1
|
Jaramillo-Underwood A, Herman C, Jean SE, Nace D, Elder ES, Robinson K, Knipes A, Worrell CM, Fox LM, Desir L, Fayette C, Javel A, Monestime F, Mace KE, Udhayakumar V, Won KY, Chang MA, Lemoine JF, Rogier E. Geospatial analysis of Plasmodium falciparum serological indicators: school versus community sampling in a low-transmission malaria setting. BMC Med 2024; 22:31. [PMID: 38254075 PMCID: PMC10804471 DOI: 10.1186/s12916-023-03145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/31/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Due to low numbers of active infections and persons presenting to health facilities for malaria treatment, case-based surveillance is inefficient for understanding the remaining disease burden in low malaria transmission settings. Serological data through the detection of IgG antibodies from previous malaria parasite exposure can fill this gap by providing a nuanced picture of where sustained transmission remains. Study enrollment at sites of gathering provides a potential approach to spatially estimate malaria exposure and could preclude the need for more intensive community-based sampling. METHODS This study compared spatial estimates of malaria exposure from cross-sectional school- and community-based sampling in Haiti. A total of 52,405 blood samples were collected from 2012 to 2017. Multiplex bead assays (MBAs) tested IgG against P. falciparum liver stage antigen-1 (LSA-1), apical membrane antigen 1 (AMA1), and merozoite surface protein 1 (MSP1). Predictive geospatial models of seropositivity adjusted for environmental covariates, and results were compared using correlations by coordinate points and communes across Haiti. RESULTS Consistent directional associations were observed between seroprevalence and environmental covariates for elevation (negative), air temperature (negative), and travel time to urban centers (positive). Spearman's rank correlation for predicted seroprevalence at coordinate points was lowest for LSA-1 (ρ = 0.10, 95% CI: 0.09-0.11), but improved for AMA1 (ρ = 0.36, 95% CI: 0.35-0.37) and MSP1 (ρ = 0.48, 95% CI: 0.47-0.49). CONCLUSIONS In settings approaching P. falciparum elimination, case-based prevalence data does not provide a resolution of ongoing malaria transmission in the population. Immunogenic antigen targets (e.g., AMA1, MSP1) that give higher population rates of seropositivity provide moderate correlation to gold standard community sampling designs and are a feasible approach to discern foci of residual P. falciparum transmission in an area.
Collapse
Affiliation(s)
- Alicia Jaramillo-Underwood
- US Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, 37830, USA
| | - Camelia Herman
- US Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
- CDC Foundation, Atlanta, GA, 30308, USA
| | - Samuel E Jean
- Population Services International, Port-Au-Prince, Haiti
| | - Doug Nace
- US Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - E Scott Elder
- US Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Keri Robinson
- US Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Alaine Knipes
- US Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Caitlin M Worrell
- US Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - LeAnne M Fox
- US Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | | | - Carl Fayette
- IMA World Health, Port-Au-Prince, Haiti
- RTI International, Port-Au-Prince, Haiti
| | - Alain Javel
- IMA World Health, Port-Au-Prince, Haiti
- RTI International, Port-Au-Prince, Haiti
| | | | - Kimberly E Mace
- US Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | | | - Kimberly Y Won
- US Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Michelle A Chang
- US Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jean F Lemoine
- Ministère de La Santé Publique Et de La Population, Port Au Prince, Haiti
| | - Eric Rogier
- Division of Digestive Diseases and Nutrition, University of Kentucky, Lexington, United States.
| |
Collapse
|
2
|
Kartal L, Mueller I, Longley RJ. Using Serological Markers for the Surveillance of Plasmodium vivax Malaria: A Scoping Review. Pathogens 2023; 12:791. [PMID: 37375481 DOI: 10.3390/pathogens12060791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The utilisation of serological surveillance methods for malaria has the potential to identify individuals exposed to Plasmodium vivax, including asymptomatic carriers. However, the application of serosurveillance varies globally, including variations in methodology and transmission context. No systematic review exists describing the advantages and disadvantages of utilising serosurveillance in various settings. Collation and comparison of these results is a necessary first step to standardise and validate the use of serology for the surveillance of P. vivax in specific transmission contexts. A scoping review was performed of P. vivax serosurveillance applications globally. Ninety-four studies were found that met predefined inclusion and exclusion criteria. These studies were examined to determine the advantages and disadvantages of serosurveillance experienced in each study. If studies reported seroprevalence results, this information was also captured. Measurement of antibodies serves as a proxy by which individuals exposed to P. vivax may be indirectly identified, including those with asymptomatic infections, which may be missed by other technologies. Other thematic advantages identified included the ease and simplicity of serological assays compared to both microscopy and molecular diagnostics. Seroprevalence rates varied widely from 0-93%. Methodologies must be validated across various transmission contexts to ensure the applicability and comparability of results. Other thematic disadvantages identified included challenges with species cross-reactivity and determining changes in transmission patterns in both the short- and long-term. Serosurveillance requires further refinement to be fully realised as an actionable tool. Some work has begun in this area, but more is required.
Collapse
Affiliation(s)
- Lejla Kartal
- School of Population and Global Health, The University of Melbourne, Parkville 3010, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Ivo Mueller
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Rhea J Longley
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
3
|
Huwe T, Kibria MG, Johora FT, Phru CS, Jahan N, Hossain MS, Khan WA, Price RN, Ley B, Alam MS, Koepfli C. Heterogeneity in prevalence of subclinical Plasmodium falciparum and Plasmodium vivax infections but no parasite genomic clustering in the Chittagong Hill Tracts, Bangladesh. Malar J 2022; 21:218. [PMID: 35836171 PMCID: PMC9281141 DOI: 10.1186/s12936-022-04236-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Malaria remains endemic in Bangladesh, with the majority of cases occurring in forested, mountainous region in the Chittagong Hill Tracts (CHT). This area is home to Bengali and diverse groups of indigenous people (Pahari) residing largely in mono-ethnic villages. METHODS 1002 individuals of the 9 most prominent Pahari and the Bengali population were randomly selected and screened by RDT and qPCR. Parasites were genotyped by msp2 and deep sequencing of 5 amplicons (ama1-D3, cpmp, cpp, csp, and msp7) for Plasmodium falciparum (n = 20), and by microsatellite (MS) typing of ten loci and amplicon sequencing of msp1 for Plasmodium vivax (n = 21). Population structure was analysed using STRUCTURE software. Identity-by-state (IBS) was calculated as a measure of parasite relatedness and used to generate relatedness networks. RESULTS The prevalence of P. falciparum and P. vivax infection was 0.7% by RDT (P. falciparum 6/1002; P. vivax 0/1002, mixed: 1/1002) and 4% by qPCR (P. falciparum 21/1002; P. vivax 16/1002, mixed: 5/1002). Infections were highly clustered, with 64% (27/42) of infections occurring in only two Pahari groups, the Khumi and Mro. Diversity was high; expected heterozygosity was 0.93 for P. falciparum and 0.81 for P. vivax. 85.7% (18/21) of P. vivax and 25% (5/20) of P. falciparum infections were polyclonal. No population structure was evident for either species, suggesting high transmission and gene flow among Pahari groups. CONCLUSIONS High subclinical infection prevalence and genetic diversity mirror ongoing transmission. Control activities should be specifically directed to Pahari groups at greatest risk.
Collapse
Affiliation(s)
- Tiffany Huwe
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
- Georgia State University, Atlanta, GA, USA
| | - Ching Swe Phru
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Nusrat Jahan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Mohammad Sharif Hossain
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Wasif Ali Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia.
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (Icddr, B), Dhaka, Bangladesh.
| | - Cristian Koepfli
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA.
| |
Collapse
|