1
|
Sosa-Acosta P, Evaristo GPC, Evaristo JAM, Carneiro GRA, Quiñones-Vega M, Monnerat G, Melo A, Garcez PP, Nogueira FCS, Domont GB. Amniotic fluid metabolomics identifies impairment of glycerophospholipid and amino acid metabolism during congenital Zika syndrome development. Proteomics Clin Appl 2024; 18:e2300008. [PMID: 37329193 DOI: 10.1002/prca.202300008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE Our main goal is to identify the alterations in the amniotic fluid (AF) metabolome in Zika virus (ZIKV)-infected patients and their relation to congenital Zika syndrome (CZS) progression. EXPERIMENTAL DESIGN We applied an untargeted metabolomics strategy to analyze seven AF of pregnant women: healthy women and ZIKV-infected women bearing non-microcephalic and microcephalic fetuses. RESULTS Infected patients were characterized by glycerophospholipid metabolism impairment, which is accentuated in microcephalic phenotypes. Glycerophospholipid decreased concentration in AF can be a consequence of intracellular transport of lipids to the placental or fetal tissues under development. The increased intracellular concentration of lipids can lead to mitochondrial dysfunction and neurodegeneration caused by lipid droplet accumulation. Furthermore, the dysregulation of amino acid metabolism was a molecular fingerprint of microcephalic phenotypes, specifically serine, and proline metabolisms. Both amino acid deficiencies were related to neurodegenerative disorders, intrauterine growth retardation, and placental abnormalities. CONCLUSIONS AND CLINICAL RELEVANCE This study enhances our understanding of the development of CZS pathology and sheds light on dysregulated pathways that could be relevant for future studies.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geisa P C Evaristo
- Center of Applied Biomolecular Studies in Healthy, Osvaldo Cruz Foundation Unit of Rondônia, Porto Velho, Rondonia, Brazil
| | - Joseph A M Evaristo
- Center of Applied Biomolecular Studies in Healthy, Osvaldo Cruz Foundation Unit of Rondônia, Porto Velho, Rondonia, Brazil
| | - Gabriel Reis Alves Carneiro
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauricio Quiñones-Vega
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Monnerat
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory off Cardiac Electrophysiology Antônio Paes de Carvalho, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Melo
- Professor Amorim Neto Research Institute, Campina Grande, Paraíba, Brazil
| | - Patrícia P Garcez
- Institute of Biomedical Science, Federal University of Rio de Janeiro, RJ, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Sosa-Acosta P, Nogueira FCS, Domont GB. Proteomics and Metabolomics in Congenital Zika Syndrome: A Review of Molecular Insights and Biomarker Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:63-85. [PMID: 38409416 DOI: 10.1007/978-3-031-50624-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Zika virus (ZIKV) infection can be transmitted vertically, leading to the development of congenital Zika syndrome (CZS) in infected fetuses. During the early stages of gestation, the fetuses face an elevated risk of developing CZS. However, it is important to note that late-stage infections can also result in adverse outcomes. The differences between CZS and non-CZS phenotypes remain poorly understood. In this review, we provide a summary of the molecular mechanisms underlying ZIKV infection and placental and blood-brain barriers trespassing. Also, we have included molecular alterations that elucidate the progression of CZS by proteomics and metabolomics studies. Lastly, this review comprises investigations into body fluid samples, which have aided to identify potential biomarkers associated with CZS.
Collapse
Affiliation(s)
- Patricia Sosa-Acosta
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratory of Proteomics (LabProt), LADETEC, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Precision Medicine Research Center, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Ghosh S, Salan T, Riotti J, Ramachandran A, Gonzalez IA, Bandstra ES, Reyes FL, Andreansky SS, Govind V, Saigal G. Brain MRI segmentation of Zika-Exposed normocephalic infants shows smaller amygdala volumes. PLoS One 2023; 18:e0289227. [PMID: 37506075 PMCID: PMC10381087 DOI: 10.1371/journal.pone.0289227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Infants with congenital Zika syndrome (CZS) are known to exhibit characteristic brain abnormalities. However, the brain anatomy of Zika virus (ZIKV)-exposed infants, born to ZIKV-positive pregnant mothers, who have normal-appearing head characteristics at birth, has not been evaluated in detail. The aim of this prospective study is, therefore, to compare the cortical and subcortical brain structural volume measures of ZIKV-exposed normocephalic infants to age-matched healthy controls. METHODS AND FINDINGS We acquired T2-MRI of the whole brain of 18 ZIKV-exposed infants and 8 normal controls on a 3T MRI scanner. The MR images were auto-segmented into eight tissue types and anatomical regions including the white matter, cortical grey matter, deep nuclear grey matter, corticospinal fluid, amygdala, hippocampus, cerebellum, and brainstem. We determined the volumes of these regions and calculated the total intracranial volume (TICV) and head circumference (HC). We compared these measurements between the two groups, controlling for infant age at scan, by first comparing results for all subjects in each group and secondly performing a subgroup analysis for subjects below 8 weeks of postnatal age at scan. ZIKV-exposed infants demonstrated a significant decrease in amygdala volume compared to the control group in both the group and subgroup comparisons (p<0.05, corrected for multiple comparisons using FDR). No significant volume differences were observed in TICV, HC, or any specific brain tissue structures or regions. Study limitations include small sample size, which was due to abrupt cessation of extramural funding as the ZIKV epidemic waned. CONCLUSION ZIKV-exposed infants exhibited smaller volumes in the amygdala, a brain region primarily involved in emotional and behavioral processing. This brain MRI finding may lead to poorer behavioral outcomes and warrants long-term monitoring of pediatric cases of infants with gestational exposure to Zika virus as well as other neurotropic viruses.
Collapse
Affiliation(s)
- Shanchita Ghosh
- Department of Radiology, University of California Davis, Sacramento, California, United States of America
| | - Teddy Salan
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Jessica Riotti
- Department of Radiology, Jackson Memorial Hospital, Miami, Florida, United States of America
| | - Amrutha Ramachandran
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Ivan A Gonzalez
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Emmalee S Bandstra
- Division of Neonatology, Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Fiama L Reyes
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Samita S Andreansky
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Varan Govind
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Gaurav Saigal
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
4
|
Mingo-Casas P, Sanchez-Céspedes J, Blázquez AB, Casas J, Balsera-Manzanero M, Herrero L, Vázquez A, Pachón J, Aguilar-Guisado M, Cisneros JM, Saiz JC, Martín-Acebes MA. Lipid signatures of West Nile virus infection unveil alterations of sphingolipid metabolism providing novel biomarkers. Emerg Microbes Infect 2023:2231556. [PMID: 37377355 DOI: 10.1080/22221751.2023.2231556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bites of infected mosquitoes. Severe forms of West Nile disease (WND) can curse with meningitis, encephalitis or acute flaccid paralysis. A better understanding of the physiopathology associated with disease progression is mandatory to find biomarkers and effective therapies. In this scenario, blood derivatives (plasma and serum) constitute the more commonly used biofluids due to its ease of collection and high value for diagnostic purposes. Therefore, the potential impact of this virus in the circulating lipidome was addressed combining the analysis of samples from experimentally infected mice and naturally WND patients. Our results unveil dynamic alterations in the lipidome that define specific metabolic fingerprints of different infection stages. Concomitant with neuroinvasion in mice, the lipid landscape was dominated by a metabolic reprograming that resulted in significant elevations of circulating sphingolipids (ceramides, dihydroceramides and dihydrosphingomyelins), phosphatidylethanolamines and triacylglycerols. Remarkably, patients suffering from WND also displayed an elevation of ceramides, dihydroceramides, lactosylceramides and monoacylglycerols in their sera. The dysregulation of sphingolipid metabolism by WNV may provide new therapeutic opportunities and supports the potential of certain lipids as novel peripheral biomarkers of WND progression.
Collapse
Affiliation(s)
- Patricia Mingo-Casas
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Javier Sanchez-Céspedes
- Department of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Josefina Casas
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Balsera-Manzanero
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Lura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Department of Medicine, School of Medicine, University of Seville, Seville, Spain
| | - Manuela Aguilar-Guisado
- Department of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Miguel Cisneros
- Department of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Delafiori J, Faria AVDS, de Oliveira AN, Sales GM, Dias-Audibert FL, Catharino RR. Unraveling the Metabolic Alterations Induced by Zika Infection in Prostate Epithelial (PNT1a) and Adenocarcinoma (PC-3) Cell Lines. J Proteome Res 2023; 22:193-203. [PMID: 36469742 DOI: 10.1021/acs.jproteome.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outbreak of Zika virus infection in 2016 led to the identification of its presence in several types of biofluids, including semen. Later discoveries associated Zika infection with sexual transmission and persistent replication in cells of the male reproductive tract. Prostate epithelial and carcinoma cells are favorable to virus replication, with studies pointing to transcriptomics alterations of immune and inflammation genes upon persistence. However, metabolome alterations promoted by the Zika virus in prostate cells are unknown. Given its chronic effects and oncolytic potential, we aim to investigate the metabolic alterations induced by the Zika virus in prostate epithelial (PNT1a) and adenocarcinoma (PC-3) cells using an untargeted metabolomics approach and high-resolution mass spectrometry. PNT1a cells were viable up to 15 days post ZIKV infection, in contrast to its antiproliferative effect in the PC-3 cell lineage. Remarkable alterations in the PNT1a cell metabolism were observed upon infection, especially regarding glycerolipids, fatty acids, and acylcarnitines, which could be related to viral cellular resource exploitation, in addition to the over-time increase in oxidative stress metabolites associated with carcinogenesis. The upregulation of FA20:5 at 5 dpi in PC-3 cells corroborates the antiproliferative effect observed since this metabolite was previously reported to induce PC-3 cell death. Overall, Zika virus promotes extensive lipid alterations on both PNT1a and PC-3 cells, promoting different outcomes based on the cellular metabolic state.
Collapse
Affiliation(s)
- Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Alessandra V de S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Arthur N de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Geovana M Sales
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Flávia Luísa Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| | - Rodrigo R Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-970, Brazil
| |
Collapse
|
6
|
Niki E. Lipid oxidation that is, and is not, inhibited by vitamin E: Consideration about physiological functions of vitamin E. Free Radic Biol Med 2021; 176:1-15. [PMID: 34481937 DOI: 10.1016/j.freeradbiomed.2021.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Lipids are oxidized in vivo by multiple oxidizing species with different properties, some by regulated manner to produce physiological mediators, while others by random mechanisms to give detrimental products. Vitamin E plays an important role as a physiologically essential antioxidant to inhibit unregulated lipid peroxidation by scavenging lipid peroxyl radicals to break chain propagation independent of the type of free radicals which induce chain initiation. Kinetic data suggest that vitamin E does not act as an efficient scavenger of nitrogen dioxide radical, carbonate anion radical, and hypochlorite. The analysis of regio- and stereo-isomer distribution of the lipid oxidation products shows that, apart from lipid oxidation by CYP enzymes, the free radical-mediated lipid peroxidation is the major pathway of lipid oxidation taking place in humans. Compared with healthy subjects, the levels of racemic and trans,trans-hydro (pero)xyoctadecadienoates, specific biomarker of free radical lipid oxidation, are elevated in the plasma of patients including atherosclerosis and non-alcoholic fatty liver diseases. α-Tocopherol acts as a major antioxidant, while γ-tocopherol scavenges nitrogen dioxide radical, which induces lipid peroxidation, nitration of aromatic compounds and unsaturated fatty acids, and isomerization of cis-fatty acids to trans-fatty acids. It is essential to appreciate that the antioxidant effects of vitamin E depend on the nature of both oxidants and substrates being oxidized. Vitamin E, together with other antioxidants such as vitamin C, contributes to the inhibition of detrimental oxidation of biological molecules and thereby to the maintenance of human health and prevention of diseases.
Collapse
Affiliation(s)
- Etsuo Niki
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba, Tokyo, 153-8904, Japan.
| |
Collapse
|