1
|
Zeng J, Deng H, Li Q, Kang J, Wu Y. Scaffold loaded LPS-hUCMSC-sEVs promote Osteo/odontogenic differentiation and angiogenic potential of hDPSCs. Tissue Cell 2024; 91:102549. [PMID: 39226663 DOI: 10.1016/j.tice.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVE The formation of dentin-pulp complex determines the success of vital pulp therapy. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles (hUCMSC-sEVs) appeared to have stronger effect in anti-inflammatory and promoting the proliferation and migration of human dental pulp stem cells (hDPSCs). Moreover, Lipopolysaccharides (LPS) pretreatment can enhance the rapeutic potency of extracellular vesicles. LPS pretreatment hUCMSC-sEVs have the potential to regenerate the dentin-pulp complex by recruiting hDPSCs. This paper aims to develop collagen sponge/self-assembling peptide nanofiber scaffold (CS/SAPNS) composite scaffold loaded with LPS pretreatment hUCMSC-sEVs (CS/SAPNS-sEVs), and assess the release characteristics of hUCMSC-sEVs and the effect of this composite scaffold on osteo/odontogenic differentiation and angiogenic potential in hDPSCs. METHODS LPS pretreatment hUCMSC-sEVs (LPS-hUCMSC-sEVs) were mixed with self-assembling peptide hydrogel and loaded onto collagen sponge to obtain the CS/SAPNS-sEVs. BCA assay, nanoparticle analysis, transmission electron microscopy and laser confocal microscopy were used to investigate the characteristics of LPS-hUCMSC-sEVs loaded on CS/SAPNS. Osteo/odontogenic differentiation ability of hDPSCs were analyzed by ALP stainning, alizarin red staining. RT-PCR and Western blot analysis were performed to confirm the levels of osteo/odontogenic factors and angiogenic factors, and the involvement of NF-κB pathway was verified by immunocytochemical staining and Western blot analysis. RESULTS CS/SAPNS could control LPS-hUCMSC-sEVs release for 7 days and keep their structural integrity. CS/SAPNS-sEVs promoted deposition of calcified nodules and expression of osteogenic/odontogenic and angiogenic factors in hDPSCs. On the contrary, inhibition of the NF-κB pathway down-regulated the expression of CS/SAPNS-sEVs-regulated osteo/odontogenic and angiogenic factors. CONCLUSION CS/SNAPS could be used as scaffold for LPS-hUCMSC-sEVs, and CS/SAPNS-sEVs may promote osteo/odontogenic differentiation and enhance the angiogenic potential of hDPSCs through activating the NF-κB pathway.
Collapse
Affiliation(s)
- Jingjie Zeng
- Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Huidan Deng
- Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Quanjie Li
- Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Jingyi Kang
- Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Nanning, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Yu Wu
- Department of Pediatric Dentistry, College & Hospital of Stomatology, Guangxi Medical University, No. 10 Shuangyong Road, Nanning 530021, China.
| |
Collapse
|
2
|
Hong J, Wu D, Wang H, Gong Z, Zhu X, Chen F, Wang Z, Zhang M, Wang X, Fang X, Yang S, Zhu J. Magnetic fibrin nanofiber hydrogel delivering iron oxide magnetic nanoparticles promotes peripheral nerve regeneration. Regen Biomater 2024; 11:rbae075. [PMID: 39055306 PMCID: PMC11272175 DOI: 10.1093/rb/rbae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 07/27/2024] Open
Abstract
Peripheral nerve injury is a debilitating condition that have a profound impact on the overall quality of an individual's life. The repair of peripheral nerve defects continues to present significant challenges in the field. Iron oxide magnetic nanoparticles (IONPs) have been recognized as potent nanotools for promoting the regeneration of peripheral nerves due to their capability as biological carriers and their ability to template the hydrogel structure under an external magnetic field. This research used a fibrin nanofiber hydrogel loaded with IONPs (IONPs/fibrin) to promote the regeneration of peripheral nerves in rats. In vitro examination of PC12 cells on various concentrations of IONPs/fibrin hydrogels revealed a remarkable increase in NGF and VEGF expression at 2% IONPs concentration. The biocompatibility and degradation of 2% IONPs/fibrin hydrogel were assessed using the in vivo imaging system, demonstrating subcutaneous degradation within a week without immediate inflammation. Bridging a 10-mm sciatic nerve gap in Sprague Dawley rats with 2% IONPs/fibrin hydrogel led to satisfactory morphological recovery of myelinated nerve fibers. And motor functional recovery in the 2% IONPs/fibrin group was comparable to autografts at 6, 9 and 12 weeks postoperatively. Hence, the composite fibrin hydrogel incorporating 2% IONPs exhibits potential for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Juncong Hong
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
- Department of Anesthesiology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang 311100, China
| | - Dongze Wu
- Department of Spinal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315000, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| | - Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| | - Xinxin Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Fang Chen
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Zihang Wang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Mingchen Zhang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| | - Shuhui Yang
- School of Materials Science and Engineering, Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
3
|
Ghafoor MH, Song BL, Zhou L, Qiao ZY, Wang H. Self-Assembly of Peptides as an Alluring Approach toward Cancer Treatment and Imaging. ACS Biomater Sci Eng 2024; 10:2841-2862. [PMID: 38644736 DOI: 10.1021/acsbiomaterials.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cancer is a severe threat to humans, as it is the second leading cause of death after cardiovascular diseases and still poses the biggest challenge in the world of medicine. Due to its higher mortality rates and resistance, it requires a more focused and productive approach to provide the solution for it. Many therapies promising to deliver favorable results, such as chemotherapy and radiotherapy, have come up with more negatives than positives. Therefore, a new class of medicinal solutions and a more targeted approach is of the essence. This review highlights the alluring properties, configurations, and self-assembly of peptide molecules which benefit the traditional approach toward cancer therapy while sparing the healthy cells in the process. As targeted drug delivery systems, self-assembled peptides offer a wide spectrum of conjugation, biocompatibility, degradability-controlled responsiveness, and biomedical applications, including cancer treatment and cancer imaging.
Collapse
Affiliation(s)
- Muhammad Hamza Ghafoor
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
Li Y, Tang Y, Chen L, Li H, Wang H, Wang J. Osteopontine-derived functional fragments coupled to RADA16 self-assembled peptide hydrogels promotes bone and vascular regeneration in vivo. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:657-674. [PMID: 38284324 DOI: 10.1080/09205063.2024.2304951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Biomaterial scaffolds have been widely used in tissue engineering. A functionalized self-assembled peptide scaffold named RADA16-OPD was designed by linking the short functional motif of osteopontine (OPN)-derived functional fragments SVVYGLR (OPD) to the C-terminus of the self-assembled peptide RADA16. Atomic force microscopy (AFM) was used to analyze the self-assembling peptide's structural composition. The live/dead staining results showed that RADA16-OPD is not toxic to rASC. After creating a rat skull defect model artificially, micro-CT results revealed that the defect area treated with RADA16-OPD hydrogel had higher bone volume/total volume (BV/TV), a higher trabecular number (TB.N.), and higher bone density (BMD) at different treatment time points. Histological evaluation found that there was more new bone and mature collagen production in the RADA16-OPD group. Meanwhile, the RADA16-OPD group had higher expression of alkaline phosphatase (ALP) and osteocalcin (OCN) than the other two groups. Additionally, immunofluorescence revealed that the RADA16-OPD group had higher levels of platelet/endothelial cell adhesion molecule 1 (CD31) expression than the other two groups. It demonstrated the potential for clinical use of the RADA16-OPD peptide scaffold by promoting bone regeneration and blood vessel development in vivo.
Collapse
Affiliation(s)
- Yong Li
- Department of trauma Orthopedics, Guizhou Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guiyang, China
| | - Yao Tang
- Department of Geriatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - LiFu Chen
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - HaiTao Li
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Wang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Wang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Hao Z, Feng Q, Wang Y, Wang Y, Li H, Hu Y, Chen T, Wang J, Chen R, Lv X, Yang Z, Chen J, Guo X, Li J. A parathyroid hormone related supramolecular peptide for multi-functionalized osteoregeneration. Bioact Mater 2024; 34:181-203. [PMID: 38235308 PMCID: PMC10792172 DOI: 10.1016/j.bioactmat.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/30/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular peptide nanofiber hydrogels are emerging biomaterials for tissue engineering, but it is difficult to fabricate multi-functional systems by simply mixing several short-motif-modified supramolecular peptides because relatively abundant motifs generally hinder nanofiber cross-linking or the formation of long nanofiber. Coupling bioactive factors to the assembling backbone is an ideal strategy to design multi-functional supramolecular peptides in spite of challenging synthesis and purification. Herein, a multi-functional supramolecular peptide, P1R16, is developed by coupling a bioactive factor, parathyroid hormone related peptide 1 (PTHrP-1), to the basic supramolecular peptide RADA16-Ⅰ via solid-phase synthesis. It is found that P1R16 self-assembles into long nanofibers and co-assembles with RADA16-Ⅰ to form nanofiber hydrogels, thus coupling PTHrP-1 to hydrogel matrix. P1R16 nanofiber retains osteoinductive activity in a dose-dependent manner, and P1R16/RADA16-Ⅰ nanofiber hydrogels promote osteogenesis, angiogenesis and osteoclastogenesis in vitro and induce multi-functionalized osteoregeneration by intramembranous ossification and bone remodeling in vivo when loaded to collagen (Col) scaffolds. Abundant red blood marrow formation, ideal osteointegration and adapted degradation are observed in the 50% P1R16/Col scaffold group. Therefore, this study provides a promising strategy to develop multi-functional supramolecular peptides and a new method to topically administrate parathyroid hormone or parathyroid hormone related peptides for non-healing bone defects.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qinyu Feng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xuan Lv
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhiqiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiayao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
6
|
Ciulla MG, Marchini A, Gazzola J, Forouharshad M, Pugliese R, Gelain F. In Situ Transglutaminase Cross-Linking Improves Mechanical Properties of Self-Assembling Peptides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:1723-1734. [PMID: 38346174 DOI: 10.1021/acsabm.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The development of three-dimensional (3D) biomaterials that mimic natural tissues is required for efficiently restoring physiological functions of injured tissues and organs. In the field of soft hydrogels, self-assembled peptides (SAPs) stand out as distinctive biomimetic scaffolds, offering tunable properties. They have garnered significant attention in nanomedicine due to their innate ability to self-assemble, resulting in the creation of fibrous nanostructures that closely mimic the microenvironment of the extracellular matrix (ECM). This unique feature ensures their biocompatibility and bioactivity, making them a compelling area of study over the past few decades. As they are soft hydrogels, approaches are necessary to enhance the stiffness and resilience of the SAP materials. This work shows an enzymatic strategy to selectively increase the stiffness and resiliency of functionalized SAPs using transglutaminase (TGase) type 2, an enzyme capable of triggering the formation of isopeptide bonds. To this aim, we synthesized a set of SAP sequences and characterized their cross-linking via rheological experiments, atomic force microscopy (AFM), thioflavin-T binding assay, and infrared spectroscopy (ATR-FTIR) tests. The results showed an improvement of the storage modulus of cross-linked SAPs at no cost of the maximum stress-at-failure. Further, in in vitro tests, we examined and validated the TGase capability to cross-link SAPs without hampering seeded neural stem cells (hNSCs) viability and differentiation, potentially leaving the door open for safe in situ cross-linking reactions in vivo.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | - Amanda Marchini
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Jacopo Gazzola
- Department of Biotechnology and Biosciences, University of Milan - Bicocca, 20125 Milan, Italy
| | - Mahdi Forouharshad
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Raffaele Pugliese
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| |
Collapse
|
7
|
Robang A, Roy A, Dodd-o JB, He D, Le JV, McShan AC, Hu Y, Kumar VA, Paravastu AK. Structural Consequences of Introducing Bioactive Domains to Designer β-Sheet Peptide Self-Assemblies. Biomacromolecules 2024; 25:1429-1438. [PMID: 38408372 PMCID: PMC10934295 DOI: 10.1021/acs.biomac.3c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
We applied solid- and solution-state nuclear magnetic resonance spectroscopy to examine the structure of multidomain peptides composed of self-assembling β-sheet domains linked to bioactive domains. Bioactive domains can be selected to stimulate specific biological responses (e.g., via receptor binding), while the β-sheets provide the desirable nanoscale properties. Although previous work has established the efficacy of multidomain peptides, molecular-level characterization is lacking. The bioactive domains are intended to remain solvent-accessible without being incorporated into the β-sheet structure. We tested for three possible anticipated molecular-level consequences of introducing bioactive domains to β-sheet-forming peptides: (1) the bioactive domain has no effect on the self-assembling peptide structure; (2) the bioactive domain is incorporated into the β-sheet nanofiber; and (3) the bioactive domain interferes with self-assembly such that nanofibers are not formed. The peptides involved in this study incorporated self-assembling domains based on the (SL)6 motif and bioactive domains including a VEGF-A mimic (QK), an IGF-mimic (IGF-1c), and a de novo SARS-CoV-2 binding peptide (SBP3). We observed all three of the anticipated outcomes from our examination of peptides, illustrating the unintended structural effects that could adversely affect the desired biofunctionality and biomaterial properties of the resulting peptide hydrogel. This work is the first attempt to evaluate the structural effects of incorporating bioactive domains into a set of peptides unified by a similar self-assembling peptide domain. These structural insights reveal unmet challenges in the design of highly tunable bioactive self-assembling peptide hydrogels.
Collapse
Affiliation(s)
- Alicia
S. Robang
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Abhishek Roy
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Joseph B. Dodd-o
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
| | - Dongjing He
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Justin V. Le
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andrew C. McShan
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Yuhang Hu
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vivek A. Kumar
- Department
of Biomedical Engineering, New Jersey Institute
of Technology, Newark, New Jersey 07102, United States
- Department
of Chemicals and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department
of Biology, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Anant K. Paravastu
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Luo R, Wan Y, Liu G, Chen J, Luo X, Li Z, Su D, Lu N, Luo Z. Engineering Self-Assembling Peptide Hydrogel to Enhance the Capacity of Dendritic Cells to Activate In Vivo T-Cell Immunity. Biomacromolecules 2024; 25:1408-1428. [PMID: 38236703 DOI: 10.1021/acs.biomac.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The efficacy of the dendritic cell (DC) has failed to meet expectations thus far, and crucial problems such as the immature state of DCs, low targeting efficiency, insufficient number of dendritic cells, and microenvironment are still the current focus. To address these problems, we developed two self-assembling peptides, RLDI and RQDT, that mimic extracellular matrix (ECM). These peptides can be self-assembled into highly ordered three-dimensional nanofiber scaffold structures, where RLDI can form gelation immediately. In addition, we found that RLDI and RQDT enhance the biological function of DCs, including releasing antigens sustainably, adhering to DCs, promoting the maturation of DCs, and increasing the ability of DC antigen presentation. Moreover, peptide hydrogel-based DC treatment significantly achieved prophylactic and treatment effects on colon cancer. These results have certain implications for the design of new broad-spectrum vaccines in the future.
Collapse
Affiliation(s)
- Ruyue Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Yuan Wan
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guicen Liu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Jialei Chen
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhaoxu Li
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Di Su
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Na Lu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Jones SJ, Perez A. Molecular Modeling of Self-Assembling Peptides. ACS APPLIED BIO MATERIALS 2024; 7:543-552. [PMID: 36795608 DOI: 10.1021/acsabm.2c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Peptide epitopes mediate as many as 40% of protein-protein interactions and fulfill signaling, inhibition, and activation roles within the cell. Beyond protein recognition, some peptides can self- or coassemble into stable hydrogels, making them a readily available source of biomaterials. While these 3D assemblies are routinely characterized at the fiber level, there are missing atomistic details about the assembly scaffold. Such atomistic detail can be useful in the rational design of more stable scaffold structures and with improved accessibility to functional motifs. Computational approaches can in principle reduce the experimental cost of such an endeavor by predicting the assembly scaffold and identifying novel sequences that adopt said structure. Yet, inaccuracies in physical models and inefficient sampling have limited atomistic studies to short (two or three amino acid) peptides. Given recent developments in machine learning and advances in sampling strategies, we revisit the suitability of physical models for this task. We use the MELD (Modeling Employing Limited Data) approach to drive self-assembly in combination with generic data in cases where conventional MD is unsuccessful. Finally, despite recent developments in machine learning algorithms for protein structure and sequence predictions, we find the algorithms are not yet suited for studying the assembly of short peptides.
Collapse
Affiliation(s)
- Stephen J Jones
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Wang F, Xia W, Zhang M, Wu R, Song X, Hao Y, Feng Y, Zhang L, Li D, Kang W, Liu C, Liu L. Engineering of antimicrobial peptide fibrils with feedback degradation of bacterial-secreted enzymes. Chem Sci 2023; 14:10914-10924. [PMID: 37829030 PMCID: PMC10566480 DOI: 10.1039/d3sc01089a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Proteins and peptides can assemble into functional amyloid fibrils with distinct architectures. These amyloid fibrils can fulfil various biological functions in living organisms, and then be degraded. By incorporating an amyloidogenic segment and enzyme-cleavage segment together, we designed a peptide (enzyme-cleavage amyloid peptides (EAP))-based functional fibril which could be degraded specifically by gelatinase. To gain molecular insights into the assembly and degradation of EAP fibrils, we determined the atomic structure of the EAP fibril using cryo-electron microscopy. The amyloidogenic segment of EAP adopted a β-strand conformation and mediated EAP-fibril formation mainly via steric zipper-like interactions. The enzyme-cleavage segment was partially involved in self-assembly, but also exhibited high flexibility in the fibril structure, with accessibility to gelatinase binding and degradation. Moreover, we applied the EAP fibril as a tunable scaffold for developing degradable self-assembled antimicrobial fibrils (SANs) by integrating melittin and EAP together. SANs exhibited superior activity for killing bacteria, and significantly improved the stability and biocompatibility of melittin. SANs were eliminated automatically by the gelatinase secreted from targeted bacteria. Our work provides a new strategy for rational design of functional fibrils with a feedback regulatory loop for optimizing the biocompatibility and biosafety of designed fibrils. Our work may aid further developments of "smart" peptide-based biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Fenghua Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
- College of Aeronautical Engineering, Jiangsu Aviation Vocational and Technical College Zhenjiang Jiangsu 212134 China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
| | - Mingming Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
| | - Rongrong Wu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xiaolu Song
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Yun Hao
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Liwei Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University Shanghai 200030 China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
- Department of Neurology, Ruijin Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Boao Research Hospital) Hainan 571434 China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 201210 China
- Department of Neurology, Ruijin Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Boao Research Hospital) Hainan 571434 China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences Shanghai 200032 China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University Zhenjiang Jiangsu 212013 China
| |
Collapse
|
11
|
Hafeez S, Aldana AA, Duimel H, Ruiter FAA, Decarli MC, Lapointe V, van Blitterswijk C, Moroni L, Baker MB. Molecular Tuning of a Benzene-1,3,5-Tricarboxamide Supramolecular Fibrous Hydrogel Enables Control over Viscoelasticity and Creates Tunable ECM-Mimetic Hydrogels and Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207053. [PMID: 36858040 DOI: 10.1002/adma.202207053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/13/2023] [Indexed: 06/16/2023]
Abstract
Traditional synthetic covalent hydrogels lack the native tissue dynamics and hierarchical fibrous structure found in the extracellular matrix (ECM). These dynamics and fibrous nanostructures are imperative in obtaining the correct cell/material interactions. Consequently, the challenge to engineer functional dynamics in a fibrous hydrogel and recapitulate native ECM properties remains a bottle-neck to biomimetic hydrogel environments. Here, the molecular tuning of a supramolecular benzene-1,3,5-tricarboxamide (BTA) hydrogelator via simple modulation of hydrophobic substituents is reported. This tuning results in fibrous hydrogels with accessible viscoelasticity over 5 orders of magnitude, while maintaining a constant equilibrium storage modulus. BTA hydrogelators are created with systematic variations in the number of hydrophobic carbon atoms, and this is observed to control the viscoelasticity and stress-relaxation timescales in a logarithmic fashion. Some of these BTA hydrogels are shear-thinning, self-healing, extrudable, and injectable, and can be 3D printed into multiple layers. These hydrogels show high cell viability for chondrocytes and human mesenchymal stem cells, establishing their use in tissue engineering applications. This simple molecular tuning by changing hydrophobicity (with just a few carbon atoms) provides precise control over the viscoelasticity and 3D printability in fibrillar hydrogels and can be ported onto other 1D self-assembling structures. The molecular control and design of hydrogel network dynamics can push the field of supramolecular chemistry toward the design of new ECM-mimicking hydrogelators for numerous cell-culture and tissue-engineering applications and give access toward highly biomimetic bioinks for bioprinting.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hans Duimel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Floor A A Ruiter
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Monize Caiado Decarli
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Vanessa Lapointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
12
|
Yang R, Chen J, Wang D, Xu Y, Ou G. Self-Assembling Peptide RADA16 Nanofiber Scaffold Hydrogel-Wrapped Concentrated Growth Factors in Osteogenesis of MC3T3. J Funct Biomater 2023; 14:jfb14050260. [PMID: 37233370 DOI: 10.3390/jfb14050260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Concentrated growth factors (CGFs) are widely used in surgery with bone grafting, but the release of growth factors from CGFs is rapid. RADA16, a self-assembling peptide, can form a scaffold that is similar to the extracellular matrix. Based on the properties of RADA16 and CGF, we hypothesized that the RADA16 nanofiber scaffold hydrogel could enhance the function of CGFs and that the RADA16 nanofiber scaffold hydrogel-wrapped CGFs (RADA16-CGFs) would perform a good osteoinductive function. This study aimed to investigate the osteoinductive function of RADA16-CGFs. Scanning electron microscopy, rheometry, and ELISA were performed, and MC3T3-E1 cells were used to test cell adhesion, cytotoxicity, and mineralization after administration with RADA16-CGFs. We found that RADA16 endowed with the sustained release of growth factors from CGFs, which can help maximize the function of CGFs in osteoinduction. The application of the atoxic RADA16 nanofiber scaffold hydrogel with CGFs can be a new therapeutic strategy for the treatment of alveolar bone loss and other problems that require bone regeneration.
Collapse
Affiliation(s)
- Renjie Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Eastern Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu 610051, China
| | - Jiali Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dingjie Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Guomin Ou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Murakami Y, Uchiyama T, Shono A. Correlation between Physical Properties of 12-Hydroxystearic Acid Organogels and Hansen Solubility Parameters. Gels 2023; 9:gels9040314. [PMID: 37102927 PMCID: PMC10137447 DOI: 10.3390/gels9040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
The Hansen solubility parameter (HSP) is a useful index for reasoning the gelation behavior of low-molecular-weight gelators (LMWGs). However, the conventional HSP-based methods only "classify" solvents that can and cannot form gels and require many trials to achieve this. For engineering purposes, quantitative estimation of gel properties using the HSP is highly desired. In this study, we measured critical gelation concentrations based on three distinct definitions, mechanical strength, and light transmittance of organogels prepared with 12-hydroxystearic acid (12HSA) and correlated them with the HSP of solvents. The results demonstrated that the mechanical strength, in particular, strongly correlated with the distance of 12HSA and solvent in the HSP space. Additionally, the results indicated that the constant volume-based concentration should be used when comparing the properties of organogels to a different solvent. These findings are helpful in efficiently determining the gelation sphere of new LMWGs in HSP space and contribute to designing organogels with tunable physical properties.
Collapse
Affiliation(s)
- Yuya Murakami
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1, Nijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Taisei Uchiyama
- Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Atsushi Shono
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1, Nijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
14
|
Kanda M, Nagai T, Kondo N, Matsuura K, Akazawa H, Komuro I, Kobayashi Y. Pericardial Grafting of Cardiac Progenitor Cells in Self-Assembling Peptide Scaffold Improves Cardiac Function After Myocardial Infarction. Cell Transplant 2023; 32:9636897231174078. [PMID: 37191272 PMCID: PMC10192947 DOI: 10.1177/09636897231174078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Many studies have explored cardiac progenitor cell (CPC) therapy for heart disease. However, optimal scaffolds are needed to ensure the engraftment of transplanted cells. We produced a three-dimensional hydrogel scaffold (CPC-PRGmx) in which high-viability CPCs were cultured for up to 8 weeks. CPC-PRGmx contained an RGD peptide-conjugated self-assembling peptide with insulin-like growth factor-1 (IGF-1). Immediately after creating myocardial infarction (MI), we transplanted CPC-PRGmx into the pericardial space on to the surface of the MI area. Four weeks after transplantation, red fluorescent protein-expressing CPCs and in situ hybridization analysis in sex-mismatched transplantations revealed the engraftment of CPCs in the transplanted scaffold (which was cellularized with host cells). The average scar area of the CPC-PRGmx-treated group was significantly smaller than that of the non-treated group (CPC-PRGmx-treated group = 46 ± 5.1%, non-treated MI group = 59 ± 4.5%; p < 0.05). Echocardiography showed that the transplantation of CPC-PRGmx improved cardiac function and attenuated cardiac remodeling after MI. The transplantation of CPCs-PRGmx promoted angiogenesis and inhibited apoptosis, compared to the untreated MI group. CPCs-PRGmx secreted more vascular endothelial growth factor than CPCs cultured on two-dimensional dishes. Genetic fate mapping revealed that CPC-PRGmx-treated mice had more regenerated cardiomyocytes than non-treated mice in the MI area (CPC-PRGmx-treated group = 0.98 ± 0.25%, non-treated MI group = 0.25 ± 0.04%; p < 0.05). Our findings reveal the therapeutic potential of epicardial-transplanted CPC-PRGmx. Its beneficial effects may be mediated by sustainable cell viability, paracrine function, and the enhancement of de novo cardiomyogenesis.
Collapse
Affiliation(s)
- Masato Kanda
- Department of Cardiovascular Medicine,
Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshio Nagai
- Department of Cardiology, Chemotherapy
Research Institute, KAKEN Hospital, International University of Health and Welfare,
Ichikawa-shi, Japan
| | - Naomichi Kondo
- Department of Cardiovascular Medicine,
Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical
Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
- Department of Cardiology, Tokyo Women’s
Medical University, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine,
Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine,
Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine,
Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
15
|
Application of mesenchymal stem cells combined with nano-polypeptide hydrogel in tissue engineering blood vessel. Regen Ther 2022; 21:277-281. [PMID: 36092503 PMCID: PMC9440265 DOI: 10.1016/j.reth.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/23/2022] [Indexed: 11/21/2022] Open
Abstract
At present, the vascular grafts used in clinic are mainly autologous blood vessels, but they often face the dilemma of no blood vessels available due to limited sources. However, synthetic blood vessels made of polytetrafluoroethylene (ePTFE), which is commonly used in clinic, are prone to thrombosis and intimal hyperplasia, and the long-term patency rate is poor, so its effectiveness is severely limited, which is far from meeting the clinical needs. With the development of nano-materials, stem cells and 3D bio-printing technology, people began to explore the preparation of new endothelialized vascular grafts through this technology. Nano-peptide materials have excellent biocompatibility, can be compounded with different bioactive molecules, and have unique advantages in cultivating stem cells. It has been reported that self-assembled nano-polypeptide hydrogel was successfully constructed, mesenchymal stem cells were correctly isolated and cultured, and their transformation into blood vessels was studied. It was confirmed that the 3D bio-printed nano-polypeptide hydrogel tissue ADMSCs still had strong vascular endothelial differentiation ability. The application of mesenchymal stem cells and nano-polypeptide hydrogel in tissue engineering blood vessels has gradually become a research hotspot, and it is expected to develop a new type of transplanted blood vessel that meets the physiological functions of human body in terms of vascular endothelialization, cell compatibility and histocompatibility, so as to realize the customized and personalized printing of the endothelialized transplanted blood vessel according to the shape of the target blood vessel, which has attractive prospects and far-reaching social and economic benefits.
Collapse
|
16
|
Guo W, Ma Y, Hu L, Feng Y, Liu Y, Yi X, Zhang W, Tang F. Modification Strategies for Ionic Complementary Self-Assembling Peptides: Taking RADA16-I as an Example. Polymers (Basel) 2022; 14:polym14235221. [PMID: 36501615 PMCID: PMC9739689 DOI: 10.3390/polym14235221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Ion-complementary self-assembling peptides have been studied in many fields for their distinct advantages, mainly due to their self-assembly properties. However, their shortcomings, such as insufficient specific activity and poor mechanical properties, also limited their application. For the better and wider application of these promising biomaterials, ion-complementary self-assembling peptides can be modified with their self-assembly properties not being destroyed to the greatest extent. The modification strategies were reviewed by taking RADA16-I as an example. For insufficient specific activity, RADA16-I can be structurally modified with active motifs derived from the active domain of the extracellular matrix or other related active factors. For weak mechanical properties, materials with strong mechanical properties or that can undergo chemical crosslinking were used to mix with RADA16-I to enhance the mechanical properties of RADA16-I. To improve the performance of RADA16-I as drug carriers, appropriate adjustment of the RADA16-I sequence and/or modification of the RADA16-I-related delivery system with polymer materials or specific molecules can be considered to achieve sustained and controlled release of specific drugs or active factors. The modification strategies reviewed in this paper may provide some references for further basic research and clinical application of ion-complementary self-assembling peptides and their derivatives.
Collapse
Affiliation(s)
- Weiwei Guo
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
| | - Yinping Ma
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
| | - Lei Hu
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
| | - Yujie Feng
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
| | - Yanmiao Liu
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
- School of Preclinical Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Xuedong Yi
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Wenzhi Zhang
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- The Key Laboratory of Clinical Pharmacy of Zuni City, Zunyi Medical University, Zunyi 563006, China
- Correspondence: or ; Tel.: +86-851-28642337
| |
Collapse
|
17
|
Application of Hydrogels as Sustained-Release Drug Carriers in Bone Defect Repair. Polymers (Basel) 2022; 14:polym14224906. [PMID: 36433033 PMCID: PMC9695274 DOI: 10.3390/polym14224906] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Large bone defects resulting from trauma, infection and tumors are usually difficult for the body's repair mechanisms to heal spontaneously. Generally, various types of bones and orthopedic implants are adopted to enhance bone repair and regeneration in the clinic. Due to the limitations of traditional treatments, bone defect repair is still a compelling challenge for orthopedic surgeons. In recent years, bone tissue engineering has become a potential option for bone repair and regeneration. Amidst the various scaffolds for bone tissue engineering applications, hydrogels are considered a new type of non-toxic, non-irritating and biocompatible materials, which are widely used in the biomedicine field currently. Some studies have demonstrated that hydrogels can provide a three-dimensional network structure similar to a natural extracellular matrix for tissue regeneration and can be used to transport cells, biofactors, nutrients and drugs. Therefore, hydrogels may have the potential to be multifunctional sustained-release drug carriers in the treatment of bone defects. The recent applications of different types of hydrogels in bone defect repair were briefly reviewed in this paper.
Collapse
|
18
|
Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022; 8:706. [PMID: 36354614 PMCID: PMC9689023 DOI: 10.3390/gels8110706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/19/2023] Open
Abstract
Supramolecular peptide hydrogels have many important applications in biomedicine, including drug delivery applications for the sustained release of therapeutic molecules. Targeted and selective drug administration is often preferential to systemic drug delivery, as it can allow reduced doses and can avoid the toxicity and side-effects caused by off-target binding. New discoveries are continually being reported in this rapidly developing field. In this review, we report the latest developments in supramolecular peptide-based hydrogels for drug delivery, focusing primarily on discoveries that have been reported in the last four years (2018-present). We address clinical points, such as peptide self-assembly and drug release, mechanical properties in drug delivery, peptide functionalization, bioadhesive properties and drug delivery enhancement strategies, drug release profiles, and different hydrogel matrices for anticancer drug loading and release.
Collapse
Affiliation(s)
| | | | | | | | - Peter J. Jervis
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
19
|
de Souza Araújo IJ, Ferreira JA, Daghrery A, Ribeiro JS, Castilho M, Puppin-Rontani RM, Bottino MC. Self-assembling peptide-laden electrospun scaffolds for guided mineralized tissue regeneration. Dent Mater 2022; 38:1749-1762. [PMID: 36180310 PMCID: PMC9881689 DOI: 10.1016/j.dental.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Electrospun scaffolds are a versatile biomaterial platform to mimic fibrillar structure of native tissues extracellular matrix, and facilitate the incorporation of biomolecules for regenerative therapies. Self-assembling peptide P11-4 has emerged as a promising strategy to induce mineralization; however, P11-4 application has been mostly addressed for early caries lesions repair on dental enamel. Here, to investigate P11-4's efficacy on bone regeneration, polymeric electrospun scaffolds were developed, and then distinct concentrations of P11-4 were physically adsorbed on the scaffolds. METHODS P11-4-laden and pristine (P11-4-free) electrospun scaffolds were immersed in simulated body fluid and mineral precipitation identified by SEM. Functional groups and crystalline phases were analyzed by FTIR and XRD, respectively. Cytocompatibility, mineralization, and gene expression assays were conducted using stem cells from human exfoliated deciduous teeth. To investigate P11-4-laden scaffolds potential to induce in vivo mineralization, an established rat calvaria critical-size defect model was used. RESULTS We successfully synthesized nanofibrous (∼ 500 nm fiber diameter) scaffolds and observed that functionalization with P11-4 did not affect the fibers' diameter. SEM images indicated mineral precipitation, while FTIR and XRD confirmed apatite-like formation and crystallization for P11-4-laden scaffolds. In addition, P11-4-laden scaffolds were cytocompatible, highly stimulated cell-mediated mineral deposition, and upregulated the expression of mineralization-related genes compared to pristine scaffolds. P11-4-laden scaffolds led to enhanced in vivo bone regeneration after 8 weeks compared to pristine PCL. SIGNIFICANCE Electrospun scaffolds functionalized with P11-4 are a promising strategy for inducing mineralized tissues regeneration in the craniomaxillofacial complex.
Collapse
Affiliation(s)
- Isaac J de Souza Araújo
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States; Dental Materials Graduate Program, Department of Operative Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States; Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Juliana S Ribeiro
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Regina M Puppin-Rontani
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, MI, United States; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
20
|
Wang S, Tao Y. Construction of graphene oxide-modified peptide-coated nanofibrous enhances the osteogenic conversion of induced pluripotent stem cells. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shu Wang
- Chongqing Emergency Medical Center, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yang Tao
- Chongqing Emergency Medical Center, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| |
Collapse
|
21
|
Tang L, Xu C, Xuan A, Zhu Z, Ruan D. Functionalized self-assembling peptide RADKPS hydrogels promote regenerative repair of degenerated intervertebral discs. Biomater Sci 2022; 10:5134-5145. [PMID: 35820128 DOI: 10.1039/d2bm00634k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Objective: the aim of this study was to investigate whether the functionalized self-assembling peptide hydrogel RADKPS is safe and effective for regenerative repair of degenerative intervertebral discs. Methods: an in vitro degenerative model of human nucleus pulposus cells was constructed by serum starvation culture, and their proliferation, apoptosis and viability were examined after three-dimensional culture with the RADKPS hydrogel. An in vivo degenerative model of the rabbit intervertebral disc was constructed by annulus fibrosus puncture, and the degeneration of the intervertebral disc was evaluated by imaging, histology, immunohistochemistry, and biomechanics after RADKPS hydrogel intervention. Results: through in vitro cell experiments it is shown that human degenerated nucleus pulposus cells after three-dimensional culture with the RADKPS hydrogel still exhibited better proliferation, viability, and low apoptosis rate. Through in vivo animal experiments we found that rabbit degenerated intervertebral discs intervened with the RADKPS hydrogel had higher water content, better histological morphology, more extracellular matrix synthesis, and better biomechanical properties. It is demonstrated that the RADKPS hydrogel may initiate the endogenous repair process through the sustained recruitment and enrichment of nucleus pulposus progenitor cells. Conclusion: it is verified from both in vitro cellular experiments and in vivo animal experiments that the regenerative repair effect of RADKPS, a functionalized self-assembling peptide hydrogel, on degenerated intervertebral discs is safe and effective. It is shown that it would be a new therapeutic approach for the regenerative repair action of intervertebral discs.
Collapse
Affiliation(s)
- Liang Tang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.,Department of Orthopedic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China. .,Department of Orthopedic Surgery, Hengyang Central Hospital, Hunan, 421001, China
| | - Cheng Xu
- Department of Orthopedic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| | - Anwu Xuan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhenbiao Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.,Department of Orthopedic Surgery, the Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
22
|
Ye W, Yang Z, Cao F, Li H, Zhao T, Zhang H, Zhang Z, Yang S, Zhu J, Liu Z, Zheng J, Liu H, Ma G, Guo Q, Wang X. Articular cartilage reconstruction with TGF-β1-simulating self-assembling peptide hydrogel-based composite scaffold. Acta Biomater 2022; 146:94-106. [PMID: 35552000 DOI: 10.1016/j.actbio.2022.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-β (TGF-β) is an important inducing factor for the differentiation of mesenchymal stem cells and the secretion of collagen II, but the inaccessibility and instability limit its application in clinical practice. In this study, the TGF-β1-simulating peptide LIANAK (CM) was connected with the self-assembling peptide Ac-(RADA)4-CONH2 (RAD) to obtain the functionalized self-assembling peptide Ac-(RADA)4-GG-LIANAK-CONH2 (RAD-CM). The results indicated that the CM-functionalized RAD hydrogel contributed to the enhanced expressions of chondrogenic genes and extracellular matrix deposition. The self-assembling peptides were then combined with decellularized cartilage extracellular matrix (DCM) to construct a composite scaffold for articular cartilage repair. The CM-functionalized composite scaffold RAD/RAD-CM/DCM (R/C/D) exhibited good bioactivity and structural stability and exhibited satisfactory performance in promoting neocartilage restoration and the reconstruction of the osteochondral unit. This study provides a promising strategy for in situ cartilage regeneration via the stable presentation of TGF-β1-simulating peptide. STATEMENT OF SIGNIFICANCE: Deficiency of effective chondrogenic inducers (especially, the TGF-β family) significantly limits the self-regeneration of cartilage in osteochondral defect cases. Oligopeptide LIANAK, named CM, could simulate TGF-β1's bioactivity with particular structure, but traditional chemical crosslinking to polymer scaffolds resulted in risks of safety and complication, which is unfavorable for clinical applications. Here, self-assembling peptide RAD was used to load CM, to obtain a TGF-β1 mimetic peptide hydrogel. Depending on the homology (amino acids) of RAD and CM, the synthesis of the whole peptide only needs simply extended sequences of CM following that of RAD by automated solid-phase peptide synthesis. The modified peptide effectively demonstrated osteochondrogenic bioactivity, ensured the convenience, safety, and mass production, which displayed great potential in tissue engineering research and translational medicine.
Collapse
Affiliation(s)
- Weilong Ye
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, No.1 Qinghuayuan Road, Beijing 100084, China; Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Zhen Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Fuyang Cao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China; Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 Jian East Road, Eqi District, Zhengzhou 450052, China
| | - Hao Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Tianyuan Zhao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Huan Zhang
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Zhe Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, No.1 Qinghuayuan Road, Beijing 100084, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, No.1 Qinghuayuan Road, Beijing 100084, China
| | - Jinjin Zhu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, No.1 Qinghuayuan Road, Beijing 100084, China
| | - Zhu Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, No.1 Qinghuayuan Road, Beijing 100084, China; Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Jingchuan Zheng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, No.1 Qinghuayuan Road, Beijing 100084, China; Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Huiying Liu
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China
| | - Guowu Ma
- Department of Prosthodontics, School of Stomatology, Dalian Medical University, No.9 west section, Lvshunnan Road, Dalian 116044, China.
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, No.1 Qinghuayuan Road, Beijing 100084, China.
| |
Collapse
|
23
|
Self-Assembled Peptide Nanostructures for ECM Biomimicry. NANOMATERIALS 2022; 12:nano12132147. [PMID: 35807982 PMCID: PMC9268130 DOI: 10.3390/nano12132147] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
Proteins are functional building blocks of living organisms that exert a wide variety of functions, but their synthesis and industrial production can be cumbersome and expensive. By contrast, short peptides are very convenient to prepare at a low cost on a large scale, and their self-assembly into nanostructures and gels is a popular avenue for protein biomimicry. In this Review, we will analyze the last 5-year progress on the incorporation of bioactive motifs into self-assembling peptides to mimic functional proteins of the extracellular matrix (ECM) and guide cell fate inside hydrogel scaffolds.
Collapse
|
24
|
Shen X, Wang H, Zhao Y, Liang J, Lu B, Sun W, Lu K, Wang H, Yuan L. Recycling protein selective adsorption on fluorine-modified surface through fluorine-fluorine interaction. Colloids Surf B Biointerfaces 2022; 214:112486. [PMID: 35364454 DOI: 10.1016/j.colsurfb.2022.112486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
Abstract
Low surface energy materials with micro-nano structures have been widely developed to prevent non-specific adhesion of biomolecules. Herein we put forward a new approach based on the antifouling and self-assembly properties of fluorine components, to construct a non-specific protein resistance surface with selective protein adsorption property. Briefly, the antifouling surface (SN-F) was obtained by a simple one-step modification on silicon nanowire arrays (SiNWAs) with fluorine coupling agent 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane (FAS). And protein was fluorinated by conjugation with an amphiphilic fluoro-copolymer, produced from 2-methacrylamido glucopyranose (MAG) and trifluoroethyl methacrylate (TFEMA) via RAFT polymerization. The properties of the materials were characterized by 1H nuclear magnetic resonance (1H NMR), infrared spectroscopy (FTIR), water contact angle, and X-ray photoelectron spectroscopy (XPS) etc., and protein adsorption was investigated by protein content measurement, fluorescence detection, and electrophoresis. It was observed that the adsorption for native proteins on SN-F was at an extremely low level, while the adsorption for the fluoro-copolymer conjugated protein (PFG-BSA) was significantly increased. When the percentage of TFEMA in the fluoro-copolymer was as high as 52.0%, the fluorinated protein adsorbed on SN-F was more than 35 times of native proteins on the surface. Moreover, the platform could resist IgG adhesion in serum after the adsorption of fluorinated protein, and it could be recycled three times after 75% ethanol treatment. In conclusion, SN-F showed non-specific protein resistance through low surface energy and specific protein adsorption by fluorine-fluorine self-assembly. The fluorinated nanostructured platform has a great potential in controlling protein adsorption and release.
Collapse
Affiliation(s)
- Xiang Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hengxiao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Yingxian Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Jinwei Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Benben Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hongwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| |
Collapse
|
25
|
Araújo IJDS, Guimarães GN, Machado RA, Bertassoni LE, Davies RPW, Puppin-Rontani RM. Self-assembly peptide P 11-4 induces mineralization and cell-migration of odontoblast-like cells. J Dent 2022; 121:104111. [PMID: 35460865 PMCID: PMC10171720 DOI: 10.1016/j.jdent.2022.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/13/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Self-assembling peptide P11-4 is amphiphilic and pH-triggered, effective on repairing early enamel carious lesions and dentin remineralization. However, P11-4 effects on dentin biomineralization and repair ability remain unexplored. Thus, cytocompatibility and effectiveness of P11-4 on inducing mineralization and migration of odontoblast-like cells (MDPC-23) were investigated. METHODS MDPC-23 were seeded in contact with P11-4 (0.5 and 1 µg/ml), Dentin Matrix Protein 1 (DMP1 0.5 and 1 µg/ml) or Calcium hydroxide (Ca(OH)2 100 µg/ml) solutions. Cell viability was verified using MTT (n = 6/group). Mineral deposition was tested using Alizarin Red (n = 4/group). Cell migration was assessed by light microscopy (n = 2/group). MTT and Alizarin Red data were compared using Kruskal-Wallis and Mann-Whitney (α=0.01). RESULTS P11-4 (0.5 and 1 µg/ml) and DMP1 (0.5 and 1 µg/ml) resulted the highest cell viability; Ca(OH)2 presented the lowest. 1 µg/ml DMP1 and 1 µg/ml P11-4 promoted the highest mineral deposition. Ca(OH)2 presented lower values of mineral deposits than DMP1 1 µg/ml (p < 0.01), but similar to P11-4 1 µg/ml. P11-4 and DMP1 at 0.5 µg/ml induced lesser mineral precipitation than P11-4 and DMP1 at 1 µg/ml (p < 0.01), with no difference to Ca(OH)2. All materials stimulated cell migration, however, lower concentrations of DMP1 and P11-4 demonstrated a higher migration potential. CONCLUSION P11-4 did not affect cell viability, induces mineral deposition and MDPC-23 migration like DMP1. CLINICAL SIGNIFICANCE Self-assembling peptide P11-4 does not affect the cell viability and induces mineral deposition comparable to native protein involved in biomineralization. Combined with its ability to bind type I collagen, P11-4 is a promising bioinspired molecule that provides native-tissue conditions and foster further studies on its ability to form dentin bridges in pulp-capping strategies.
Collapse
Affiliation(s)
- Isaac Jordão de Souza Araújo
- Dental Materials Graduate Program; Piracicaba Dental School, Unicamp; Department of Dentistry, Faculdade Nova Esperança - FACENE/RN, Mossoró, Rio Grande do Norte, Brazil
| | - Gustavo Narvaes Guimarães
- Department of Biosciences, Histology area, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Renato Assis Machado
- Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), Bauru, São Paulo, Brazil; Department of Oral Diagnosis, School of Dentistry, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Luiz Eduardo Bertassoni
- Department of Biomaterials and Biomechanics, School of Dentistry Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | | | - Regina Maria Puppin-Rontani
- Department of Health Sciences and Pediatric Dentistry, Piracicaba Dental School, State University of Campinas, Limeira Ave. 901, Areão, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
26
|
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103820. [PMID: 35128831 PMCID: PMC9008438 DOI: 10.1002/advs.202103820] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/02/2022] [Indexed: 05/03/2023]
Abstract
Bone tissue engineering is becoming an ideal strategy to replace autologous bone grafts for surgical bone repair, but the multihierarchical complexity of natural bone is still difficult to emulate due to the lack of suitable biomaterials. Supramolecular peptide nanofiber hydrogels (SPNHs) are emerging biomaterials because of their inherent biocompatibility, satisfied biodegradability, high purity, facile functionalization, and tunable mechanical properties. This review initially focuses on the multihierarchical fabrications by SPNHs to emulate natural bony extracellular matrix. Structurally, supramolecular peptides based on distinctive building blocks can assemble into nanofiber hydrogels, which can be used as nanomorphology-mimetic scaffolds for tissue engineering. Biochemically, bioactive motifs and bioactive factors can be covalently tethered or physically absorbed to SPNHs to endow various functions depending on physiological and pharmacological requirements. Mechanically, four strategies are summarized to optimize the biophysical microenvironment of SPNHs for bone regeneration. Furthermore, comprehensive applications about SPNHs for bone tissue engineering are reviewed. The biomaterials can be directly used in the form of injectable hydrogels or composite nanoscaffolds, or they can be used to construct engineered bone grafts by bioprinting or bioreactors. Finally, continuing challenges and outlook are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Hanke Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yi Wang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Yingkun Hu
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Tianhong Chen
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Shuwei Zhang
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Xiaodong Guo
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Road 1277Wuhan430022China
| | - Lin Cai
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| | - Jingfeng Li
- Department of OrthopedicsZhongnan Hospital of Wuhan UniversityDonghu Road 169Wuhan430071China
| |
Collapse
|
27
|
de Mello LR, Carrascosa V, Rebelato E, Juliano MA, Hamley IW, Castelletto V, Vassiliades SV, Alves WA, Nakaie CR, da Silva ER. Nanostructure Formation and Cell Spheroid Morphogenesis of a Peptide Supramolecular Hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3434-3445. [PMID: 35274959 DOI: 10.1021/acs.langmuir.1c03215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide-based hydrogels have attracted much attention due to their extraordinary applications in biomedicine and offer an excellent mimic for the 3D microenvironment of the extracellular matrix. These hydrated matrices comprise fibrous networks held together by a delicate balance of intermolecular forces. Here, we investigate the hydrogelation behavior of a designed decapeptide containing a tetraleucine self-assembling backbone and fibronectin-related tripeptides near both ends of the strand. We have observed that this synthetic peptide can produce hydrogel matrices entrapping >99% wt/vol % water. Ultrastructural analyses combining atomic force microscopy, small-angle neutron scattering, and X-ray diffraction revealed that amyloid-like fibrils form cross-linked networks endowed with remarkable thermal stability, the structure of which is not disrupted up to temperatures >80 °C. We also examined the interaction of peptide hydrogels with either NIH3T3 mouse fibroblasts or HeLa cells and discovered that the matrices sustain cell viability and induce morphogenesis into grape-like cell spheroids. The results presented here show that this decapeptide is a remarkable building block to prepare highly stable scaffolds simultaneously endowed with high water retention capacity and the ability to instruct cell growth into tumor-like spheroids even in noncarcinoma lineages.
Collapse
Affiliation(s)
- Lucas R de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Vinicius Carrascosa
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Eduardo Rebelato
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Maria A Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RGD 6AD, U.K
| | | | - Sandra V Vassiliades
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Clovis R Nakaie
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Emerson R da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
28
|
Han L, Wang Z, Chen H, Li J, Zhang S, Zhang S, Shao S, Zhang Y, Shen C, Tao H. Sa12b-Modified Functional Self-Assembling Peptide Hydrogel Enhances the Biological Activity of Nucleus Pulposus Mesenchymal Stem Cells by Inhibiting Acid-Sensing Ion Channels. Front Cell Dev Biol 2022; 10:822501. [PMID: 35252187 PMCID: PMC8888415 DOI: 10.3389/fcell.2022.822501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
Various hydrogels have been studied for nucleus pulposus regeneration. However, they failed to overcome the changes in the acidic environment during intervertebral disc degeneration. Therefore, a new functionalized peptide RAD/SA1 was designed by conjugating Sa12b, an inhibitor of acid-sensing ion channels, onto the C-terminus of RADA16-I. Then, the material characteristics and biocompatibility of RAD/SA1, and the bioactivities and mechanisms of degenerated human nucleus pulposus mesenchymal stem cells (hNPMSCs) were evaluated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirmed that RAD/SA1 self-assembling into three-dimensional (3D) nanofiber hydrogel scaffolds under acidic conditions. Analysis of the hNPMSCs cultured in the 3D scaffolds revealed that both RADA16-I and RAD/SA1 exhibited reliable attachment and extremely low cytotoxicity, which were verified by SEM and cytotoxicity assays, respectively. The results also showed that RAD/SA1 increased the proliferation of hNPMSCs compared to that in culture plates and pure RADA16-I. Quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting demonstrated that the expression of collagen I was downregulated, while collagen II, aggrecan, and SOX-9 were upregulated. Furthermore, Ca2+ concentration measurement and western blotting showed that RAD/SA1 inhibited the expression of p-ERK through Ca2+-dependent p-ERK signaling pathways. Therefore, the functional self-assembling peptide nanofiber hydrogel designed with the short motif of Sa12b could be used as an excellent scaffold for nucleus pulposus tissue engineering. Moreover, RAD/SA1 exhibits great potential applications in the regeneration of mildly degenerated nucleus pulposus.
Collapse
Affiliation(s)
- Letian Han
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziyu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haoyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Sumei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shanzhong Shao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinshun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Tao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Osteogenic differentiation of pulp stem cells from human permanent teeth on an oxygen-releasing electrospun scaffold. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Sun X, Liu Y, Wei Y, Wang Y. Chirality-induced bionic scaffolds in bone defects repair-a review. Macromol Biosci 2022; 22:e2100502. [PMID: 35246939 DOI: 10.1002/mabi.202100502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Due to lack of amino sugar with aging, people will suffer from various epidemic bone diseases called "undead cancer" by the World Health Organization. The key problem in bone tissue engineering that has not been completely resolved is the repair of critical large-scale bone and cartilage defects. The chirality of the extracellular matrix plays a decisive role in the physiological activity of bone cells and the occurrence of bone tissue, but the mechanism of chirality in regulating cell adhesion and growth is still in the early stage of exploration. This paper reviews the application progress of chirality-induced bionic scaffolds in bone defects repair based on "soft" and "hard" scaffolds. The aim is to summarize the effects of different chiral structures (L-shaped and D-shaped) in the process of inducing bionic scaffolds in bone defects repair. In addition, many technologies and methods as well as issues worthy of special consideration for preparing chirality-induced bionic scaffolds are also introduced. We expect that this work can provide inspiring ideas for designing new chirality-induced bionic scaffolds and promote the development of chirality in bone tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yue Liu
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, P. R. China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
31
|
Boosted Cross-Linking and Characterization of High-Performing Self-Assembling Peptides. NANOMATERIALS 2022; 12:nano12030320. [PMID: 35159664 PMCID: PMC8838902 DOI: 10.3390/nano12030320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022]
Abstract
Tissue engineering (TE) strategies require the design and characterization of novel biomaterials capable of mimicking the physiological microenvironments of the tissues to be regenerated. As such, implantable materials should be biomimetic, nanostructured and with mechanical properties approximating those of the target organ/tissue. Self-assembling peptides (SAPs) are biomimetic nanomaterials that can be readily synthesized and customized to match the requirements of some TE applications, but the weak interactions involved in the self-assembling phenomenon make them soft hydrogels unsuited for the regeneration of medium-to-hard tissues. In this work, we moved significant steps forward in the field of chemical cross-linked SAPs towards the goal of stiff peptidic materials suited for the regeneration of several tissues. Novel SAPs were designed and characterized to boost the 4-(N-Maleimidomethyl) cyclohexane-1-carboxylic acid 3-sulpho-N-hydroxysuccinimide ester (Sulfo-SMCC) mediated cross-linking reaction, where they reached G′ values of ~500 kPa. An additional orthogonal cross-linking was also effective and allowed to top remarkable G′ values of 840 kPa. We demonstrated that cross-linking fastened the pre-existing self-aggregated nanostructures, and at the same time, a strong presence of ß-structures is necessary for an effective cross-linking of (LKLK)3-based SAPs. Combining strong SAP design and orthogonal cross-linking reactions, we brought SAP stiffness closer to the MPa threshold, and as such, we opened the door of the regeneration of skin, muscle and lung to biomimetic SAP technology.
Collapse
|
32
|
Liu Y, Fan L, Lin X, Zou L, Li Y, Ge X, Fu W, Zhang Z, Xiao K, Lv H. Functionalized self-assembled peptide RAD/Dentonin hydrogel scaffold promotes dental pulp regeneration. Biomed Mater 2021; 17. [PMID: 34768244 DOI: 10.1088/1748-605x/ac3928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
RADA16-I is an ion-complementary self-assembled peptide with a regular folded secondary conformation and can be assembled into an ordered nanostructure. Dentonin is an extracellular matrix phosphate glycoprotein functional peptide motif-containing RGD and SGDG motifs. In this experiment, we propose to combine RAD and Dentonin to form a functionalized self-assembled peptide RAD/Dentonin hydrogel scaffold. Furthermore, we expect that the RAD with the addition of functional motif Dentonin can promote pulp regeneration. The study analyzed the physicochemical properties of RAD/Dentonin through circular dichroism, morphology scanning, and rheology. Besides, we examined the scaffold's biocompatibility by immunofluorescent staining, CCK-8 method, Live/Dead fluorescent staining, and 3D reconstruction. Finally, we applied ALP activity assay, RT-qPCR, and Alizarin red S staining to detect the effect of RAD/Dentonin on the odontogenic differentiation of human dental pulp stem cells (hDPSCs). The results showed that RAD/Dentonin spontaneously assembles into a hydrogel with aβ-sheet-based nanofiber network structure.In vitro, RAD/Dentonin has superior biocompatibility and enhances adhesive proliferation, migration, odontogenic differentiation, and mineralization deposition of hDPSCs. In conclusion, the novel self-assembled peptide RAD/Dentonin is a new scaffold material suitable for cell culture and has promising applications as a scaffold for endodontic tissue engineering.
Collapse
Affiliation(s)
- Yijuan Liu
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Lina Fan
- The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, People's Republic of China
| | - Xuemei Lin
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Luning Zou
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yaoyao Li
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xinting Ge
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Weihao Fu
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zonghao Zhang
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Kuancheng Xiao
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Hongbing Lv
- Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
33
|
Denzer BR, Kulchar RJ, Huang RB, Patterson J. Advanced Methods for the Characterization of Supramolecular Hydrogels. Gels 2021; 7:158. [PMID: 34698172 PMCID: PMC8544384 DOI: 10.3390/gels7040158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
With the increased research on supramolecular hydrogels, many spectroscopic, diffraction, microscopic, and rheological techniques have been employed to better understand and characterize the material properties of these hydrogels. Specifically, spectroscopic methods are used to characterize the structure of supramolecular hydrogels on the atomic and molecular scales. Diffraction techniques rely on measurements of crystallinity and help in analyzing the structure of supramolecular hydrogels, whereas microscopy allows researchers to inspect these hydrogels at high resolution and acquire a deeper understanding of the morphology and structure of the materials. Furthermore, mechanical characterization is also important for the application of supramolecular hydrogels in different fields. This can be achieved through atomic force microscopy measurements where a probe interacts with the surface of the material. Additionally, rheological characterization can investigate the stiffness as well as the shear-thinning and self-healing properties of the hydrogels. Further, mechanical and surface characterization can be performed by micro-rheology, dynamic light scattering, and tribology methods, among others. In this review, we highlight state-of-the-art techniques for these different characterization methods, focusing on examples where they have been applied to supramolecular hydrogels, and we also provide future directions for research on the various strategies used to analyze this promising type of material.
Collapse
Affiliation(s)
- Bridget R. Denzer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Rachel J. Kulchar
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA;
| | - Richard B. Huang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; (B.R.D.); (R.B.H.)
| | - Jennifer Patterson
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, Getafe, 28906 Madrid, Spain
- Independent Consultant, 3000 Leuven, Belgium
| |
Collapse
|
34
|
Osuna de la Peña D, Trabulo SMD, Collin E, Liu Y, Sharma S, Tatari M, Behrens D, Erkan M, Lawlor RT, Scarpa A, Heeschen C, Mata A, Loessner D. Bioengineered 3D models of human pancreatic cancer recapitulate in vivo tumour biology. Nat Commun 2021; 12:5623. [PMID: 34561461 PMCID: PMC8463670 DOI: 10.1038/s41467-021-25921-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Patient-derived in vivo models of human cancer have become a reality, yet their turnaround time is inadequate for clinical applications. Therefore, tailored ex vivo models that faithfully recapitulate in vivo tumour biology are urgently needed. These may especially benefit the management of pancreatic ductal adenocarcinoma (PDAC), where therapy failure has been ascribed to its high cancer stem cell (CSC) content and high density of stromal cells and extracellular matrix (ECM). To date, these features are only partially reproduced ex vivo using organoid and sphere cultures. We have now developed a more comprehensive and highly tuneable ex vivo model of PDAC based on the 3D co-assembly of peptide amphiphiles (PAs) with custom ECM components (PA-ECM). These cultures maintain patient-specific transcriptional profiles and exhibit CSC functionality, including strong in vivo tumourigenicity. User-defined modification of the system enables control over niche-dependent phenotypes such as epithelial-to-mesenchymal transition and matrix deposition. Indeed, proteomic analysis of these cultures reveals improved matrisome recapitulation compared to organoids. Most importantly, patient-specific in vivo drug responses are better reproduced in self-assembled cultures than in other models. These findings support the use of tuneable self-assembling platforms in cancer research and pave the way for future precision medicine approaches.
Collapse
Affiliation(s)
- David Osuna de la Peña
- Barts Cancer Institute, Queen Mary University of London, London, UK
- Institute of Bioengineering, Queen Mary University of London, London, UK
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Estelle Collin
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Ying Liu
- Barts Cancer Institute, Queen Mary University of London, London, UK
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Shreya Sharma
- Barts Cancer Institute, Queen Mary University of London, London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Marianthi Tatari
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Diana Behrens
- EPO - Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Mert Erkan
- Department of Surgery, Koç University School of Medicine, Istanbul, Turkey
- Koç University Translational Research Center - KUTTAM, Istanbul, Turkey
| | - Rita T Lawlor
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ARC-Net, Applied Research on Cancer Centre, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
- ARC-Net, Applied Research on Cancer Centre, University of Verona, Verona, Italy
| | - Christopher Heeschen
- Center for Single-Cell Omics, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Laboratory of Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| | - Alvaro Mata
- Institute of Bioengineering, Queen Mary University of London, London, UK.
- School of Pharmacy, University of Nottingham, Nottingham, UK.
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK.
- Biodiscovery Institute, University of Nottingham, Nottingham, UK.
| | - Daniela Loessner
- Barts Cancer Institute, Queen Mary University of London, London, UK.
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Melbourne, VIC, Australia.
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, VIC, Australia.
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
35
|
Firipis K, Nisbet DR, Franks SJ, Kapsa RMI, Pirogova E, Williams RJ, Quigley A. Enhancing Peptide Biomaterials for Biofabrication. Polymers (Basel) 2021; 13:polym13162590. [PMID: 34451130 PMCID: PMC8400132 DOI: 10.3390/polym13162590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Biofabrication using well-matched cell/materials systems provides unprecedented opportunities for dealing with human health issues where disease or injury overtake the body’s native regenerative abilities. Such opportunities can be enhanced through the development of biomaterials with cues that appropriately influence embedded cells into forming functional tissues and organs. In this context, biomaterials’ reliance on rigid biofabrication techniques needs to support the incorporation of a hierarchical mimicry of local and bulk biological cues that mimic the key functional components of native extracellular matrix. Advances in synthetic self-assembling peptide biomaterials promise to produce reproducible mimics of tissue-specific structures and may go some way in overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal, muscle, cancer and stem cell tissue engineering.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
- The Graeme Clark Institute, Faculty of Engineering and Information Technology, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephanie J. Franks
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
| | - Robert M. I. Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
| | - Elena Pirogova
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Richard J. Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
- Correspondence: (R.J.W.); (A.Q.)
| | - Anita Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
- Correspondence: (R.J.W.); (A.Q.)
| |
Collapse
|
36
|
Karavasili C, Fatouros DG. Self-assembling peptides as vectors for local drug delivery and tissue engineering applications. Adv Drug Deliv Rev 2021; 174:387-405. [PMID: 33965460 DOI: 10.1016/j.addr.2021.04.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular self-assembly has forged a new era in the development of advanced biomaterials for local drug delivery and tissue engineering applications. Given their innate biocompatibility and biodegradability, self-assembling peptides (SAPs) have come in the spotlight of such applications. Short and water-soluble SAP biomaterials associated with enhanced pharmacokinetic (PK) and pharmacodynamic (PD) responses after the topical administration of the therapeutic systems, or improved regenerative potential in tissue engineering applications will be the focus of the current review. SAPs are capable of generating supramolecular structures using a boundless array of building blocks, while peptide engineering is an approach commonly pursued to encompass the desired traits to the end composite biomaterials. These two elements combined, expand the spectrum of SAPs multi-functionality, constituting them potent biomaterials for use in various biomedical applications.
Collapse
|
37
|
Zuo R, Liu R, Olguin J, Hudalla GA. Glycosylation of a Nonfibrillizing Appendage Alters the Self-Assembly Pathway of a Synthetic β-Sheet Fibrillizing Peptide. J Phys Chem B 2021; 125:6559-6571. [PMID: 34128680 PMCID: PMC9191660 DOI: 10.1021/acs.jpcb.1c02083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Owing to their biocompatibility and biodegradability, short synthetic peptides that self-assemble into elongated β-sheet fibers (i.e., peptide nanofibers) are widely used to create biomaterials for diverse medical and biotechnology applications. Glycosylation, which is a common protein post-translational modification, is gaining interest for creating peptide nanofibers that can mimic the function of natural carbohydrate-modified proteins. Recent reports have shown that glycosylation can disrupt the fibrillization of natural amyloid-forming peptides. Here, using transmission electron microscopy, fluorescence microscopy, and thioflavin T spectroscopy, we show that glycosylation at a site external to the fibrillization domain can alter the self-assembly pathway of a synthetic fibrillizing peptide, NSGSGQQKFQFQFEQQ (NQ11). Specifically, an NQ11 variant modified with N-linked N-acetylglucosamine, N(GlcNAc)SGSG-Q11 (GQ11), formed β-sheet nanofibers more slowly than NQ11 in deionized water (pH 5.8), which correlated to the tendency of GQ11 to form a combination of short fibrils and nonfibrillar aggregates, whereas NQ11 formed extended nanofibers. Acidic phosphate buffer slowed the rate of GQ11 fibrillization and altered the morphology of the structures formed yet had no effect on NQ11 fibrillization rate or morphology. The buffer ionic strength had no effect on the fibrillization rate of either peptide, while the diphosphate anion had a similar effect on the rate of fibrillization of both peptides. Collectively, these data demonstrate that a glycan moiety located external to the β-sheet fibrillizing domain can alter the pH-dependent self-assembly pathway of a synthetic peptide, leading to significant changes in the fibril mass and morphology of the structures formed. These observations add to the understanding of the effect of glycosylation on peptide self-assembly and should guide future efforts to develop biomaterials from synthetic β-sheet fibrillizing glycopeptides.
Collapse
Affiliation(s)
- Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Juanpablo Olguin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Gregory A. Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
38
|
Han C, Zhang Z, Sun J, Li K, Li Y, Ren C, Meng Q, Yang J. Self-Assembling Peptide-Based Hydrogels in Angiogenesis. Int J Nanomedicine 2020; 15:10257-10269. [PMID: 33364757 PMCID: PMC7751603 DOI: 10.2147/ijn.s277046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Ischemic diseases, especially in the heart and the brain, have become a serious threat to human health. Growth factor and cell therapy are emerging as promising therapeutic strategies; however, their retention and sustainable functions in the injured tissue are limited. Self-assembling peptide (SAP)-based hydrogels, mimicking the extracellular matrix, are therefore introduced to encapsulate and controllably release cells, cell-derived exosomes or growth factors, thus promoting angiogenesis and tissue recovery after ischemia. We will summarize the classification, composition and structure of SAPs, and the influencing factors for SAP gelation. Moreover, we will describe the functionalized SAPs, and the combinatorial therapy of cells, exosomes or growth factors with functionalized SAPs for angiogenic process as well as its advantage in immunogenicity and injectability. Finally, an outlook on future directions and challenges is provided.
Collapse
Affiliation(s)
- Chaoshan Han
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhiwei Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Jiacheng Sun
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, People's Republic of China
| | - Chuanlu Ren
- Department of Clinical Laboratory, The 904th Hospital of the People's Liberation Army, Wuxi 214044, People's Republic of China
| | - Qingyou Meng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, People's Republic of China
| | - Junjie Yang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
39
|
Chen CH, Hsu EL, Stupp SI. Supramolecular self-assembling peptides to deliver bone morphogenetic proteins for skeletal regeneration. Bone 2020; 141:115565. [PMID: 32745692 PMCID: PMC7680412 DOI: 10.1016/j.bone.2020.115565] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Recombinant human bone morphogenetic proteins (BMPs) have shown clinical success in promoting bone healing, but they are also associated with unwanted side effects. The development of improved BMP carriers that can retain BMP at the defect site and maximize its efficacy would decrease the therapeutic BMP dose and thus improve its safety profile. In this review, we discuss the advantages of using self-assembling peptides, a class of synthetic supramolecular biomaterials, to deliver recombinant BMPs. Peptide amphiphiles (PAs) are a broad class of self-assembling peptides, and the use of PAs for BMP delivery and bone regeneration has been explored extensively over the past decade. Like many self-assembling peptide systems, PAs can be designed to form nanofibrous supramolecular biomaterials in which molecules are held together by non-covalent bonds. Chemical and biological functionality can be added to PA nanofibers, through conjugation of chemical moieties or biological epitopes to PA molecules. For example, PA nanofibers have been designed to bind heparan sulfate, a natural polysaccharide that is known to bind BMPs and potentiate their signal. Alternatively, PA nanofibers have been designed to synthetically mimic the structure and function of heparan sulfate, or to directly bind BMP specifically. In small animal models, these bio-inspired PA materials have shown the capacity to promote bone regeneration using BMP at doses 10-100 times lower than established therapeutic doses. These promising results have motivated further evaluation of PAs in large animal models, where their safety and efficacy must be established before clinical translation. We conclude with a discussion on the possiblity of combining PAs with other materials used in orthopaedic surgery to maximize their utility for clinical translation.
Collapse
Affiliation(s)
- Charlotte H Chen
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
| | - Erin L Hsu
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Orthopaedic Surgery, Northwestern University, 676 North St. Clair Street, Chicago, IL 60611, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA; Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, IL 60611, USA.
| |
Collapse
|
40
|
Gelain F, Luo Z, Zhang S. Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chem Rev 2020; 120:13434-13460. [DOI: 10.1021/acs.chemrev.0c00690] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fabrizio Gelain
- Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Italy
- Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, Milan 20162, Italy
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
41
|
Seroski DT, Dong X, Wong KM, Liu R, Shao Q, Paravastu AK, Hall CK, Hudalla GA. Charge guides pathway selection in β-sheet fibrillizing peptide co-assembly. Commun Chem 2020; 3:172. [PMID: 36703436 PMCID: PMC9814569 DOI: 10.1038/s42004-020-00414-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/15/2020] [Indexed: 01/29/2023] Open
Abstract
Peptide co-assembly is attractive for creating biomaterials with new forms and functions. Emergence of these properties depends on the peptide content of the final assembled structure, which is difficult to predict in multicomponent systems. Here using experiments and simulations we show that charge governs content by affecting propensity for self- and co-association in binary CATCH(+/-) peptide systems. Equimolar mixtures of CATCH(2+/2-), CATCH(4+/4-), and CATCH(6+/6-) formed two-component β-sheets. Solid-state NMR suggested the cationic peptide predominated in the final assemblies. The cationic-to-anionic peptide ratio decreased with increasing charge. CATCH(2+) formed β-sheets when alone, whereas the other peptides remained unassembled. Fibrillization rate increased with peptide charge. The zwitterionic CATCH parent peptide, "Q11", assembled slowly and only at decreased simulation temperature. These results demonstrate that increasing charge draws complementary peptides together faster, favoring co-assembly, while like-charged molecules repel. We foresee these insights enabling development of co-assembled peptide biomaterials with defined content and predictable properties.
Collapse
Affiliation(s)
- Dillon T Seroski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Xin Dong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Kong M Wong
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Qing Shao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
42
|
Zhang S. Self-assembling peptides: From a discovery in a yeast protein to diverse uses and beyond. Protein Sci 2020; 29:2281-2303. [PMID: 32939884 PMCID: PMC7586918 DOI: 10.1002/pro.3951] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Well-defined nanofiber scaffold hydrogels made of self-assembling peptides have found their way into various 3D tissue culture and clinical products. I reflect initial puzzlement of the unexpected discovery, gradual understanding of how these peptides undergo self-assembly, to eventually translating designer biological scaffolds into commercial products. Peptides are ubiquitous in nature and useful in many fields. They are found as hormones, pheromones, antibacterial, and antifungal agents in innate immunity systems, toxins, as well anti-inset pesticides. However, the concept of peptides as materials was not recognized until 1990 when a self-assembling peptide as a repeating segment in a yeast protein was serendipitously discovered. The peptide materials have bona fide materials properties and are made from simple amino acids with well-ordered nanostructures under physiological conditions. Some current applications include: (a) Real 3D tissue cell cultures of diverse tissue cells and various stem cells; (b) reparative and regenerative medicine as well as tissue engineering; (c) 3D tissue printing; (d) sustained releases of small molecules, growth factors and monoclonal antibodies; and (e) accelerated wound healing of skin and diabetic ulcers as well as instant hemostasis in surgery. Self-assembling peptide nanobiotechnology will likely continue to expand in many directions in the coming years. I will also briefly introduce my current research using a simple QTY code for membrane protein design. I am greatly honored and humbled to be invited to contribute an Award Winner Recollection of the 2020 Emil Thomas Kaiser Award from the Protein Society.
Collapse
Affiliation(s)
- Shuguang Zhang
- Laboratory of Molecular ArchitectureMedia Lab, Massachusetts Institute of Technology77 Massachusetts Avenue E15‐391CambridgeMassachusetts02139‐4306USA
| |
Collapse
|
43
|
Wu C, Shao X, Lin X, Gao W, Fang Y, Wang J. Surface modification of titanium with collagen/hyaluronic acid and bone morphogenetic protein 2/7 heterodimer promotes osteoblastic differentiation. Dent Mater J 2020; 39:1072-1079. [PMID: 33028783 DOI: 10.4012/dmj.2019-249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate the effects of a collagen/hyaluronic acid coating without or with incorporated heterodimeric bone morphogenetic protein 2/7 (BMP2/7) on in-vitro osteoblastic differentiation on titanium discs. The multilayer collagen/hyaluronic acid coatings without or without incorporated BMP2/7 were deposited on titanium discs via a layer-by-layer technique. The effects of the coatings were evaluated by assessing the alkaline phosphatase (ALP) activity (an early osteoblastic differentiation marker) and the osteocalcin expression (a late osteoblastic differentiation marker). The expression levels of the osteoblastic genes, such as alkaline phosphatase 2 (AKP2) and osteocalcin (OC) were detected using real-time RT-PCR. ALP activity and OC expression were significantly increased when cells were cultured with collagen/hyaluronic acid+BMP2/7 heterodimer (p<0.05). The same result was found in cells with the expression of a BMP2/7 fusion gene, OC and AKP2. These results indicated that collagen/hyaluronic acid+BMP2/7 heterodimer-coated discs might have the potential to greatly enhance osseointegration than a either BMP2 or BMP7 solution or a mixture of BMP2 and BMP7 BMP2/7.
Collapse
Affiliation(s)
- Chengzhong Wu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Xia Shao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Xianglin Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Weijin Gao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Yiming Fang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| | - Jingxiao Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
44
|
Matsugami D, Murakami T, Yoshida W, Imamura K, Bizenjima T, Seshima F, Saito A. Treatment with functionalized designer self-assembling peptide hydrogels promotes healing of experimental periodontal defects. J Periodontal Res 2020; 56:162-172. [PMID: 33022075 DOI: 10.1111/jre.12807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVES It has been reported that self-assembling peptide (SAP) hydrogels with functionalized motifs enhance proliferation and migration of host cells. How these designer SAP hydrogels perform in the treatment of periodontal defects remains unknown. This study aimed to test the potential of local application of designer SAP hydrogels with two different functionalized motifs in the treatment of experimental periodontal defects. MATERIAL AND METHODS In vitro, viability/proliferation of rat periodontal ligament-derived cells (PDLCs) cultured on an SAP hydrogel RADA16 and RADA16 with functionalized motifs, PRG (integrin binding sequence) and PDS (laminin cell adhesion motif), was assessed. Cell morphology was analyzed by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). In vivo, standardized periodontal defects were made mesially in the maxillary first molars of Wistar rats. Defects received RADA16, PRG, PDS or left unfilled. At 2 or 4 weeks postoperatively, healing was assessed by microcomputed tomography, histological and immunohistochemical methods. RESULTS Viability/proliferation of PDLCs was significantly greater on PRG than on RADA16 or PDS at 72 hours. rPDLCs in the PRG group showed enhanced elongations and cell protrusions. In vivo, at 4 weeks, bone volume fractions in the PRG and PDS groups were significantly greater than the RADA16 group. Histologically, bone formation was more clearly observed in the PRG and PDS groups compared with the RADA16 group. At 4 weeks, epithelial downgrowth in the hydrogel groups was significantly reduced compared to the Unfilled group. In Azan-Mallory staining, PDL-like bundles ran in oblique direction in the hydrogel groups. At 2 weeks, in the area near the root, proliferating cell nuclear antigen (PCNA)-positive cells were detected significantly more in the PRG group than other groups. At 4 weeks, in the middle part of the defect, a significantly greater level of vascular endothelial growth factor (VEGF)-positive cells and α-smooth muscle actin (SMA)-positive blood vessels were observed in the PRG group than in other groups. CONCLUSION The results indicate that local application of the functionalized designer SAP hydrogels, especially PRG, promotes periodontal healing by increasing cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Daisuke Matsugami
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | | | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
45
|
A6H polypeptide membranes: Molecular dynamics simulation, GIAO-DFT-NMR and TD-DFT spectroscopy analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Peng F, Zhang W, Qiu F. Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Curr Med Chem 2020; 27:4855-4881. [PMID: 31309877 DOI: 10.2174/0929867326666190712154021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of modern nanomedicine greatly depends on the involvement of novel materials as drug delivery system. In order to maximize the therapeutic effects of drugs and minimize their side effects, a number of natural or synthetic materials have been widely investigated for drug delivery. Among these materials, biomimetic self-assembling peptides (SAPs) have received more attention in recent years. Considering the rapidly growing number of SAPs designed for drug delivery, a summary of how SAPs-based drug delivery systems were designed, would be beneficial. METHOD We outlined research works on different SAPs that have been investigated as carriers for different drugs, focusing on the design of SAPs nanomaterials and how they were used for drug delivery in different strategies. RESULTS Based on the principle rules of chemical complementarity and structural compatibility, SAPs such as ionic self-complementary peptide, peptide amphiphile and surfactant-like peptide could be designed. Determined by the features of peptide materials and the drugs to be delivered, different strategies such as hydrogel embedding, hydrophobic interaction, electrostatic interaction, covalent conjugation or the combination of them could be employed to fabricate SAPs-drug complex, which could achieve slow release, targeted or environment-responsive delivery of drugs. Furthermore, some SAPs could also be combined with other types of materials for drug delivery, or even act as drug by themselves. CONCLUSION Various types of SAPs have been designed and used for drug delivery following various strategies, suggesting that SAPs as a category of versatile nanomaterials have promising potential in the field of nanomedicine.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wensheng Zhang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
47
|
Functionalised peptide hydrogel for the delivery of cardiac progenitor cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111539. [PMID: 33321610 DOI: 10.1016/j.msec.2020.111539] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
Heart failure (HF) remains one of the leading causes of death worldwide; most commonly developing after myocardial infarction (MI). Since adult cardiomyocytes characteristically do not proliferate, cells lost during MI are not replaced. As a result, the heart has a limited regenerative capacity. There is, therefore, a need to develop novel cell-based therapies to promote the regeneration of the heart after MI. The delivery and retention of cells at the injury site remains a significant challenge. In this context, we explored the potential of using an injectable, RGDSP-functionalised self-assembling peptide - FEFEFKFK - hydrogel as scaffold for the delivery and retention of rat cardiac progenitor cells (CPCs) into the heart. Our results show that culturing CPCs in vitro within the hydrogel for one-week promoted their spontaneous differentiation towards adult cardiac phenotypes. Injection of the hydrogel on its own, or loaded with CPCs, into the rat after injury resulted in a significant reduction in myocardial damage and left ventricular dilation.
Collapse
|
48
|
Xia K, Chen Z, Chen J, Xu H, Xu Y, Yang T, Zhang Q. RGD- and VEGF-Mimetic Peptide Epitope-Functionalized Self-Assembling Peptide Hydrogels Promote Dentin-Pulp Complex Regeneration. Int J Nanomedicine 2020; 15:6631-6647. [PMID: 32982223 PMCID: PMC7495350 DOI: 10.2147/ijn.s253576] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Cell-based tissue engineering is a promising method for dentin-pulp complex (DPC) regeneration. The challenges associated with DPC regeneration include the generation of a suitable microenvironment that facilitates the complete odontogenic differentiation of dental pulp stem cells (DPSCs) and the rapid induction of angiogenesis. Thus, the survival and subsequent differentiation of DPSCs are limited. Extracellular matrix (ECM)-like biomimetic hydrogels composed of self-assembling peptides (SAPs) were developed to provide an appropriate microenvironment for DPSCs. For functional DPC regeneration, the most important considerations are to provide an environment that promotes the adequate attachment of DPSCs and rapid vascularization of the regenerating pulp. Morphogenic signals in the form of growth factors (GFs) have been incorporated into SAPs to promote productive DPSC behaviors. However, the use of GFs has several drawbacks. We envision using a scaffold with SAPs coupled with long-term factors to increase DPSC attachment and vascularization as a method to address this challenge. METHODS In this study, we developed synthetic material for an SAP-based scaffold with RGD- and vascular endothelial growth factor (VEGF)-mimetic peptide epitopes with the dual functions of dentin and pulp regeneration. DPSCs and human umbilical vein endothelial cells (HUVECs) were used to evaluate the biological effects of SAP-based scaffolds. Furthermore, the pulpotomized molar rat model was employed to test the reparative and regenerative effects of SAP-based scaffolds. RESULTS This scaffold simultaneously presented RGD- and VEGF-mimetic peptide epitopes and provided a 3D microenvironment for DPSCs. DPSCs grown on this composite scaffold exhibited significantly improved survival and angiogenic and odontogenic differentiation in the multifunctionalized group in vitro. Histological and functional evaluations of a partially pulpotomized rat model revealed that the multifunctionalized scaffold was superior to other options with respect to stimulating pulp recovery and dentin regeneration in vivo. CONCLUSION Based on our data obtained with the functionalized SAP scaffold, a 3D microenvironment that supports stem cell adhesion and angiogenesis was generated that has great potential for dental pulp tissue engineering and regeneration.
Collapse
Affiliation(s)
- Kun Xia
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Zhuo Chen
- Department of Endodontics, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou310006, People’s Republic of China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou310006, People’s Republic of China
| | - Jie Chen
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
| | - Huaxing Xu
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
| | - Yunfei Xu
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
| | - Ting Yang
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
| | - Qi Zhang
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai200072, People’s Republic of China
| |
Collapse
|
49
|
Zhai H, Zhou J, Xu J, Sun X, Xu Y, Qiu X, Zhang C, Wu Z, Long H, Bai Y, Quan D. Mechanically strengthened hybrid peptide-polyester hydrogel and potential applications in spinal cord injury repair. Biomed Mater 2020; 15:055031. [DOI: 10.1088/1748-605x/ab9e45] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Fuwa H, Hemmi H, Kaweewan I, Kozaki I, Honda H, Kodani S. Heterologous production of new lasso peptide koreensin based on genome mining. J Antibiot (Tokyo) 2020; 74:42-50. [PMID: 32855516 DOI: 10.1038/s41429-020-00363-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022]
Abstract
Lasso peptides are a class of ribosomally biosynthesized and posttranslationally modified peptides with a knot structure as a common motif. Based on a genome search, a new biosynthetic gene cluster of lasso peptide was found in the genome of the proteobacterium Sphingomonas koreensis. Interestingly, the amino acid sequence of the precursor peptide gene includes two cell adhesion motif sequences (KGD and DGR). Heterologous production of the new lasso peptide was performed using the cryptic biosynthetic gene cluster of S. koreensis. As a result, a new lasso peptide named koreensin was produced by the gene expression system in the host strain Sphingomonas subterranea. The structure of koreensin was determined by NMR and ESI-MS analysis. The three-dimensional structure of koreensin was obtained based on an NOE experiment and the coupling constants. A variant peptide (koreensin-RGD), which had RGD instead of KGD, was produced by heterologous production with site-directed mutagenesis experiment. Koreensin and koreensin-RGD did not show cell adhesion inhibitory activity, although the molecules possessed cell adhesion motifs. The possible presence of a salt bridge between the motifs in koreensin was indicated, and it may prevent the cell adhesion motif from functioning.
Collapse
Affiliation(s)
- Hiroki Fuwa
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hikaru Hemmi
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Issara Kaweewan
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Ikko Kozaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan. .,Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan. .,Academic Institute, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|