1
|
Morgan WJ, Amemiya HM, Freddolino L. DNA methylation affects gene expression but not global chromatin structure in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631547. [PMID: 39829790 PMCID: PMC11741368 DOI: 10.1101/2025.01.06.631547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The activity of DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) together account for nearly all methylated nucleotides in the Escherichia coli K-12 MG1655 genome. Previous studies have shown that perturbation of DNA methylation alters E. coli global gene expression, but it is unclear whether the methylation state of Dam or Dcm target sites regulates local transcription. In recent genome-wide experiments, we observed an underrepresentation of Dam sites in transcriptionally silent extended protein occupancy domains (EPODs), prompting us to hypothesize that EPOD formation is caused partially by low Dam site density. We thus hypothesized that a methylation-deficient version of MG1655 would show large-scale aberrations in chromatin structure. To test our hypothesis, we cloned methyltransferase deletion strains and performed global protein occupancy profiling using high resolution in vivo protein occupancy display (IPOD-HR), chromatin immunoprecipitation for RNA polymerase (RNAP-ChIP), and transcriptome abundance profiling using RNASeq. Our results indicate that loss of DNA methylation does not result in large-scale changes in genomic protein occupancy such as the formation of EPODs, indicating that the previously observed depletion of Dam sites in EPODs is correlative, rather than causal, in nature. However, loci with dense clustering of Dam methylation sites show methylation-dependent changes in local RNA polymerase and total protein occupancy, but local transcription is unaffected. Our transcriptome profiling data indicates that deletion of dam and/or dcm results in significant expression changes within some functional gene categories including SOS response, flagellar synthesis, and translation, but these expression changes appear to result from indirect regulatory consequences of methyltransferase deletion. In agreement with the downregulation of genes involved in flagellar synthesis, dam deletion is characterized by a swimming motility-deficient phenotype. We conclude that DNA methylation does not control the overall protein occupancy landscape of the E. coli genome, and that observable changes in gene regulation are generally not resulting from regulatory consequences of local methylation state.
Collapse
Affiliation(s)
- Willow Jay Morgan
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Haley M. Amemiya
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Current Address: MOMA Therapeutics, Cambridge MA 02140
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Gao Q, Lu S, Wang Y, He L, Wang M, Jia R, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Sun D, Tian B, Cheng A. Bacterial DNA methyltransferase: A key to the epigenetic world with lessons learned from proteobacteria. Front Microbiol 2023; 14:1129437. [PMID: 37032876 PMCID: PMC10073500 DOI: 10.3389/fmicb.2023.1129437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Epigenetics modulates expression levels of various important genes in both prokaryotes and eukaryotes. These epigenetic traits are heritable without any change in genetic DNA sequences. DNA methylation is a universal mechanism of epigenetic regulation in all kingdoms of life. In bacteria, DNA methylation is the main form of epigenetic regulation and plays important roles in affecting clinically relevant phenotypes, such as virulence, host colonization, sporulation, biofilm formation et al. In this review, we survey bacterial epigenomic studies and focus on the recent developments in the structure, function, and mechanism of several highly conserved bacterial DNA methylases. These methyltransferases are relatively common in bacteria and participate in the regulation of gene expression and chromosomal DNA replication and repair control. Recent advances in sequencing techniques capable of detecting methylation signals have enabled the characterization of genome-wide epigenetic regulation. With their involvement in critical cellular processes, these highly conserved DNA methyltransferases may emerge as promising targets for developing novel epigenetic inhibitors for biomedical applications.
Collapse
Affiliation(s)
- Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shuwei Lu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Wang
- Key Laboratory of Livestock and Poultry Provenance Disease Research in Mianyang, Sichuan, China
| | - Longgui He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, Paten B. Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods 2017; 14:411-413. [PMID: 28218897 PMCID: PMC5704956 DOI: 10.1038/nmeth.4189] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 01/19/2017] [Indexed: 12/24/2022]
Abstract
DNA chemical modifications regulate genomic function. We present a framework for mapping cytosine and adenosine methylation with the Oxford Nanopore Technologies MinION using this nanopore sequencer's ionic current signal. We map three cytosine variants and two adenine variants. The results show that our model is sensitive enough to detect changes in genomic DNA methylation levels as a function of growth phase in Escherichia coli.
Collapse
Affiliation(s)
- Arthur C Rand
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Miten Jain
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Jordan M Eizenga
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Audrey Musselman-Brown
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Hugh E Olsen
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Mark Akeson
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Benedict Paten
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
4
|
Adhikari S, Curtis PD. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev 2016; 40:575-91. [PMID: 27476077 DOI: 10.1093/femsre/fuw023] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is a change in gene expression that is heritable without a change in DNA sequence itself. This phenomenon is well studied in eukaryotes, particularly in humans for its role in cellular differentiation, X chromosome inactivation and diseases like cancer. However, comparatively little is known about epigenetic regulation in bacteria. Bacterial epigenetics is mainly present in the form of DNA methylation where DNA methyltransferases add methyl groups to nucleotides. This review focuses on two methyltransferases well characterized for their roles in gene regulation: Dam and CcrM. Dam methyltransferase in Escherichia coli is important for expression of certain genes such as the pap operon, as well as other cellular processes like DNA replication initiation and DNA repair. In Caulobacter crescentus and other Alphaproteobacteria, the methyltransferase CcrM is cell cycle regulated and is involved in the cell-cycle-dependent regulation of several genes. The diversity of regulatory targets as well as regulatory mechanisms suggests that gene regulation by methylation could be a widespread and potent method of regulation in bacteria.
Collapse
Affiliation(s)
- Satish Adhikari
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
5
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during the repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and the regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential, and, in C. crescentus, it is important for temporal gene expression, which, in turn, is required for coordinating chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage, decrease transformation frequency in certain bacteria, and decrease the stability of short direct repeats and are necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
6
|
Horton JR, Zhang X, Blumenthal RM, Cheng X. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: potential implications for methylation-independent transcriptional repression. Nucleic Acids Res 2015; 43:4296-308. [PMID: 25845600 PMCID: PMC4417163 DOI: 10.1093/nar/gkv251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 11/21/2014] [Accepted: 03/11/2015] [Indexed: 12/31/2022] Open
Abstract
DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify a DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). Taken together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Gonzalez D, Kozdon JB, McAdams HH, Shapiro L, Collier J. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res 2014; 42:3720-35. [PMID: 24398711 PMCID: PMC3973325 DOI: 10.1093/nar/gkt1352] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA methylation is involved in a diversity of processes in bacteria, including maintenance of genome integrity and regulation of gene expression. Here, using Caulobacter crescentus as a model, we exploit genome-wide experimental methods to uncover the functions of CcrM, a DNA methyltransferase conserved in most Alphaproteobacteria. Using single molecule sequencing, we provide evidence that most CcrM target motifs (GANTC) switch from a fully methylated to a hemi-methylated state when they are replicated, and back to a fully methylated state at the onset of cell division. We show that DNA methylation by CcrM is not required for the control of the initiation of chromosome replication or for DNA mismatch repair. By contrast, our transcriptome analysis shows that >10% of the genes are misexpressed in cells lacking or constitutively over-expressing CcrM. Strikingly, GANTC methylation is needed for the efficient transcription of dozens of genes that are essential for cell cycle progression, in particular for DNA metabolism and cell division. Many of them are controlled by promoters methylated by CcrM and co-regulated by other global cell cycle regulators, demonstrating an extensive cross talk between DNA methylation and the complex regulatory network that controls the cell cycle of C. crescentus and, presumably, of many other Alphaproteobacteria.
Collapse
Affiliation(s)
- Diego Gonzalez
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, CH 1015, Switzerland, Department of Developmental Biology, Stanford University, CA 94305, USA and Department of Chemistry, Stanford University, CA 94305, USA
| | | | | | | | | |
Collapse
|
8
|
Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, Benes V, Fraser GM, Luscombe NM, Seshasayee ASN. Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun 2012; 3:886. [PMID: 22673913 DOI: 10.1038/ncomms1878] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/30/2012] [Indexed: 01/16/2023] Open
Abstract
DNA cytosine methylation regulates gene expression in mammals. In bacteria, its role in gene expression and genome architecture is less understood. Here we perform high-throughput sequencing of bisulfite-treated genomic DNA from Escherichia coli K12 to describe, for the first time, the extent of cytosine methylation of bacterial DNA at single-base resolution. Whereas most target sites (C(m)CWGG) are fully methylated in stationary phase cells, many sites with an extended CC(m)CWGG motif are only partially methylated in exponentially growing cells. We speculate that these partially methylated sites may be selected, as these are slightly correlated with the risk of spontaneous, non-synonymous conversion of methylated cytosines to thymines. Microarray analysis in a cytosine methylation-deficient mutant of E. coli shows increased expression of the stress response sigma factor RpoS and many of its targets in stationary phase. Thus, DNA cytosine methylation is a regulator of stationary phase gene expression in E. coli.
Collapse
|
9
|
Early Career Research Award Lecture. Structure, evolution and dynamics of transcriptional regulatory networks. Biochem Soc Trans 2011; 38:1155-78. [PMID: 20863280 DOI: 10.1042/bst0381155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The availability of entire genome sequences and the wealth of literature on gene regulation have enabled researchers to model an organism's transcriptional regulation system in the form of a network. In such a network, TFs (transcription factors) and TGs (target genes) are represented as nodes and regulatory interactions between TFs and TGs are represented as directed links. In the present review, I address the following topics pertaining to transcriptional regulatory networks. (i) Structure and organization: first, I introduce the concept of networks and discuss our understanding of the structure and organization of transcriptional networks. (ii) Evolution: I then describe the different mechanisms and forces that influence network evolution and shape network structure. (iii) Dynamics: I discuss studies that have integrated information on dynamics such as mRNA abundance or half-life, with data on transcriptional network in order to elucidate general principles of regulatory network dynamics. In particular, I discuss how cell-to-cell variability in the expression level of TFs could permit differential utilization of the same underlying network by distinct members of a genetically identical cell population. Finally, I conclude by discussing open questions for future research and highlighting the implications for evolution, development, disease and applications such as genetic engineering.
Collapse
|
10
|
Abstract
The DNA of Escherichia coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases, and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcmmethyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation, although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholera and Caulobactercrescentus) adenine methylation is essential, and in C.crescentus it is important for temporal gene expression which, in turn, is required for coordination of chromosome initiation, replication, and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage,decrease transformation frequency in certain bacteria,and decrease the stability of short direct repeats andare necessary for site-directed mutagenesis and to probe eukaryotic structure and function.
Collapse
|
11
|
|
12
|
Bravo D, Silva C, Carter JA, Hoare A, Álvarez SA, Blondel CJ, Zaldívar M, Valvano MA, Contreras I. Growth-phase regulation of lipopolysaccharide O-antigen chain length influences serum resistance in serovars of Salmonella. J Med Microbiol 2008; 57:938-946. [PMID: 18628492 DOI: 10.1099/jmm.0.47848-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The amount of lipopolysaccharide (LPS) O antigen (OAg) and its chain length distribution are important factors that protect bacteria from serum complement. Salmonella enterica serovar Typhi produces LPS with long chain length distribution (L-OAg) controlled by the wzz gene, whereas serovar Typhimurium produces LPS with two OAg chain lengths: an L-OAg controlled by Wzz(ST) and a very long (VL) OAg determined by Wzz(fepE). This study shows that serovar Enteritidis also has a bimodal OAg distribution with two preferred OAg chain lengths similar to serovar Typhimurium. It was reported previously that OAg production by S. Typhi increases at the late exponential and stationary phases of growth. The results of this study demonstrate that increased amounts of L-OAg produced by S. Typhi grown to stationary phase confer higher levels of bacterial resistance to human serum. Production of OAg by serovars Typhimurium and Enteritidis was also under growth-phase-dependent regulation; however, while the total amount of OAg increased during growth, the VL-OAg distribution remained constant. The VL-OAg distribution was primarily responsible for complement resistance, protecting the non-typhoidal serovars from the lytic action of serum irrespective of the growth phase. As a result, the non-typhoidal species were significantly more resistant than S. Typhi to human serum. When S. Typhi was transformed with a multicopy plasmid containing the S. Typhimurium wzz(fepE) gene, resistance to serum increased to levels comparable to the non-typhoidal serovars. In contrast to the relevant role for high-molecular-mass OAg molecules, the presence of Vi antigen did not contribute to serum resistance of clinical isolates of serovar Typhi.
Collapse
Affiliation(s)
- Denisse Bravo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Cecilia Silva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Javier A Carter
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Anilei Hoare
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Sergio A Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Carlos J Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Mercedes Zaldívar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Miguel A Valvano
- Department of Microbiology and Immunology, Siebens-Drake Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| |
Collapse
|
13
|
Carter JA, Blondel CJ, Zaldívar M, Álvarez SA, Marolda CL, Valvano MA, Contreras I. O-antigen modal chain length in Shigella flexneri 2a is growth-regulated through RfaH-mediated transcriptional control of the wzy gene. MICROBIOLOGY-SGM 2007; 153:3499-3507. [PMID: 17906147 DOI: 10.1099/mic.0.2007/010066-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Shigella flexneri 2a 2457T produces lipopolysaccharide (LPS) with two O-antigen (OAg) chain lengths: a short (S-OAg) controlled by WzzB and a very long (VL-OAg) determined by Wzz(pHS-2). This study demonstrates that the synthesis and length distribution of the S. flexneri OAg are under growth-phase-dependent regulation. Quantitative electrophoretic analysis showed that the VL-OAg increased during growth while the S-OAg distribution remained constant. Increased production of VL-OAg correlated with the growth-phase-regulated expression of the transcription elongation factor RfaH, and was severely impaired in a DeltarfaH mutant, which synthesized only low-molecular-mass OAg molecules and a small amount of S-OAg. Real-time RT-PCR revealed a drastic reduction of wzy polymerase gene expression in the DeltarfaH mutant. Complementation of this mutant with the wzy gene cloned into a high-copy-number plasmid restored the bimodal OAg distribution, suggesting that cellular levels of Wzy influence not only OAg polymerization but also chain-length distribution. Accordingly, overexpression of wzy in the wild-type strain resulted in production of a large amount of high-molecular-mass OAg molecules. An increased dosage of either wzzB or wzz(pHS-2) also altered OAg chain-length distribution. Transcription of wzzB and wzz(pHS-2) genes was regulated during bacterial growth but in an RfaH-independent manner. Overall, these findings indicate that expression of the wzy, wzzB and wzz(pHS-2) genes is finely regulated to determine an appropriate balance between the proteins responsible for polymerization and chain-length distribution of S. flexneri OAg.
Collapse
Affiliation(s)
- Javier A Carter
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Carlos J Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Mercedes Zaldívar
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Sergio A Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| | - Cristina L Marolda
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Miguel A Valvano
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, PO Box 174 Correo 22, Santiago, Chile
| |
Collapse
|