1
|
Huang L, Xiao M, Huang X, Wu J, Luo J, Li F, Gu W. Analysis of clinical characteristics of hemorrhagic fever with renal syndrome with acute pancreatitis: a retrospective study. Ann Med 2025; 57:2453081. [PMID: 39829396 PMCID: PMC11748856 DOI: 10.1080/07853890.2025.2453081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE This research aimed to analyze the impact of hemorrhagic fever with renal syndrome (HFRS) with acute pancreatitis (AP) on the severity and prognosis of patients, screen the risk factors of HFRS with AP, and establish a nomogram model. METHODS Data were collected from HFRS patients at the First Affiliated Hospital of Dali University and Dali Prefecture People's Hospital (2013-2023). Patients were divided into HFRS with AP (n = 34) and HFRS without AP groups (n = 356). Propensity Score Matching (PSM) and logistic regression analyzed the impact of AP on HFRS severity and short-term prognosis. LASSO-Logistic regression was used to screen risk factors and develop a nomogram model. RESULTS After PSM, HFRS patients with AP had higher rates of Continuous Renal Replacement Therapy (CRRT) and/or mechanical ventilation use, , ICU admission, and 30-day mortalitycompared with those without AP (p < 0.05). Further analysis revealed that smoking (OR: 3.702), ferritin (OR: 1.002), white blood cell (OR), fibrinogen (OR: 0.463), and platelet (OR: 0.987) were risk factors for HFRS with AP (p < 0.05). A nomogram model was constructed based on these factors, to predict the risk of HFRS with AP, with an Area Under the Curve (AUC) of 0.90 (95% CI: 0.84-0.95). Additionally, the model calibration curve fit well according to the Hosmer-Lemeshow test (χ2=8.51, p = 0.39). CONCLUSION Patients with HFRS with AP exhibit higher disease severity and poorer prognosis. Smoking, elevated ferritin and white blood cell levels, decreased fibrinogen and platelet levels are more susceptible to developing AP.
Collapse
Affiliation(s)
- Lihua Huang
- Department of Infection Disease, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Min Xiao
- Department of Clinical Laboratory, Sichuan Provincial People’s Hospital East Sichuan Hospital & DaZhou First People’s Hospital, Dazhou, Sichuan, China
| | - Xiaoling Huang
- Department of Respiratory Medicine, Sichuan Provincial People’s Hospital East Sichuan Hospital & Dazhou First People’s Hospital, Dazhou, Sichuan, China
| | - Jun Wu
- Department of Ophthalmology, Dali Prefecture People’s Hospital, Dali, Yunnan, China
| | - Jiao Luo
- Department of Infection Disease, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Fuxing Li
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Gu
- Department of Infection Disease, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| |
Collapse
|
2
|
Xu B, Yin Q, Ren D, Mo S, Ni T, Fu S, Zhang Z, Yan T, Zhao Y, Liu J, He Y. Scientometric analysis of research trends in hemorrhagic fever with renal syndrome: A historical review and network visualization. J Infect Public Health 2025; 18:102647. [PMID: 39946976 DOI: 10.1016/j.jiph.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Hemorrhagic fever with renal syndrome (HFRS) research has undergone significant global transformation over the past decades. A comprehensive scientometric overview of research trends and scholarly cooperation in HFRS is absent. This study employs scientometric analysis to map the evolution of research themes, identify widely and scarcely explored areas, and anticipate future research directions. METHODS We searched Web of Science Core Collection from inception until July 31, 2023, identifying 3908 HFRS-related studies published for analysis. Utilizing CiteSpace, VOSviewer, and Bibliometrix, we performed co-authorship, co-occurrence, and co-citation analyses, and visualized research networks. RESULTS Our analysis revealed a consistent upward trend in HFRS publications since 1980, with an average growth rate of 11.34 %. The United States led in publication and citation counts, followed by China, Finland, Germany, and Sweden. Through co-occurrence analysis, we categorized keywords into eight clusters and 24 sub-clusters, revealing six predominant research themes: Clinical Features, Epidemiology, Mechanisms, Virus, Evolution, and Host. Notably, while themes such as Virus and Pathogenesis have been extensively studied, others, including certain aspects of Host research and Environmental Factors, remain less explored. CONCLUSION This scientometric synthesis provides a global perspective on the breadth and depth of HFRS research, highlighting well-trodden and understudied areas. It offers a roadmap for researchers to navigate the evolving landscape of HFRS studies and prioritize areas ripe for future investigation.
Collapse
Affiliation(s)
- Bing Xu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qian Yin
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Danfeng Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Shaocong Mo
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Tianzhi Ni
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Shan Fu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Ze Zhang
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Taotao Yan
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Yingren Zhao
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China
| | - Jinfeng Liu
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China.
| | - Yingli He
- Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institution of Hepatitis, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
3
|
Shen L, Jiang C, Weng F, Sun M, Zhao C, Fu T, An C, Shao Z, Liu K. Spatiotemporal risk of human brucellosis under intensification of livestock keeping based on machine learning techniques in Shaanxi, China. Epidemiol Infect 2024; 152:e132. [PMID: 39444373 PMCID: PMC11502427 DOI: 10.1017/s0950268824001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 10/25/2024] Open
Abstract
As one of the most neglected zoonotic diseases, brucellosis has posed a serious threat to public health worldwide. This study is purposed to apply different machine learning models to improve the prediction accuracy of human brucellosis (HB) in Shaanxi, China from 2008 to 2020, under livestock husbandry intensification from a spatiotemporal perspective. We quantitatively evaluated the performance and suitability of ConvLSTM, RF, and LSTM models in epidemic forecasting, and investigated the spatial heterogeneity of how different factors drive the occurrence and transmission of HB in distinct sub-regions by using Kernel Density Analysis and Shapley Additional Explanations. Our findings demonstrated that ConvLSTM network yielded the best predictive performance with the lowest average RMSE of 13.875 and MAE values of 18.393. RF model generated an underestimated outcome while LSTM model had an overestimated one. In addition, climatic conditions, intensification of livestock keeping and socioeconomic status were identified as the dominant factors that drive the occurrence of HB in Shaanbei Plateau, Guanzhong Plain, and Shaannan Region, respectively. This work provided a comprehensive understanding of the potential risk of HB epidemics in Northwest China driven by both anthropogenic activities and natural environment, which can support further practice in disease control and prevention.
Collapse
Affiliation(s)
- Li Shen
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Chenghao Jiang
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Fangting Weng
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Minghao Sun
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Chenxi Zhao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Ting Fu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Cuihong An
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi’an, China
- Department of Microbiology and Immunology, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Zhongjun Shao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Kun Liu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| |
Collapse
|
4
|
Moirano G, Botta A, Yang M, Mangeruga M, Murray K, Vineis P. Land-cover, land-use and human hantavirus infection risk: a systematic review. Pathog Glob Health 2024; 118:361-375. [PMID: 37876214 PMCID: PMC11338209 DOI: 10.1080/20477724.2023.2272097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Previous studies suggest that the risk of human infection by hantavirus, a family of rodent-borne viruses, might be affected by different environmental determinants such as land cover, land use and land use change. This study examined the association between land-cover, land-use, land use change, and human hantavirus infection risk. PubMed and Scopus databases were interrogated using terms relative to land use (change) and human hantavirus disease. Screening and selection of the articles were completed by three independent reviewers. Classes of land use assessed by the different studies were categorized into three macro-categories of exposure ('Agriculture', 'Forest Cover', 'Urban Areas') to qualitatively synthesize the direction of the association between exposure variables and hantavirus infection risk in humans. A total of 25 articles were included, with 14 studies (56%) conducted in China, 4 studies (16%) conducted in South America and 7 studies (28%) conducted in Europe. Most of the studies (88%) evaluated land cover or land use, while 3 studies (12%) evaluated land use change, all in relation to hantavirus infection risk. We observed that land cover and land-use categories could affect hantavirus infection incidence. Overall, agricultural land use was positively associated with increased human hantavirus infection risk, particularly in China and Brazil. In Europe, a positive association between forest cover and hantavirus infection incidence was observed. Studies that assessed the relationship between built-up areas and hantavirus infection risk were more variable, with studies reporting positive, negative or no associations.
Collapse
Affiliation(s)
- Giovenale Moirano
- Department of Medical Sciences, University of Turin, Turin, Italy
- Postgraduate School of Biostatistics, Department of Public Health and Paediatrics, University of Turin, Turin, Italy
| | - Annarita Botta
- Department of Infectious Disease and Infectious Emergencies, AORN Monaldi-Cotugno-CTO, Naples, Italy
| | - Mingyou Yang
- Hypertension Unit, Division of Internal Medicine, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Martina Mangeruga
- Environmental Technology, Centre for Environmental Policy, Imperial College, London, UK
| | - Kris Murray
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Paolo Vineis
- School of Public Health, Imperial College, Medical Research Council (MRC) Centre for Environment and Health, London, UK
| |
Collapse
|
5
|
Shen L, Sun M, Wei M, Hu Q, Bai Y, Shao Z, Liu K. The non-stationary and spatially varying associations between hand, foot and mouth disease and multiple environmental factors: A Bayesian spatiotemporal mapping model study. Infect Dis Model 2024; 9:373-386. [PMID: 38385017 PMCID: PMC10879665 DOI: 10.1016/j.idm.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/23/2024] Open
Abstract
The transmission and prevalence of Hand, Foot and Mouth Disease (HFMD) are affected by a variety of natural and socio-economic environmental factors. This study aims to quantitatively investigate the non-stationary and spatially varying associations between various environmental factors and HFMD risk. We collected HFMD surveillance cases and a series of relevant environmental data from 2013 to 2021 in Xi'an, Northwest China. By controlling the spatial and temporal mixture effects of HFMD, we constructed a Bayesian spatiotemporal mapping model and characterized the impacts of different driving factors into global linear, non-stationary and spatially varying effects. The results showed that the impact of meteorological conditions on HFMD risk varies in both type and magnitude above certain thresholds (temperature: 30 °C, precipitation: 70 mm, solar radiation: 13000 kJ/m2, pressure: 945 hPa, humidity: 69%). Air pollutants (PM2.5, PM10, NO2) showed an inverted U-shaped relationship with the risk of HFMD, while other air pollutants (O3, SO2) showed nonlinear fluctuations. Moreover, the driving effect of increasing temperature on HFMD was significant in the 3-year period, while the inhibitory effect of increasing precipitation appeared evident in the 5-year period. In addition, the proportion of urban/suburban/rural area had a strong influence on HFMD, indicating that the incidence of HFMD firstly increased and then decreased during the rapid urbanization process. The influence of population density on HFMD was not only limited by spatial location, but also varied between high and low intervals. Higher road density inhibited the risk of HFMD, but higher night light index promoted the occurrence of HFMD. Our findings further demonstrated that both ecological and socioeconomic environmental factors can pose multiple driving effects on increasing the spatiotemporal risk of HFMD, which is of great significance for effectively responding to the changes in HFMD epidemic outbreaks.
Collapse
Affiliation(s)
- Li Shen
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei Province, China
| | - Minghao Sun
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei Province, China
| | - Mengna Wei
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei Province, China
| | - Qingwu Hu
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei Province, China
| | - Yao Bai
- Department of Infection Disease Control and Prevention, Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Zhongjun Shao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Kun Liu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
6
|
Su F, Liu Y, Ling F, Zhang R, Wang Z, Sun J. Epidemiology of Hemorrhagic Fever with Renal Syndrome and Host Surveillance in Zhejiang Province, China, 1990-2021. Viruses 2024; 16:145. [PMID: 38275955 PMCID: PMC10818760 DOI: 10.3390/v16010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is caused by hantaviruses (HVs) and is endemic in Zhejiang Province, China. In this study, we aimed to explore the changing epidemiology of HFRS cases and the dynamics of hantavirus hosts in Zhejiang Province. Joinpoint regression was used to analyze long-term trends in the incidence of HFRS. The comparison of animal density at different stages was conducted using the Mann-Whitney Test. A comparison of HV carriage rates between stages and species was performed using the chi-square test. The incidence of HFRS shows a continuous downward trend. Cases are widely distributed in all counties of Zhejiang Province except Shengsi County. There was a high incidence belt from west to east, with low incidence in the south and north. The HFRS epidemic showed two seasonal peaks in Zhejiang Province, which were winter and summer. It showed a marked increase in the age of the incidence population. A total of 23,073 minibeasts from 21 species were captured. Positive results were detected in the lung tissues of 14 rodent species and 1 shrew species. A total of 80% of the positive results were from striped field mice and brown rats. No difference in HV carriage rates between striped field mice and brown rats was observed (χ2 = 0.258, p = 0.611).
Collapse
Affiliation(s)
- Fan Su
- Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Ying Liu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China (R.Z.)
| | - Feng Ling
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China (R.Z.)
| | - Rong Zhang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China (R.Z.)
| | - Zhen Wang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China (R.Z.)
| | - Jimin Sun
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China (R.Z.)
| |
Collapse
|
7
|
Shen L, Sun MH, Ma WT, Hu QW, Zhao CX, Yang ZR, Jiang CH, Shao ZJ, Liu K. Synergistic driving effects of risk factors on human brucellosis in Datong City, China: A dynamic perspective from spatial heterogeneity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164948. [PMID: 37336414 DOI: 10.1016/j.scitotenv.2023.164948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Brucellosis is a highly contagious zoonotic and systemic infectious disease caused by Brucella, which seriously affects public health and socioeconomic development worldwide. Particularly, in China accumulating eco-environmental changes and agricultural intensification have increased the expansion of human brucellosis (HB) infection. As a traditional animal husbandry area adjacent to Inner Mongolia, Datong City in northwestern China is characterized by a high HB incidence, demonstrating obvious variations in the risk pattern of HB infection in recent years. In this study, we built Bayesian spatiotemporal models to detect the transfer of high-risk clusters of HB occurrence in Datong from 2005 to 2020. Geographically and Temporally Weighted Regression and GeoDetector were employed to investigate the synergistic driving effects of multiple potential risk factors. Results confirmed an evident dynamic expansion of HB from the east to the west and south in Datong. The distribution of HB showed a negative correlation with urbanization level, economic development, population density, temperature, precipitation, and wind speed, while a positive correlation with the normalized difference vegetation index, and grassland/cropland cover areas. Especially, the local animal husbandry and related industries imposed a large influence on the spatiotemporal distribution of HB. This work strengthens the understanding of how HB spatial heterogeneity is driven by environmental factors, through which helpful insights can be provided for decision-makers to formulate and implement disease control strategies and policies for preventing the further spread of HB.
Collapse
Affiliation(s)
- Li Shen
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Ming-Hao Sun
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Wen-Tao Ma
- Department of Infectious Disease Control and Prevention, Datong Center for Disease Prevention and Control, Datong, China
| | - Qing-Wu Hu
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Chen-Xi Zhao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Zu-Rong Yang
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China
| | - Cheng-Hao Jiang
- School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China.
| | - Zhong-Jun Shao
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China.
| | - Kun Liu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, China.
| |
Collapse
|
8
|
Tang K, Zhang Y, Li X, Zhang C, Jia X, Hu H, Chen L, Zhuang R, Zhang Y, Jin B, Ma Y. HLA-E-restricted Hantaan virus-specific CD8 + T cell responses enhance the control of infection in hemorrhagic fever with renal syndrome. BIOSAFETY AND HEALTH 2023; 5:289-299. [PMID: 40078905 PMCID: PMC11895001 DOI: 10.1016/j.bsheal.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 03/14/2025] Open
Abstract
Infection with the Hantaan virus (HTNV) may result in severe hemorrhagic fever with renal syndrome (HFRS). The functions of HLA-E-restricted CD8+ T lymphocytes in virus control and vaccine development have recently received increased attention. The purpose of this research is to discover HLA-E-restricted CD8+ T cell epitopes on HTNV as well as the features of these epitope-specific CD8+ T cells in HFRS patients. To anticipate HLA-E-restricted HTNV epitopes, the NetMHCpan servers were utilized. The K562/HLA-E cell binding test and the enzyme-linked immunospot assay were used to confirm epitope binding to HLA-E. The number and features of HLA-E-restricted epitope-specific CD8+ T lymphocytes in HFRS patients were investigated using tetramer staining, intracellular cytokine labeling, proliferation, and cytotoxicity assays. Six HTNV-derived HLA-E-restricted CD8+ T cell epitopes were found in this study. In mild/moderate HFRS patients, the frequency of HLA-E-restricted epitope-specific CD8+ T cells was greater than in severe/critical patients. CD38+HLA-DR+ HLA-E-restricted CD8+ T cells were identified. Meanwhile, CD45RA+CCR7- effector memory-re-expressing CD45RA T cells with early and intermediate maturation and differentiation characteristics predominated. Notably, CD8+ T cells from milder HFRS patients produced more interferon-γ, interleukin-2, and granzyme B, had a stronger proliferative potential, and were inversely linked with the amount of plasma HTNV virus load. Furthermore, HLA-E-restricted epitope-specific CD8+ T cells demonstrated improved cytotoxic activity in vitro during the acute stage of HFRS. Taken together, the findings demonstrate the protective effects of HLA-E-restricted CD8+ T cells during HTNV infection, suggesting that HLA-E-targeted vaccines against HTNV might be developed for HLA-diverse populations.
Collapse
Affiliation(s)
- Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Xinyu Li
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | | | - Haifeng Hu
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
9
|
Li Z, Zhang H, Yu X, Zhang Y, Chen L. Construction of a Hantaan Virus Phage Antibody Library and Screening for Potential Neutralizing Activity. Viruses 2023; 15:v15051034. [PMID: 37243121 DOI: 10.3390/v15051034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
China is one of the main epidemic areas for hemorrhagic fever with renal syndrome (HFRS). Currently, there is no human antibody specific to Hantaan virus (HTNV) for the emergency prevention and treatment of HFRS. To prepare human antibodies with neutralizing activity, we established an anti-HTNV phage antibody library using phage display technology by transforming peripheral blood mononuclear cells (PBMCs) of patients with HFRS into B lymphoblastoid cell lines (BLCLs) and extracting cDNA from BLCLs that secreted neutralizing antibodies. Based on the phage antibody library, we screened HTNV-specific Fab antibodies with neutralizing activities. Our study provides a potential way forward for the emergency prevention of HTNV and specific treatment of HFRS.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
- Department of Medical Laboratory Technology, Xi'an Health School, Xi'an 710054, China
| | - Huiyuan Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
- Department of Immunology, Medicine School, Yan'an University, Yan'an 716000, China
| | - Xiaxia Yu
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
- Department of Immunology, Medicine School, Yan'an University, Yan'an 716000, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| |
Collapse
|
10
|
Li S, Zhu L, Zhang L, Zhang G, Ren H, Lu L. Urbanization-Related Environmental Factors and Hemorrhagic Fever with Renal Syndrome: A Review Based on Studies Taken in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3328. [PMID: 36834023 PMCID: PMC9960491 DOI: 10.3390/ijerph20043328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease that has threatened Chinese residents for nearly a century. Although comprehensive prevent and control measures were taken, the HFRS epidemic in China presents a rebounding trend in some areas. Urbanization is considered as an important influencing factor for the HFRS epidemic in recent years; however, the relevant research has not been systematically summarized. This review aims to summarize urbanization-related environmental factors and the HFRS epidemic in China and provide an overview of research perspectives. The literature review was conducted following the PRISMA protocol. Journal articles on the HFRS epidemic in both English and Chinese published before 30 June 2022 were identified from PubMed, Web of Science, and Chinese National Knowledge Infrastructure (CNKI). Inclusion criteria were defined as studies providing information on urbanization-related environmental factors and the HFRS epidemic. A total of 38 studies were included in the review. Changes brought by urbanization on population, economic development, land use, and vaccination program were found to be significantly correlated with the HFRS epidemic. By changing the ecological niche of humans-affecting the rodent population, its virus-carrying rate, and the contact opportunity and susceptibility of populations-urbanization poses a biphasic effect on the HFRS epidemic. Future studies require systematic research framework, comprehensive data sources, and effective methods and models.
Collapse
Affiliation(s)
- Shujuan Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lingli Zhu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lidan Zhang
- Department of Public Health, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Guoyan Zhang
- Beijing Dong Cheng Center for Disease Control and Prevention, Beijing 100010, China
| | - Hongyan Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
11
|
Tang K, Hou Y, Cheng L, Zhang Y, Li J, Qin Q, Zheng X, Jia X, Zhang C, Zhuang R, Zhang Y, Jin B, Chen L, Ma Y. Increased blood CD226 - inflammatory monocytes with low antigen presenting potential correlate positively with severity of hemorrhagic fever with renal syndrome. Ann Med 2023; 55:2247000. [PMID: 37585670 PMCID: PMC10435008 DOI: 10.1080/07853890.2023.2247000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Hantaan virus (HTNV) infection can cause severe hemorrhagic fever with renal syndrome (HFRS). Inflammatory monocytes (iMOs) are involved in early antiviral responses. Previous studies have found that blood iMOs numbers increase in the acute phase of HFRS. Here, we further identified the phenotypic characteristics of iMOs in HFRS and explored whether phenotypic changes in iMOs were associated with HFRS severity. MATERIALS AND METHODS Blood samples from 85 HFRS patients were used for phenotypic analysis of iMOs by flow cytometry. Plasma HTNV load was determined using RT-PCR. THP-1 cells overexpressing CD226 were used to investigate the effects of CD226 on HLA-DR/DP/DQ and CD80 expression. A mouse model was used to test macrophage phenotype following HTNV infection. RESULTS The proportion of CD226- iMOs in the acute phase of HFRS was 66.83 (35.05-81.72) %, which was significantly higher than that in the convalescent phase (5.32 (1.36-13.52) %) and normal controls (7.39 (1.15-18.11) %) (p < 0.0001). In the acute phase, the proportion of CD226- iMOs increased more in patients with more severe HFRS and correlated positively with HTNV load and negatively with platelet count. Notably, CD226- iMOs expressed lower levels of HLA-DR/DP/DQ and CD80 than CD226+ iMOs, and overexpression CD226 could enhance the expression of HLA-DR/DP/DQ and CD80. In a mouse model, HTNV also induced the expansion of CD226- macrophages, with decreased expression of I-A/I-E and CD80. CONCLUSIONS CD226- iMOs increased during HTNV infection and the decrease in CD226 hampered the expression of HLA-DR/DP/DQ and CD80, which may promote the immune escape of HTNV and exacerbate clinical symptoms.
Collapse
Affiliation(s)
- Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Yongli Hou
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Linfeng Cheng
- Department of Microbiology, The Fourth Military Medical University, Xi’an, P. R. China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Juan Li
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Qi Qin
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Xuyang Zheng
- Center for Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, P. R. China
| | - Xiaozhou Jia
- Eighth Hospital of Xi’an, Xi’an, Shaanxi, P. R. China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xincheng District, Xi’an, Shaanxi, P. R. China
| |
Collapse
|