHF) is an emerging tick-borne viral disease caused by CCHF virus (CCHFV). Ticks of the genus Hyalomma can be persistently infected with CCHFV representing the viral reservoir, and the main vector for viral transmission. Here we showed that tick cells infected with Hazara virus, a nonpathogenic model virus closely related to CCHFV, contained short viral-derived DNA forms (vDNAs) produced by endogenous retrotranscriptase activity. vDNAs are transitory molecules requiring viral RNA replication for their continuous synthesis. Interestingly, vDNA synthesis seemed to be correlated with downregulation of viral replication and promotion of tick cell viability. We also detected vDNAs in CCHFV-infected tick cells suggesting that they could represent a key element in the cell response to nairovirus infection and might represent a more general mechanism of innate immunity against RNA viral infection.
Collapse
|
9
|
Cranberry ( Vaccinium macrocarpon) Extract Impairs Nairovirus Infection by Inhibiting the Attachment to Target Cells. Pathogens 2021; 10:pathogens10081025. [PMID: 34451488 PMCID: PMC8401317 DOI: 10.3390/pathogens10081025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022] Open
Abstract
Hazara virus (HAZV) belongs to the Nairoviridae family and is included in the same serogroup of the Crimean-Congo hemorrhagic fever virus (CCHFV). CCHFV is the most widespread tick-borne arbovirus. It is responsible for a serious hemorrhagic disease, for which specific and effective treatment and preventive systems are missing. Bioactive compounds derived from several natural products may provide a natural source of broad-spectrum antiviral agents, characterized by good tolerability and minimal side effects. Previous in vitro studies have shown that a cranberry (Vaccinium macrocarpon Ait.) extract containing a high content of A-type proanthocyanidins (PAC-A) inhibits the replication of herpes simplex and influenza viruses by hampering their attachment to target cells. Given the broad-spectrum antimicrobial activity of polyphenols and the urgency to develop therapies for the treatment of CCHF, we investigated the antiviral activity of cranberry extract against HAZV, a surrogate nairovirus model of CCHFV that can be handled in Level 2 Biosafety Laboratories (BSL-2). The results indicate that the cranberry extract exerts an antiviral activity against HAZV by targeting early stages of the viral replication cycle, including the initial adsorption to target cells. Although the details of the molecular mechanism of action remain to be clarified, the cranberry extract exerts a virucidal effect through a direct interaction with HAZV particles that leads to the subsequent impairment of virus attachment to cell-surface receptors. Finally, the antiviral activity of the cranberry extract was also confirmed for CCHFV. As a whole, the evidence obtained suggests that cranberry extract is a valuable candidate to be considered for the development of therapeutic strategies for CCHFV infections.
Collapse
|