1
|
García-Estrada C, Pérez-Pertejo Y, Domínguez-Asenjo B, Holanda VN, Murugesan S, Martínez-Valladares M, Balaña-Fouce R, Reguera RM. Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules 2023; 13:biom13040637. [PMID: 37189384 DOI: 10.3390/biom13040637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases.
Collapse
Affiliation(s)
- Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanderlan Nogueira Holanda
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (IGM), Consejo Superior de Investigaciones Científicas-Universidad de León, Carretera León-Vega de Infanzones, Vega de Infanzones, 24346 León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
2
|
Betu Kumeso VK, Kalonji WM, Rembry S, Valverde Mordt O, Ngolo Tete D, Prêtre A, Delhomme S, Ilunga Wa Kyhi M, Camara M, Catusse J, Schneitter S, Nusbaumer M, Mwamba Miaka E, Mahenzi Mbembo H, Makaya Mayawula J, Layba Camara M, Akwaso Massa F, Kaninda Badibabi L, Kasongo Bonama A, Kavunga Lukula P, Mutanda Kalonji S, Mariero Philemon P, Mokilifi Nganyonyi R, Embana Mankiara H, Asuka Akongo Nguba A, Kobo Muanza V, Mulenge Nasandhel E, Fifi Nzeza Bambuwu A, Scherrer B, Strub-Wourgaft N, Tarral A. Efficacy and safety of acoziborole in patients with human African trypanosomiasis caused by Trypanosoma brucei gambiense: a multicentre, open-label, single-arm, phase 2/3 trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:463-470. [PMID: 36460027 PMCID: PMC10033454 DOI: 10.1016/s1473-3099(22)00660-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Human African trypanosomiasis caused by Trypanosoma brucei gambiense (gambiense HAT) in patients with late-stage disease requires hospital admission to receive nifurtimox-eflornithine combination therapy (NECT). Fexinidazole, the latest treatment that has been recommended by WHO, also requires systematic admission to hospital, which is problematic in areas with few health-care resources. We aim to assess the safety and efficacy of acoziborole in adult and adolescent patients with gambiense HAT. METHODS This multicentre, prospective, open-label, single-arm, phase 2/3 study recruited patients aged 15 years or older with confirmed gambiense HAT infection from ten hospitals in the Democratic Republic of the Congo and Guinea. Inclusion criteria included a Karnofsky score greater than 50, ability to swallow tablets, a permanent address or traceability, ability to comply with follow-up visits and study requirements, and agreement to hospital admission during treatment. Oral acoziborole was administered as a single 960 mg dose (3 × 320 mg tablets) to fasted patients. Patients were observed in hospital until day 15 after treatment administration then for 18 months as outpatients with visits at 3, 6, 12, and 18 months. The primary efficacy endpoint was the success rate of acoziborole treatment at 18 months in patients with late-stage gambiense HAT (modified intention-to-treat [mITT] population), based on modified WHO criteria. A complementary post-hoc analysis comparing the 18-month success rates for acoziborole and NECT (using historical data) was performed. This study is registered at ClinicalTrials.gov, NCT03087955. FINDINGS Between Oct 11, 2016, and March 25, 2019, 260 patients were screened, of whom 52 were ineligible and 208 were enrolled (167 with late-stage and 41 with early-stage or intermediate-stage gambiense HAT; primary efficacy analysis set). All 41 (100%) patients with early-stage or intermediate-stage and 160 (96%) of 167 with late-stage disease completed the last 18-month follow-up visit. The mean age of participants was 34·0 years (SD 12·4), including 117 (56%) men and 91 (44%) women. Treatment success rate at 18 months was 95·2% (95% CI 91·2-97·7) reached in 159 of 167 patients with late-stage gambiense HAT (mITT population) and 98·1% (95·1-99·5) reached in 159 of 162 patients (evaluable population). Overall, 155 (75%) of 208 patients had 600 treatment-emergent adverse events. A total of 38 drug-related treatment-emergent adverse events occurred in 29 (14%) patients; all were mild or moderate and most common were pyrexia and asthenia. Four deaths occurred during the study; none were considered treatment related. The post-hoc analysis showed similar results to the estimated historical success rate for NECT of 94%. INTERPRETATION Given the high efficacy and favourable safety profile, acoziborole holds promise in the efforts to reach the WHO goal of interrupting HAT transmission by 2030. FUNDING Bill & Melinda Gates Foundation, UK Aid, Federal Ministry of Education and Research, Swiss Agency for Development and Cooperation, Médecins Sans Frontières, Dutch Ministry of Foreign Affairs, Norwegian Agency for Development Cooperation, Norwegian Ministry of Foreign Affairs, the Stavros Niarchos Foundation, Spanish Agency for International Development Cooperation, and the Banco Bilbao Vizcaya Argentaria Foundation. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
| | | | - Sandra Rembry
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | | | - Digas Ngolo Tete
- Drugs for Neglected Diseases initiative, Kinshasa, Democratic Republic of the Congo
| | - Adeline Prêtre
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Sophie Delhomme
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | | | - Mamadou Camara
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Conakry, Guinea
| | - Julie Catusse
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Stefan Schneitter
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Morgane Nusbaumer
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, Democratic Republic of the Congo
| | | | | | | | | | | | | | | | - Sylvain Mutanda Kalonji
- Drugs for Neglected Diseases initiative, Kinshasa, Democratic Republic of the Congo; Ngandajika Hospital, Kasaï Oriental, Democratic Republic of the Congo
| | | | - Ricardo Mokilifi Nganyonyi
- Kwamouth Hospital, Kwamouth, Democratic Republic of the Congo; Bolobo Hospital, Bolobo, Democratic Republic of the Congo
| | | | | | | | | | | | - Bruno Scherrer
- Bruno Scherrer Conseil, Saint Arnoult en Yvelines, France
| | | | - Antoine Tarral
- Drugs for Neglected Diseases initiative, Geneva, Switzerland.
| |
Collapse
|
3
|
Screening the Pathogen Box to Discover and Characterize New Cruzain and TbrCatL Inhibitors. Pathogens 2023; 12:pathogens12020251. [PMID: 36839523 PMCID: PMC9967275 DOI: 10.3390/pathogens12020251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Chagas disease and Human African Trypanosomiasis, caused by Trypanosoma cruzi and T. brucei, respectively, pose relevant health challenges throughout the world, placing 65 to 70 million people at risk each. Given the limited efficacy and severe side effects associated with current chemotherapy, new drugs are urgently needed for both diseases. Here, we report the screening of the Pathogen Box collection against cruzain and TbrCatL, validated targets for Chagas disease and Human African Trypanosomiasis, respectively. Enzymatic assays were applied to screen 400 compounds, validate hits, determine IC50 values and, when possible, mechanisms of inhibition. In this case, 12 initial hits were obtained and ten were prioritized for follow-up. IC50 values were obtained for six of them (hit rate = 1.5%) and ranged from 0.46 ± 0.03 to 27 ± 3 µM. MMV687246 was found to be a mixed inhibitor of cruzain (Ki = 57 ± 6 µM) while MMV688179 was found to be a competitive inhibitor of cruzain with a nanomolar potency (Ki = 165 ± 63 nM). A putative binding mode for MMV688179 was obtained by docking. The six hits discovered against cruzain and TbrCatL are of great interest for further optimization by the medicinal chemistry community.
Collapse
|
4
|
Ballesteros-Casallas A, Quiroga C, Ortiz C, Benítez D, Denis PA, Figueroa D, Salas CO, Bertrand J, Tapia RA, Sánchez P, Miscione GP, Comini MA, Paulino M. Mode of action of p-quinone derivatives with trypanocidal activity studied by experimental and in silico models. Eur J Med Chem 2023; 246:114926. [PMID: 36508970 DOI: 10.1016/j.ejmech.2022.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Quinones are attractive pharmacological scaffolds for developing new agents for the treatment of different transmissible and non-transmissible human diseases due to their capacity to alter the cell redox homeostasis. The bioactivity and potential mode of action of 19 p-quinone derivatives fused to different aromatic rings (carbo or heterocycles) and harboring distinct substituents were investigated in infective Trypanosoma brucei brucei. All the compounds, except for a furanequinone (EC50=38 μM), proved to be similarly or even more potent (EC50 = 0.5-5.5 μM) than the clinical drug nifurtimox (EC50 = 5.3 μM). Three furanequinones and one thiazolequinone displayed a higher selectivity than nifurtimox. Two of these selective hits resulted potent inhibitors of T. cruzi proliferation (EC50=0.8-1.1 μM) but proved inactive against Leishmania infantum amastigotes. Most of the p-quinones induced a rapid and marked intracellular oxidation in T. b. brucei. DFT calculations on the oxidized quinone (Q), semiquinone (Q•-) and hydroquinone (QH2) suggest that all quinones have negative ΔG for the formation of Q•-. Qualitative and quantitative structure-activity relationship analyses in two or three dimensions of different electronic and biophysical descriptors of quinones and their corresponding bioactivities (killing potency and oxidative capacity) were performed. Charge distribution over the quinone ring carbons of Q and Q.- and the frontier orbitals energies of SUMO (Q.-) and LUMO (Q) correlate with their oxidative and trypanocidal activity. QSAR analysis also highlighted that both bromine substitution in the p-quinone ring and a bulky phenyl group attached to the furane and thiazole rings (which generates a negative charge due to the π electron system polarized by the nearby heteroatoms) are favorable for activity. By combining experimental and in silico procedures, this study disclosed important information about p-quinones that may help to rationally tune their electronic properties and biological activities.
Collapse
Affiliation(s)
- Andres Ballesteros-Casallas
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia; Bioinformatics Center, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay
| | - Cristina Quiroga
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Cecilia Ortiz
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Pablo A Denis
- Computational Nanotechnology, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay
| | - David Figueroa
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Jeanluc Bertrand
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Ricardo A Tapia
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Patricio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Gian Pietro Miscione
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia.
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Margot Paulino
- Bioinformatics Center, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay.
| |
Collapse
|
5
|
Ngay Lukusa I, Van Reet N, Mumba Ngoyi D, Mwamba Miaka E, Masumu J, Patient Pyana P, Mutombo W, Ngolo D, Kobo V, Akwaso F, Ilunga M, Kaninda L, Mutanda S, Mpoyi Muamba D, Valverde Mordt O, Tarral A, Rembry S, Büscher P, Lejon V. Trypanosome spliced leader RNA for diagnosis of acoziborole treatment outcome in gambiense human African trypanosomiasis: A longitudinal follow-up study. EBioMedicine 2022; 86:104376. [PMID: 36436279 PMCID: PMC9700268 DOI: 10.1016/j.ebiom.2022.104376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Detection of spliced leader (SL)-RNA allows sensitive diagnosis of gambiense human African trypanosomiasis (HAT). We investigated its diagnostic performance for treatment outcome assessment. METHODS Blood and cerebrospinal fluid (CSF) from a consecutive series of 97 HAT patients, originating from the Democratic Republic of the Congo, were prospectively collected before treatment with acoziborole, and during 18 months of longitudinal follow-up after treatment. For treatment outcome assessment, SL-RNA detection was compared with microscopic trypanosome detection and CSF white blood cell count. The trial was registered under NCT03112655 in clinicaltrials.gov. FINDINGS Before treatment, respectively 94.9% (92/97; CI 88.5-97.8%) and 67.7% (65/96; CI 57.8-76.2%) HAT patients were SL-RNA positive in blood or CSF. During follow-up, one patient relapsed with trypanosomes observed at 18 months, and was SL-RNA positive in blood and CSF at 12 months, and CSF positive at 18 months. Among cured patients, one individual tested SL-RNA positive in blood at month 12 (Specificity 98.9%; 90/91; CI 94.0-99.8%) and 18 (Specificity 98.9%; 88/89; CI 93.9-99.8%). INTERPRETATION SL-RNA detection for HAT treatment outcome assessment shows ≥98.9% specificity in blood and 100% in CSF, and may detect relapses without lumbar puncture. FUNDING The DiTECT-HAT project is part of the EDCTP2 programme, supported by Horizon 2020, the European Union Funding for Research and Innovation (grant number DRIA-2014-306-DiTECT-HAT).
Collapse
Affiliation(s)
- Ipos Ngay Lukusa
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dieudonné Mumba Ngoyi
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Justin Masumu
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Pati Patient Pyana
- Department of Parasitology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Wilfried Mutombo
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Digas Ngolo
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Vincent Kobo
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Felix Akwaso
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Médard Ilunga
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Lewis Kaninda
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Sylvain Mutanda
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Dieudonné Mpoyi Muamba
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | | | - Antoine Tarral
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Sandra Rembry
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Veerle Lejon
- Mixed Research Unit 177 Intertryp, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, University of Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Koester DC, Marx VM, Williams S, Jiricek J, Dauphinais M, René O, Miller SL, Zhang L, Patra D, Chen YL, Cheung H, Gable J, Lakshminarayana SB, Osborne C, Galarneau JR, Kulkarni U, Richmond W, Bretz A, Xiao L, Supek F, Wiesmann C, Honnappa S, Be C, Mäser P, Kaiser M, Ritchie R, Barrett MP, Diagana TT, Sarko C, Rao SPS. Discovery of Novel Quinoline-Based Proteasome Inhibitors for Human African Trypanosomiasis (HAT). J Med Chem 2022; 65:11776-11787. [PMID: 35993839 PMCID: PMC9469205 DOI: 10.1021/acs.jmedchem.2c00791] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human African Trypanosomiasis (HAT) is a vector-borne disease caused by kinetoplastid parasites of the Trypanosoma genus. The disease proceeds in two stages, with a hemolymphatic blood stage and a meningo-encephalic brain stage. In the latter stage, the parasite causes irreversible damage to the brain leading to sleep cycle disruption and is fatal if untreated. An orally bioavailable treatment is highly desirable. In this study, we present a brain-penetrant, parasite-selective 20S proteasome inhibitor that was rapidly optimized from an HTS singleton hit to drug candidate compound 7 that showed cure in a stage II mouse efficacy model. Here, we describe hit expansion and lead optimization campaign guided by cryo-electron microscopy and an in silico model to predict the brain-to-plasma partition coefficient Kp as an important parameter to prioritize compounds for synthesis. The model combined with in vitro and in vivo experiments allowed us to advance compounds with favorable unbound brain-to-plasma ratios (Kp,uu) to cure a CNS disease such as HAT.
Collapse
Affiliation(s)
- Dennis C. Koester
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Vanessa M. Marx
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Sarah Williams
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Jan Jiricek
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Maxime Dauphinais
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Olivier René
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Sarah L. Miller
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Lei Zhang
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Debjani Patra
- Novartis
Institutes for Tropical Diseases, Emeryville, California 94608, United States
| | - Yen-Liang Chen
- Lead
Discovery, Novartis Institutes for Tropical
Diseases, Emeryville, California 94608, United States
| | - Harry Cheung
- Lead
Discovery, Novartis Institutes for Tropical
Diseases, Emeryville, California 94608, United States
| | - Jonathan Gable
- Lead
Discovery, Novartis Institutes for Tropical
Diseases, Emeryville, California 94608, United States
| | - Suresh B. Lakshminarayana
- Pharmacokinetic
Sciences, Novartis Institutes for Tropical
Diseases, Emeryville, California 94608, United States
| | - Colin Osborne
- Pharmacokinetic
Sciences, Pharmacology and Comparative Medicine, Novartis Institutes for Tropical Diseases, Emeryville, California 94608, United States
| | - Jean-Rene Galarneau
- Preclinical
Safety, Novartis Institutes for Biomedical
Research, Cambridge, Massachusetts 02139, United States
| | - Upendra Kulkarni
- Chemical
and Pharmaceutical Profiling, Novartis Institutes
for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Wendy Richmond
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, San Diego, California 92121, United States
| | - Angela Bretz
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, San Diego, California 92121, United States
| | - Linda Xiao
- Pharmacology, Novartis Institutes for Tropical Diseases, Emeryville, California 94608, United States
| | - Frantisek Supek
- Novartis
Institutes for Biomedical Research, San Diego, California 92121, United States
| | | | - Srinivas Honnappa
- Novartis
Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Celine Be
- Novartis
Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, CH 4000 Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- University
of Basel, CH 4000 Basel, Switzerland
| | - Ryan Ritchie
- University of Glasgow, University Place, Glasgow G12 8TA, U.K
| | | | - Thierry T. Diagana
- Novartis
Institutes for Tropical Diseases, Emeryville, California 94608, United States
| | - Christopher Sarko
- Global
Discovery Chemistry, Novartis Institutes
for Biomedical Research, Emeryville, California 94608, United States
| | - Srinivasa P. S. Rao
- Novartis
Institutes for Tropical Diseases, Emeryville, California 94608, United States
| |
Collapse
|