1
|
Jia X, Jing X, Li M, Gao M, Zhong Y, Li E, Liu Y, Li R, Yao G, Liu Q, Zhou M, Hou Y, An L, Hong Y, Li S, Zhang J, Wang W, Zhang K, Gong P, Chiu S. An adenosine analog shows high antiviral potency against coronavirus and arenavirus mainly through an unusual base pairing mode. Nat Commun 2024; 15:10750. [PMID: 39737930 DOI: 10.1038/s41467-024-54918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses. Importantly, treatment with HNC-1664 demonstrate anti-SARS-CoV-2 efficacy in infected K18-human ACE2 mice, with reduced viral titer and mortality, as well as improved lung injury. Enzymology data demonstrate that HNC-1664 inhibits RNA synthesis mainly at the pre-catalysis stage. The cryo-EM structures of HNC-1664-bound RdRP-RNA complexes from both SARS-CoV-2 and LASV reveal an unusual base pairing mode of HNC-1664 in part due to its base modification, thus revealing its great potency in binding but not catalysis. Under certain circumstances, 1664-TP can be slowly incorporated by RdRP through regular Watson-Crick base pairing, as evidenced by enzymology data and an HNC-1664-incorporated crystal structure of the RdRP-RNA complex. Overall, HNC-1664 achieves broad-spectrum characteristics by favoring an alternative base pairing strategy to non-catalytically block RNA synthesis, providing a novel concept for the rational development of NA drugs.
Collapse
Affiliation(s)
- Xiaoying Jia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Xuping Jing
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Ming Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Minli Gao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yao Zhong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Rui Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Guoqiang Yao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiaojie Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
| | - Minmin Zhou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxia Hou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linfeng An
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yibao Hong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shanshan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiancun Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Wei Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China.
| | - Kaiming Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, China.
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei, China.
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui, China.
| |
Collapse
|
2
|
Welch SR, Spengler JR, Westover JB, Bailey KW, Davies KA, Aida-Ficken V, Bluemling GR, Boardman KM, Wasson SR, Mao S, Kuiper DL, Hager MW, Saindane MT, Andrews MK, Krueger RE, Sticher ZM, Jung KH, Chatterjee P, Shrivastava-Ranjan P, Lo MK, Coleman-McCray JD, Sorvillo TE, Genzer SC, Scholte FEM, Kelly JA, Jenks MH, McMullan LK, Albariño CG, Montgomery JM, Painter GR, Natchus MG, Kolykhalov AA, Gowen BB, Spiropoulou CF, Flint M. Delayed low-dose oral administration of 4'-fluorouridine inhibits pathogenic arenaviruses in animal models of lethal disease. Sci Transl Med 2024; 16:eado7034. [PMID: 39565871 DOI: 10.1126/scitranslmed.ado7034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
Development of broad-spectrum antiviral therapies is critical for outbreak and pandemic preparedness against emerging and reemerging viruses. Viruses inducing hemorrhagic fevers cause high morbidity and mortality in humans and are associated with several recent international outbreaks, but approved therapies for treating most of these pathogens are lacking. Here, we show that 4'-fluorouridine (4'-FlU; EIDD-2749), an orally available ribonucleoside analog, has antiviral activity against multiple hemorrhagic fever viruses in cell culture, including Nipah virus, Crimean-Congo hemorrhagic fever virus, orthohantaviruses, and arenaviruses. We performed preclinical in vivo evaluation of oral 4'-FlU against two arenaviruses, Old World Lassa virus (LASV) and New World Junín virus (JUNV), in guinea pig models of lethal disease. 4'-FlU demonstrated both advantageous pharmacokinetic characteristics and high efficacy in both of these lethal disease guinea pig models. Additional experiments supported protection of the infected animals even when 4'-FlU delivery was reduced to a low dose of 0.5 milligram per kilogram. To demonstrate clinical utility, 4'-FlU treatment was evaluated when initiated late in the course of infection (12 or 9 days after infection for LASV and JUNV, respectively). Delayed treatment resulted in rapid resolution of clinical signs, demonstrating an extended window for therapeutic intervention. These data support the use of 4'-FlU as a potent and efficacious treatment against highly pathogenic arenaviruses of public health concern with a virus inhibition profile suggesting broad-spectrum utility as an orally available antiviral drug against a wide variety of viral pathogens.
Collapse
Affiliation(s)
- Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jonna B Westover
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Kevin W Bailey
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Katherine A Davies
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, US Department of Agriculture, Manhattan, KS 66506, USA
| | - Virginia Aida-Ficken
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Gregory R Bluemling
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Kirsten M Boardman
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Samantha R Wasson
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Shuli Mao
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Damien L Kuiper
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Michael W Hager
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Manohar T Saindane
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Meghan K Andrews
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Rebecca E Krueger
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Zachary M Sticher
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Kie Hoon Jung
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Sarah C Genzer
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jamie A Kelly
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - M Harley Jenks
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Laura K McMullan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - George R Painter
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | - Michael G Natchus
- Emory Institute for Drug Development (EIDD), Emory University, Atlanta, GA 30322, USA
| | | | - Brian B Gowen
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
4
|
Těšíková J, Krásová J, Goüy de Bellocq J. Multiple Mammarenaviruses Circulating in Angolan Rodents. Viruses 2021; 13:982. [PMID: 34070551 PMCID: PMC8227972 DOI: 10.3390/v13060982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Rodents are a speciose group of mammals with strong zoonotic potential. Some parts of Africa are still underexplored for the occurrence of rodent-borne pathogens, despite this high potential. Angola is at the convergence of three major biogeographical regions of sub-Saharan Africa, each harbouring a specific rodent community. This rodent-rich area is, therefore, strategic for studying the diversity and evolution of rodent-borne viruses. In this study we examined 290 small mammals, almost all rodents, for the presence of mammarenavirus and hantavirus RNA. While no hantavirus was detected, we found three rodent species positive for distinct mammarenaviruses with a particularly high prevalence in Namaqua rock rats (Micaelamys namaquensis). We characterised four complete virus genomes, which showed typical mammarenavirus organisation. Phylogenetic and genetic distance analyses revealed: (i) the presence of a significantly divergent strain of Luna virus in Angolan representatives of the ubiquitous Natal multimammate mouse (Mastomys natalensis), (ii) a novel Okahandja-related virus associated with the Angolan lineage of Micaelamys namaquensis for which we propose the name Bitu virus (BITV) and (iii) the occurrence of a novel Mobala-like mammarenavirus in the grey-bellied pygmy mouse (Mus triton) for which we propose the name Kwanza virus (KWAV). This high virus diversity in a limited host sample size and in a relatively small geographical area supports the idea that Angola is a hotspot for mammarenavirus diversity.
Collapse
Affiliation(s)
- Jana Těšíková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic; (J.K.); (J.G.B.)
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Jarmila Krásová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic; (J.K.); (J.G.B.)
- Department of Zoology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Joëlle Goüy de Bellocq
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic; (J.K.); (J.G.B.)
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| |
Collapse
|