1
|
Song Q, Hu T, Liang B, Li S, Li Y, Wu J, Wang S, Zhou X. cascAGS: Comparative Analysis of SNP Calling Methods for Human Genome Data in the Absence of Gold Standard. Interdiscip Sci 2024:10.1007/s12539-024-00653-8. [PMID: 39443427 DOI: 10.1007/s12539-024-00653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The development of third-generation sequencing has accelerated the boom of single nucleotide polymorphism (SNP) calling methods, but evaluating accuracy remains challenging owing to the absence of the SNP gold standard. The definitions for without-gold-standard and performance metrics and their estimation are urgently needed. Additionally, the possible correlations between different SNP loci should also be further explored. To address these challenges, we first introduced the concept of a gold standard and imperfect gold standard under the consistency framework and gave the corresponding definitions of sensitivity and specificity. A latent class model (LCM) was established to estimate the sensitivity and specificity of callers. Furthermore, we incorporated different dependency structures into LCM to investigate their impact on sensitivity and specificity. The performance of LCM was illustrated by comparing the accuracy of BCFtools, DeepVariant, FreeBayes, and GATK on various datasets. Through estimations across multiple datasets, the results indicate that LCM is well-suitable for evaluating callers without the SNP gold standard, and accurate inclusion of the dependency between variations is crucial for better performance ranking. DeepVariant has a higher sum of sensitivity and specificity than other callers, followed by GATK and BCFtools. FreeBayes has low sensitivity but high specificity. Notably, appropriate sequencing coverage is another important factor for precise callers' evaluation. Most importantly, a web interface for assessing and comparing different callers was developed to simplify the evaluation process.
Collapse
Affiliation(s)
- Qianqian Song
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100083, China
| | - Taobo Hu
- Department of Breast Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Baosheng Liang
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100083, China
| | - Shihai Li
- Chongqing Big Data Research Institute, Peking University, Chongqing, 401147, China
| | - Yang Li
- Chongqing Big Data Research Institute, Peking University, Chongqing, 401147, China
| | - Jinbo Wu
- Department of Breast Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Shu Wang
- Department of Breast Surgery, Peking University People's Hospital, Beijing, 100044, China.
| | - Xiaohua Zhou
- Department of Biostatistics, School of Public Health, Peking University, Beijing, 100083, China.
| |
Collapse
|
2
|
Xu J, Liu S, Ren Y, You Y, Wang Z, Zhang Y, Zhu X, Hu P. Genome-wide identification of HSP90 gene family in Rosa chinensis and its response to salt and drought stresses. 3 Biotech 2024; 14:204. [PMID: 39161880 PMCID: PMC11330952 DOI: 10.1007/s13205-024-04052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
Heat shock protein 90 (HSP90) is important for many organisms, including plants. Based on the whole genome information, the gene number, gene structure, evolutionary relationship, protein structure, and active site of the HSP90 gene family in Rosa chinensis and Rubus idaeus were determined, and the expression of the HSP90 gene under salt, and drought stresses in two rose varieties Wangxifeng and Sweet Avalanche were analyzed. Six and eight HSP90 genes were identified from R. chinensis and Ru. idaeus, respectively. Phylogenetic analysis revealed that the analyzed genes were divided into two Groups and four subgroups (Classes 1a, 1b, 2a, and 2b). Although members within the same classes displayed highly similar gene structures, while the gene structures and conserved domains of Group 1 (Class 1a and 1b) and the Group 2 (Class 2a and 2b) are different. Tandem and segmental duplication genes were found in Ru. idaeus, but not in R. chinensis, perhaps explaining the difference in HSP90 gene quantity in the two analyzed species. Analysis of cis-acting elements revealed abundant abiotic stress, photolight-response, and hormone-response elements in R. chinensis HSP90s. qRT-PCR analysis suggested that RcHSP90-1-1, RcHSP90-5-1 and RcHSP90-6-1 in Sweet Avalanche and Wangxifeng varieties played important regulatory roles under salt and drought stress. The analysis of protein structure and active sites indicate that the potential different roles of RcHSP90-1-1, RcHSP90-5-1, and RcHSP90-6-1 in salt and drought stresses may come from the differences of corresponding protein structures and activation sites. These data will provide information for the breeding of rose varieties with high stress resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04052-0.
Collapse
Affiliation(s)
- Jun Xu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Shuangwei Liu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Yueming Ren
- College of Agricultural, Henan Institute of Science and Technology/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, 453003 Henan Province China
| | - Yang You
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Zhifang Wang
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Yongqiang Zhang
- Xuchang Academy of Agricultural Sciences, Xuchang, Henan Province China
| | - Xinjie Zhu
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan Province China
| | - Ping Hu
- College of Agricultural, Henan Institute of Science and Technology/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, 453003 Henan Province China
| |
Collapse
|
3
|
Ludwig J, Mrázek J. OrthoRefine: automated enhancement of prior ortholog identification via synteny. BMC Bioinformatics 2024; 25:163. [PMID: 38664637 PMCID: PMC11044567 DOI: 10.1186/s12859-024-05786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Identifying orthologs continues to be an early and imperative step in genome analysis but remains a challenging problem. While synteny (conservation of gene order) has previously been used independently and in combination with other methods to identify orthologs, applying synteny in ortholog identification has yet to be automated in a user-friendly manner. This desire for automation and ease-of-use led us to develop OrthoRefine, a standalone program that uses synteny to refine ortholog identification. RESULTS We developed OrthoRefine to improve the detection of orthologous genes by implementing a look-around window approach to detect synteny. We tested OrthoRefine in tandem with OrthoFinder, one of the most used software for identification of orthologs in recent years. We evaluated improvements provided by OrthoRefine in several bacterial and a eukaryotic dataset. OrthoRefine efficiently eliminates paralogs from orthologous groups detected by OrthoFinder. Using synteny increased specificity and functional ortholog identification; additionally, analysis of BLAST e-value, phylogenetics, and operon occurrence further supported using synteny for ortholog identification. A comparison of several window sizes suggested that smaller window sizes (eight genes) were generally the most suitable for identifying orthologs via synteny. However, larger windows (30 genes) performed better in datasets containing less closely related genomes. A typical run of OrthoRefine with ~ 10 bacterial genomes can be completed in a few minutes on a regular desktop PC. CONCLUSION OrthoRefine is a simple-to-use, standalone tool that automates the application of synteny to improve ortholog detection. OrthoRefine is particularly efficient in eliminating paralogs from orthologous groups delineated by standard methods.
Collapse
Affiliation(s)
- J Ludwig
- Institute of Bioinformatics, The University of Georgia, Athens, GA, 30602, USA.
| | - J Mrázek
- Department of Microbiology and Institute of Bioinformatics, The University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
4
|
Puerta-Arias JD, Isaza Agudelo JP, Naranjo Preciado TW. Identification and production of novel potential pathogen-specific biomarkers for diagnosis of histoplasmosis. Microbiol Spectr 2023; 11:e0093923. [PMID: 37882565 PMCID: PMC10714873 DOI: 10.1128/spectrum.00939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Histoplasmosis is considered one of the most important mycoses due to the increasing number of individuals susceptible to develop severe clinical forms, particularly those with HIV/AIDS or receiving immunosuppressive biological therapies, the high mortality rates reported when antifungal treatment is not initiated in a timely manner, and the limitations of conventional diagnostic methods. In this context, there is a clear need to improve the capacity of diagnostic tools to specifically detect the fungal pathogen, regardless of the patient's clinical condition or the presence of other co-infections. The proposed novel pathogen-specific biomarkers have the potential to be used in immunodiagnostic platforms and antifungal treatment monitoring in histoplasmosis. In addition, the bioinformatics strategy used in this study could be applied to identify potential diagnostic biomarkers in other models of fungal infection of public health importance.
Collapse
Affiliation(s)
- Juan David Puerta-Arias
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB-UdeA-UPB-UDES), Medellín, Colombia
- School of Health Sciences, Universidad Pontificia Bolivariana, Medellín, Colombia
- Universidad de Santander (UDES), Facultad de Ciencias Médicas y de la Salud, Bucaramanga, Colombia
| | | | - Tonny Williams Naranjo Preciado
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB-UdeA-UPB-UDES), Medellín, Colombia
- School of Health Sciences, Universidad Pontificia Bolivariana, Medellín, Colombia
| |
Collapse
|
5
|
Rana D, Sharma P, Arpita K, Srivastava H, Sharma S, Gaikwad K. Genome-wide identification and characterization of GRAS gene family in pigeonpea ( Cajanus cajan (L.) Millspaugh). 3 Biotech 2023; 13:363. [PMID: 37840881 PMCID: PMC10570252 DOI: 10.1007/s13205-023-03782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The GRAS proteins are plant-specific transcription factors (TFs) that play a crucial role in various plant physiological processes, including tissue development and stress responses. To date, GRAS family has been comprehensively characterized in Arabidopsis, soybean, rice, chickpea and other plant species. To understand the structural and functional aspects of pigeonpea (C. cajan), we identified 60 putative GRAS (CcGRAS) genes from pigeonpea genome and further analysed their physicochemical properties, subcellular locations, evolutionary classification, exon-intron structures, conserved domains, gene duplication events and cis-promoter regions. Based on the sequence similarity, CcGRAS family was clustered into 9 subfamilies and the genes with a similar structure and motif distribution were clustered in the same group. The gene duplication studies revealed that these genes were derived from tandem and dispersed duplication events. The cis-promoter regulatory analysis of CcGRAS genes indicated the presence of three types of cis-acting elements including light-responsive, hormone-responsive and plant growth and development related. The expression profiling of CcGRAS genes revealed their tissue-specific functions and differential nature. Collectively, this study highlights relevant functional and regulatory elements of GRAS family in pigeonpea creating a significant resource for future functional studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03782-x.
Collapse
Affiliation(s)
- Divyansh Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313 India
| | - Priya Sharma
- Department of Biotechnology, Jamia Hamdard, New Delhi, Delhi 110062 India
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Kumari Arpita
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Harsha Srivastava
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Sandhya Sharma
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Kishor Gaikwad
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| |
Collapse
|
6
|
Manzano-Marín A, Kvist S, Oceguera-Figueroa A. Evolution of an Alternative Genetic Code in the Providencia Symbiont of the Hematophagous Leech Haementeria acuecueyetzin. Genome Biol Evol 2023; 15:evad164. [PMID: 37690114 PMCID: PMC10540940 DOI: 10.1093/gbe/evad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Strict blood-feeding animals are confronted with a strong B-vitamin deficiency. Blood-feeding leeches from the Glossiphoniidae family, similarly to hematophagous insects, have evolved specialized organs called bacteriomes to harbor symbiotic bacteria. Leeches of the Haementeria genus have two pairs of globular bacteriomes attached to the esophagus which house intracellular "Candidatus Providencia siddallii" bacteria. Previous work analyzing a draft genome of the Providencia symbiont of the Mexican leech Haementeria officinalis showed that, in this species, the bacteria hold a reduced genome capable of synthesizing B vitamins. In this work, we aimed to expand our knowledge on the diversity and evolution of Providencia symbionts of Haementeria. For this purpose, we sequenced the symbiont genomes of three selected leech species. We found that all genomes are highly syntenic and have kept a stable genetic repertoire, mirroring ancient insect endosymbionts. Additionally, we found B-vitamin pathways to be conserved among these symbionts, pointing to a conserved symbiotic role. Lastly and most notably, we found that the symbiont of H. acuecueyetzin has evolved an alternative genetic code, affecting a portion of its proteome and showing evidence of a lineage-specific and likely intermediate stage of genetic code reassignment.
Collapse
Affiliation(s)
- Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sebastian Kvist
- Department of Natural History, Royal Ontario Museum, Toronto, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Present address: Swedish Museum of Natural History, Stockholm, Sweden
| | - Alejandro Oceguera-Figueroa
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autonoma de México, Ciudad de México, México
| |
Collapse
|
7
|
Bernot JP, Owen CL, Wolfe JM, Meland K, Olesen J, Crandall KA. Major Revisions in Pancrustacean Phylogeny and Evidence of Sensitivity to Taxon Sampling. Mol Biol Evol 2023; 40:msad175. [PMID: 37552897 PMCID: PMC10414812 DOI: 10.1093/molbev/msad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023] Open
Abstract
The clade Pancrustacea, comprising crustaceans and hexapods, is the most diverse group of animals on earth, containing over 80% of animal species and half of animal biomass. It has been the subject of several recent phylogenomic analyses, yet relationships within Pancrustacea show a notable lack of stability. Here, the phylogeny is estimated with expanded taxon sampling, particularly of malacostracans. We show small changes in taxon sampling have large impacts on phylogenetic estimation. By analyzing identical orthologs between two slightly different taxon sets, we show that the differences in the resulting topologies are due primarily to the effects of taxon sampling on the phylogenetic reconstruction method. We compare trees resulting from our phylogenomic analyses with those from the literature to explore the large tree space of pancrustacean phylogenetic hypotheses and find that statistical topology tests reject the previously published trees in favor of the maximum likelihood trees produced here. Our results reject several clades including Caridoida, Eucarida, Multicrustacea, Vericrustacea, and Syncarida. Notably, we find Copepoda nested within Allotriocarida with high support and recover a novel relationship between decapods, euphausiids, and syncarids that we refer to as the Syneucarida. With denser taxon sampling, we find Stomatopoda sister to this latter clade, which we collectively name Stomatocarida, dividing Malacostraca into three clades: Leptostraca, Peracarida, and Stomatocarida. A new Bayesian divergence time estimation is conducted using 13 vetted fossils. We review our results in the context of other pancrustacean phylogenetic hypotheses and highlight 15 key taxa to sample in future studies.
Collapse
Affiliation(s)
- James P Bernot
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Christopher L Owen
- Systematic Entomology Laboratory, USDA-ARS, ℅ National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kenneth Meland
- Department of Biology, University of Bergen, Bergen, Norway
| | - Jørgen Olesen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Keith A Crandall
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
8
|
Ramírez-Zavaleta CY, García-Barrera LJ, Rodríguez-Verástegui LL, Arrieta-Flores D, Gregorio-Jorge J. An Overview of PRR- and NLR-Mediated Immunities: Conserved Signaling Components across the Plant Kingdom That Communicate Both Pathways. Int J Mol Sci 2022; 23:12974. [PMID: 36361764 PMCID: PMC9654257 DOI: 10.3390/ijms232112974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cell-surface-localized pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain and leucine-rich repeat receptors (NLRs) are plant immune proteins that trigger an orchestrated downstream signaling in response to molecules of microbial origin or host plant origin. Historically, PRRs have been associated with pattern-triggered immunity (PTI), whereas NLRs have been involved with effector-triggered immunity (ETI). However, recent studies reveal that such binary distinction is far from being applicable to the real world. Although the perception of plant pathogens and the final mounting response are achieved by different means, central hubs involved in signaling are shared between PTI and ETI, blurring the zig-zag model of plant immunity. In this review, we not only summarize our current understanding of PRR- and NLR-mediated immunities in plants, but also highlight those signaling components that are evolutionarily conserved across the plant kingdom. Altogether, we attempt to offer an overview of how plants mediate and integrate the induction of the defense responses that comprise PTI and ETI, emphasizing the need for more evolutionary molecular plant-microbe interactions (EvoMPMI) studies that will pave the way to a better understanding of the emergence of the core molecular machinery involved in the so-called evolutionary arms race between plants and microbes.
Collapse
Affiliation(s)
- Candy Yuriria Ramírez-Zavaleta
- Programa Académico de Ingeniería en Biotecnología—Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, Tepeyanco 90180, Mexico
| | - Laura Jeannette García-Barrera
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. de las Culturas, Veracruzanas No. 101, Xalapa 91090, Mexico
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Carretera Estatal Santa Inés Tecuexcomac-Tepetitla Km.1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Mexico
| | | | - Daniela Arrieta-Flores
- Programa Académico de Ingeniería en Biotecnología—Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, Tepeyanco 90180, Mexico
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México 09310, Mexico
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología—Comisión Nacional del Agua, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico
| |
Collapse
|
9
|
Kijima Y, Wantong W, Igarashi Y, Yoshitake K, Asakawa S, Suzuki Y, Watabe S, Kinoshita S. Age-Associated Different Transcriptome Profiling in Zebrafish and Rats: an Insight into the Diversity of Vertebrate Aging. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:895-910. [PMID: 36063238 DOI: 10.1007/s10126-022-10153-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Most mammals, including humans, show obvious aging phenotypes, for example, loss of tissue plasticity and sarcopenia. In this regard, fish can be attractive models to study senescence because of their unique aging characteristics. The lifespan of fish varies widely, and several species can live for over 200 years. Moreover, some fish show anti-aging features and indeterminate growth throughout their life. Therefore, exploring the aging mechanism in fish could provide new insights into vertebrate aging. To this end, we conducted RNA sequencing (RNA-seq) assays for various organs and growth stages of zebrafish and compared the data with previously published RNA-seq data of rats. Age-associated differentially expressed genes (DEGs) for all zebrafish tissue samples reveal the upregulation of circadian genes and downregulation of hmgb3a. On one hand, a comparative analysis of DEG profiles associated with aging between zebrafish and rats identifies upregulation of circadian genes and downregulation of collagen genes as conserved transcriptome changes. On the other hand, in zebrafish, upregulation of autophagy-related genes in muscles and AP-1 transcription factor genes in various tissues is observed, which may imply fish-specific anti-aging characteristics. Consistent with our knowledge of mammalian aging, DEG profiles related to tissue senescence are observed in rats. We also detect age-associated downregulation of muscle homeostasis and differentiation-related genes in zebrafish gills, indicating a fish-specific senescence phenotype. Our results indicate both common and different aging profiles between fish and mammals, which could be used for future translational research.
Collapse
Affiliation(s)
- Yusuke Kijima
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Wang Wantong
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yoji Igarashi
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
- Graduate School of Bioresources, Mie University, Mie, 514-8507, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, 272-8562, Japan
| | - Shugo Watabe
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
10
|
Zhijun Z, Peiyao Y, Bing H, Ruifang M, Vinod KK, Ramakrishnan M. Genome-wide identification and expression characterization of the DoG gene family of moso bamboo (Phyllostachys edulis). BMC Genomics 2022; 23:357. [PMID: 35538420 PMCID: PMC9092881 DOI: 10.1186/s12864-022-08551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The DoG (Delay of Germination1) family plays a key regulatory role in seed dormancy and germination. However, to date, there is no complete genomic overview of the DoG gene family of any economically valuable crop, including moso bamboo (Phyllostachys edulis), and no studies have been conducted to characterize its expression profile. To identify the DoG gene members of moso bamboo (PeDoG) and to investigate their family structural features and tissue expression profile characteristics, a study was conducted. Based on the whole genome and differential transcriptome data, in this investigation, we have scrutinized the physicochemical properties, gene structure, cis-acting elements, phylogenetic relationships, conserved structural (CS) domains, CS motifs and expression patterns of the PeDoG1 family of moso bamboo. RESULTS The DoG family genes of moso bamboo were found distributed across 16 chromosomal scaffolds with 24 members. All members were found to carry DoG1 structural domains, while 23 members additionally possessed basic leucine zipper (bZIP) structural domains. We could divide the PeDoG genes into three subfamilies based on phylogenetic relationships. Covariance analysis revealed that tandem duplication was the main driver of amplification of the PeDoG genes. The upstream promoter of these genes containing several cis-acting elements indicates a plausible role in abiotic stress and hormone induction. Gene expression pattern according to transcriptome data revealed participation of the PeDoG genes in tissue and organ development. Analysis using Short Time-series Expression Miner (STEM) tool revealed that the PeDoG gene family is also associated with rapid early shoot growth. Gene ontology (GO) and KEGG analyses showed a dual role of the PeDoG genes. We found that PeDoGs has a possible role as bZIP transcription factors by regulating Polar like1 (PL1) gene expression, and thereby playing a disease response role in moso bamboo. Quantitative gene expression of the PeDoG genes revealed that they were abundantly expressed in roots and leaves, and could be induced in response to gibberellin (GA). CONCLUSION In this study, we found that the PeDoG genes are involved in a wide range of activities such as growth and development, stress response and transcription. This forms the first report of PeDoG genes and their potential roles in moso bamboo.
Collapse
Affiliation(s)
- Zhang Zhijun
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China. .,School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| | - Yu Peiyao
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.,School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Huang Bing
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.,School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Ma Ruifang
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | | | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China. .,Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
11
|
Birikmen M, Bohnsack KE, Tran V, Somayaji S, Bohnsack MT, Ebersberger I. Tracing Eukaryotic Ribosome Biogenesis Factors Into the Archaeal Domain Sheds Light on the Evolution of Functional Complexity. Front Microbiol 2021; 12:739000. [PMID: 34603269 PMCID: PMC8481954 DOI: 10.3389/fmicb.2021.739000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/17/2021] [Indexed: 01/23/2023] Open
Abstract
Ribosome assembly is an essential and carefully choreographed cellular process. In eukaryotes, several 100 proteins, distributed across the nucleolus, nucleus, and cytoplasm, co-ordinate the step-wise assembly of four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (RPs) into the mature ribosomal subunits. Due to the inherent complexity of the assembly process, functional studies identifying ribosome biogenesis factors and, more importantly, their precise functions and interplay are confined to a few and very well-established model organisms. Although best characterized in yeast (Saccharomyces cerevisiae), emerging links to disease and the discovery of additional layers of regulation have recently encouraged deeper analysis of the pathway in human cells. In archaea, ribosome biogenesis is less well-understood. However, their simpler sub-cellular structure should allow a less elaborated assembly procedure, potentially providing insights into the functional essentials of ribosome biogenesis that evolved long before the diversification of archaea and eukaryotes. Here, we use a comprehensive phylogenetic profiling setup, integrating targeted ortholog searches with automated scoring of protein domain architecture similarities and an assessment of when search sensitivity becomes limiting, to trace 301 curated eukaryotic ribosome biogenesis factors across 982 taxa spanning the tree of life and including 727 archaea. We show that both factor loss and lineage-specific modifications of factor function modulate ribosome biogenesis, and we highlight that limited sensitivity of the ortholog search can confound evolutionary conclusions. Projecting into the archaeal domain, we find that only few factors are consistently present across the analyzed taxa, and lineage-specific loss is common. While members of the Asgard group are not special with respect to their inventory of ribosome biogenesis factors (RBFs), they unite the highest number of orthologs to eukaryotic RBFs in one taxon. Using large ribosomal subunit maturation as an example, we demonstrate that archaea pursue a simplified version of the corresponding steps in eukaryotes. Much of the complexity of this process evolved on the eukaryotic lineage by the duplication of ribosomal proteins and their subsequent functional diversification into ribosome biogenesis factors. This highlights that studying ribosome biogenesis in archaea provides fundamental information also for understanding the process in eukaryotes.
Collapse
Affiliation(s)
- Mehmet Birikmen
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Vinh Tran
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Sharvari Somayaji
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University, Göttingen, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Center (S-BIK-F), Frankfurt, Germany.,LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| |
Collapse
|
12
|
Huang LC, Taujale R, Gravel N, Venkat A, Yeung W, Byrne DP, Eyers PA, Kannan N. KinOrtho: a method for mapping human kinase orthologs across the tree of life and illuminating understudied kinases. BMC Bioinformatics 2021; 22:446. [PMID: 34537014 PMCID: PMC8449880 DOI: 10.1186/s12859-021-04358-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Protein kinases are among the largest druggable family of signaling proteins, involved in various human diseases, including cancers and neurodegenerative disorders. Despite their clinical relevance, nearly 30% of the 545 human protein kinases remain highly understudied. Comparative genomics is a powerful approach for predicting and investigating the functions of understudied kinases. However, an incomplete knowledge of kinase orthologs across fully sequenced kinomes severely limits the application of comparative genomics approaches for illuminating understudied kinases. Here, we introduce KinOrtho, a query- and graph-based orthology inference method that combines full-length and domain-based approaches to map one-to-one kinase orthologs across 17 thousand species. RESULTS Using multiple metrics, we show that KinOrtho performed better than existing methods in identifying kinase orthologs across evolutionarily divergent species and eliminated potential false positives by flagging sequences without a proper kinase domain for further evaluation. We demonstrate the advantage of using domain-based approaches for identifying domain fusion events, highlighting a case between an understudied serine/threonine kinase TAOK1 and a metabolic kinase PIK3C2A with high co-expression in human cells. We also identify evolutionary fission events involving the understudied OBSCN kinase domains, further highlighting the value of domain-based orthology inference approaches. Using KinOrtho-defined orthologs, Gene Ontology annotations, and machine learning, we propose putative biological functions of several understudied kinases, including the role of TP53RK in cell cycle checkpoint(s), the involvement of TSSK3 and TSSK6 in acrosomal vesicle localization, and potential functions for the ULK4 pseudokinase in neuronal development. CONCLUSIONS In sum, KinOrtho presents a novel query-based tool to identify one-to-one orthologous relationships across thousands of proteomes that can be applied to any protein family of interest. We exploit KinOrtho here to identify kinase orthologs and show that its well-curated kinome ortholog set can serve as a valuable resource for illuminating understudied kinases, and the KinOrtho framework can be extended to any protein-family of interest.
Collapse
Affiliation(s)
- Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA 30602 USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA 30602 USA
| | - Nathan Gravel
- PREP@UGA, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602 USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 Green St., Athens, GA 30602 USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA 30602 USA
| | - Dominic P. Byrne
- Department of Biochemistry and Systems Biology, University of Liverpool, Crown St, Liverpool, UK
| | - Patrick A. Eyers
- Department of Biochemistry and Systems Biology, University of Liverpool, Crown St, Liverpool, UK
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA 30602 USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 Green St., Athens, GA 30602 USA
| |
Collapse
|
13
|
Tassia MG, David KT, Townsend JP, Halanych KM. TIAMMAt: Leveraging biodiversity to revise protein domain models, evidence from innate immunity. Mol Biol Evol 2021; 38:5806-5818. [PMID: 34459919 PMCID: PMC8662601 DOI: 10.1093/molbev/msab258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sequence annotation is fundamental for studying the evolution of protein families, particularly when working with nonmodel species. Given the rapid, ever-increasing number of species receiving high-quality genome sequencing, accurate domain modeling that is representative of species diversity is crucial for understanding protein family sequence evolution and their inferred function(s). Here, we describe a bioinformatic tool called Taxon-Informed Adjustment of Markov Model Attributes (TIAMMAt) which revises domain profile hidden Markov models (HMMs) by incorporating homologous domain sequences from underrepresented and nonmodel species. Using innate immunity pathways as a case study, we show that revising profile HMM parameters to directly account for variation in homologs among underrepresented species provides valuable insight into the evolution of protein families. Following adjustment by TIAMMAt, domain profile HMMs exhibit changes in their per-site amino acid state emission probabilities and insertion/deletion probabilities while maintaining the overall structure of the consensus sequence. Our results show that domain revision can heavily impact evolutionary interpretations for some families (i.e., NLR’s NACHT domain), whereas impact on other domains (e.g., rel homology domain and interferon regulatory factor domains) is minimal due to high levels of sequence conservation across the sampled phylogenetic depth (i.e., Metazoa). Importantly, TIAMMAt revises target domain models to reflect homologous sequence variation using the taxonomic distribution under consideration by the user. TIAMMAt’s flexibility to revise any subset of the Pfam database using a user-defined taxonomic pool will make it a valuable tool for future protein evolution studies, particularly when incorporating (or focusing) on nonmodel species.
Collapse
Affiliation(s)
- Michael G Tassia
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Kyle T David
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - James P Townsend
- Whitman Center, Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Biology, Providence College, Providence, Rhode Island
| | | |
Collapse
|
14
|
Harris CD, Torrance EL, Raymann K, Bobay LM. CoreCruncher: Fast and Robust Construction of Core Genomes in Large Prokaryotic Data Sets. Mol Biol Evol 2021; 38:727-734. [PMID: 32886787 PMCID: PMC7826169 DOI: 10.1093/molbev/msaa224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The core genome represents the set of genes shared by all, or nearly all, strains of a given population or species of prokaryotes. Inferring the core genome is integral to many genomic analyses, however, most methods rely on the comparison of all the pairs of genomes; a step that is becoming increasingly difficult given the massive accumulation of genomic data. Here, we present CoreCruncher; a program that robustly and rapidly constructs core genomes across hundreds or thousands of genomes. CoreCruncher does not compute all pairwise genome comparisons and uses a heuristic based on the distributions of identity scores to classify sequences as orthologs or paralogs/xenologs. Although it is much faster than current methods, our results indicate that our approach is more conservative than other tools and less sensitive to the presence of paralogs and xenologs. CoreCruncher is freely available from: https://github.com/lbobay/CoreCruncher. CoreCruncher is written in Python 3.7 and can also run on Python 2.7 without modification. It requires the python library Numpy and either Usearch or Blast. Certain options require the programs muscle or mafft.
Collapse
Affiliation(s)
- Connor D Harris
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC
| | - Ellis L Torrance
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC
| | - Kasie Raymann
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC
| | - Louis-Marie Bobay
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC
| |
Collapse
|
15
|
Li Y, Luo W, Sun Y, Chang H, Ma K, Zhao Z, Lu L. Identification and Expression Analysis of miR160 and Their Target Genes in Cucumber. Biochem Genet 2021; 60:127-152. [PMID: 34117971 DOI: 10.1007/s10528-021-10093-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
miR160 plays a crucial role in various biological processes by regulating their target gene auxin response factor (ARF) in plants. However, little is known about miR160 and ARF in cucumber fruit expansion. Here, 4 Csa-MIR160 family members and 17 CsARFs were identified through a genome-wide search. Csa-miR160 showed a closer relationship with those in melon. Phylogenetic analysis revealed that CsARFs were divided into four classes and most of CsARFs presented a closer evolutionary relationship with those from tomato. Putative cis-elements analysis predicted that Csa-MIR160 and CsARFs were involved in light, phytohormone and stress response, which proved that they might take part in light, phytohormone and stress signaling pathway by the miR160-ARF module. In addition, CsARF5, CsARF11, CsARF13 and CsARF14 were predicted as the target genes of Csa-miR160. qRT-PCR revealed that Csa-miR160 and their target gene CsARFs were differentially expressed in differential cucumber tissues and developmental stages. Csa-miR160d was only expressed in the expanded cucumber fruit. CsARF5, CsARF11 and CsARF13 exhibited the lower expression in the expanded fruit than those in the ovary, while, CsARF14 showed the reverse trend. Our results suggested that Csa-miR160d might play a crucial role in cucumber fruit expansion by negatively targeting CsARF5, CsARF11 and CsARF13. This is the first genome-wide analysis of miR160 in cucumber. These findings provide useful information and resources for further studying the role of miR160 and ARF in cucumber fruit expansion.
Collapse
Affiliation(s)
- Yaoyao Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Weirong Luo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Yongdong Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China. .,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| | - Huaicheng Chang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Kai Ma
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhenxiang Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Lin Lu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China.,Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| |
Collapse
|
16
|
Ün Ç, Schultner E, Manzano-Marín A, Flórez LV, Seifert B, Heinze J, Oettler J. Cytoplasmic incompatibility between Old and New World populations of a tramp ant. Evolution 2021; 75:1775-1791. [PMID: 34047357 DOI: 10.1111/evo.14261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022]
Abstract
Reproductive manipulation by endosymbiotic Wolbachia can cause unequal inheritance, allowing the manipulator to spread and potentially impacting evolutionary dynamics in infected hosts. Tramp and invasive species are excellent models to study the dynamics of host-Wolbachia associations because introduced populations often diverge in their microbiomes after colonizing new habitats, resulting in infection polymorphisms between native and introduced populations. Ants are the most abundant group of insects on earth, and numerous ant species are classified as highly invasive. However, little is known about the role of Wolbachia in these ecologically dominant insects. Here, we provide the first description of reproductive manipulation by Wolbachia in an ant. We show that Old and New World populations of the cosmotropic tramp ant Cardiocondyla obscurior harbor distinct Wolbachia strains, and that only the Old World strain manipulates host reproduction by causing cytoplasmic incompatibility (CI) in hybrid crosses. By uncovering a symbiont-induced mechanism of reproductive isolation in a social insect, our study provides a novel perspective on the biology of tramp ants and introduces a new system for studying the evolutionary consequences of CI.
Collapse
Affiliation(s)
- Çiğdem Ün
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, 93053, Germany
| | - Eva Schultner
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, 93053, Germany
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1090, Austria
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology Department, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
| | - Bernhard Seifert
- Senckenberg Museum of Natural History Görlitz, Görlitz, 02826, Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, 93053, Germany
| | - Jan Oettler
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg, 93053, Germany
| |
Collapse
|
17
|
A natural symbiotic bacterium drives mosquito refractoriness to Plasmodium infection via secretion of an antimalarial lipase. Nat Microbiol 2021; 6:806-817. [PMID: 33958765 PMCID: PMC9793891 DOI: 10.1038/s41564-021-00899-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The stalling global progress in the fight against malaria prompts the urgent need to develop new intervention strategies. Whilst engineered symbiotic bacteria have been shown to confer mosquito resistance to parasite infection, a major challenge for field implementation is to address regulatory concerns. Here, we report the identification of a Plasmodium-blocking symbiotic bacterium, Serratia ureilytica Su_YN1, isolated from the midgut of wild Anopheles sinensis in China that inhibits malaria parasites via secretion of an antimalarial lipase. Analysis of Plasmodium vivax epidemic data indicates that local malaria cases in Tengchong (Yunnan province, China) are significantly lower than imported cases and importantly, that the local vector A. sinensis is more resistant to infection by P. vivax than A. sinensis from other regions. Analysis of the gut symbiotic bacteria of mosquitoes from Yunnan province led to the identification of S. ureilytica Su_YN1. This bacterium renders mosquitoes resistant to infection by the human parasite Plasmodium falciparum or the rodent parasite Plasmodium berghei via secretion of a lipase that selectively kills parasites at various stages. Importantly, Su_YN1 rapidly disseminates through mosquito populations by vertical and horizontal transmission, providing a potential tool for blocking malaria transmission in the field.
Collapse
|
18
|
Sun Z, Huang S, Zhang M, Zhu Q, Haiminen N, Carrieri AP, Vázquez-Baeza Y, Parida L, Kim HC, Knight R, Liu YY. Challenges in benchmarking metagenomic profilers. Nat Methods 2021; 18:618-626. [PMID: 33986544 PMCID: PMC8184642 DOI: 10.1038/s41592-021-01141-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/02/2021] [Indexed: 02/02/2023]
Abstract
Accurate microbial identification and abundance estimation are crucial for metagenomics analysis. Various methods for classification of metagenomic data and estimation of taxonomic profiles, broadly referred to as metagenomic profilers, have been developed. Nevertheless, benchmarking of metagenomic profilers remains challenging because some tools are designed to report relative sequence abundance while others report relative taxonomic abundance. Here we show how misleading conclusions can be drawn by neglecting this distinction between relative abundance types when benchmarking metagenomic profilers. Moreover, we show compelling evidence that interchanging sequence abundance and taxonomic abundance will influence both per-sample summary statistics and cross-sample comparisons. We suggest that the microbiome research community pay attention to potentially misleading biological conclusions arising from this issue when benchmarking metagenomic profilers, by carefully considering the type of abundance data that were analyzed and interpreted and clearly stating the strategy used for metagenomic profiling.
Collapse
Affiliation(s)
- Zheng Sun
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shi Huang
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qiyun Zhu
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Niina Haiminen
- IBM T. J. Watson Research Center, Yorktown Heights, New York, USA
| | | | - Yoshiki Vázquez-Baeza
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Laxmi Parida
- IBM T. J. Watson Research Center, Yorktown Heights, New York, USA
| | - Ho-Cheol Kim
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Department of Computer Science & Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,# Correspondence: and
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA,# Correspondence: and
| |
Collapse
|
19
|
Linard B, Ebersberger I, McGlynn SE, Glover N, Mochizuki T, Patricio M, Lecompte O, Nevers Y, Thomas PD, Gabaldón T, Sonnhammer E, Dessimoz C, Uchiyama I. Ten Years of Collaborative Progress in the Quest for Orthologs. Mol Biol Evol 2021; 38:3033-3045. [PMID: 33822172 PMCID: PMC8321534 DOI: 10.1093/molbev/msab098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/07/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology-evolutionary relatedness-is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit-from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.
Collapse
Affiliation(s)
- Benjamin Linard
- LIRMM, University of Montpellier, CNRS, Montpellier, France.,SPYGEN, Le Bourget-du-Lac, France
| | - Ingo Ebersberger
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt, Germany.,LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Natasha Glover
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Tomohiro Mochizuki
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Yannis Nevers
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Erik Sonnhammer
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Christophe Dessimoz
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Department of Computer Science, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ikuo Uchiyama
- Department of Theoretical Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | | |
Collapse
|
20
|
Maruyama SR, Rogerio LA, Freitas PD, Teixeira MMG, Ribeiro JMC. Total Ortholog Median Matrix as an alternative unsupervised approach for phylogenomics based on evolutionary distance between protein coding genes. Sci Rep 2021; 11:3791. [PMID: 33589693 PMCID: PMC7884790 DOI: 10.1038/s41598-021-81926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
The increasing number of available genomic data allowed the development of phylogenomic analytical tools. Current methods compile information from single gene phylogenies, whether based on topologies or multiple sequence alignments. Generally, phylogenomic analyses elect gene families or genomic regions to construct phylogenomic trees. Here, we presented an alternative approach for Phylogenomics, named TOMM (Total Ortholog Median Matrix), to construct a representative phylogram composed by amino acid distance measures of all pairwise ortholog protein sequence pairs from desired species inside a group of organisms. The procedure is divided two main steps, (1) ortholog detection and (2) creation of a matrix with the median amino acid distance measures of all pairwise orthologous sequences. We tested this approach within three different group of organisms: Kinetoplastida protozoa, hematophagous Diptera vectors and Primates. Our approach was robust and efficacious to reconstruct the phylogenetic relationships for the three groups. Moreover, novel branch topologies could be achieved, providing insights about some phylogenetic relationships between some taxa.
Collapse
Affiliation(s)
- Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Luana Aparecida Rogerio
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Patricia Domingues Freitas
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | | | - José Marcos Chaves Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway rm 2E32, Rockville, MD, 20852, USA.
| |
Collapse
|
21
|
Watanabe Costa R, Batista MF, Meneghelli I, Vidal RO, Nájera CA, Mendes AC, Andrade-Lima IA, da Silveira JF, Lopes LR, Ferreira LRP, Antoneli F, Bahia D. Comparative Analysis of the Secretome and Interactome of Trypanosoma cruzi and Trypanosoma rangeli Reveals Species Specific Immune Response Modulating Proteins. Front Immunol 2020; 11:1774. [PMID: 32973747 PMCID: PMC7481403 DOI: 10.3389/fimmu.2020.01774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/04/2022] Open
Abstract
Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5–7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection.
Collapse
Affiliation(s)
- Renata Watanabe Costa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marina Ferreira Batista
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela Meneghelli
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ramon Oliveira Vidal
- The Berlin Institute for Medical Systems Biology-Max Delbrück Center for Molecular Medicine in the Helmholtz Association in Berlin, Berlin, Germany.,Laboratorio Nacional de Biociências (LNBio), Campinas, São Paulo, Brazil
| | - Carlos Alcides Nájera
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Augusta Andrade-Lima
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luciano Rodrigo Lopes
- Departamento de Informática em Saúde, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- RNA Systems Biology Lab (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Antoneli
- Departamento de Informática em Saúde, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
22
|
Heger P, Zheng W, Rottmann A, Panfilio KA, Wiehe T. The genetic factors of bilaterian evolution. eLife 2020; 9:e45530. [PMID: 32672535 PMCID: PMC7535936 DOI: 10.7554/elife.45530] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship.
Collapse
Affiliation(s)
- Peter Heger
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Wen Zheng
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Anna Rottmann
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, Cologne Biocenter, University of CologneCologneGermany
- School of Life Sciences, University of Warwick, Gibbet Hill CampusCoventryUnited Kingdom
| | - Thomas Wiehe
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| |
Collapse
|
23
|
Owen CL, Stern DB, Hilton SK, Crandall KA. Hemiptera phylogenomic resources: Tree‐based orthology prediction and conserved exon identification. Mol Ecol Resour 2020; 20:1346-1360. [DOI: 10.1111/1755-0998.13180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/02/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Christopher L. Owen
- Computational Biology Institute George Washington University Washington DC USA
- Systematic Entomology Laboratory USDA‐ARS Beltsville MD USA
| | - David B. Stern
- Computational Biology Institute George Washington University Washington DC USA
- Department of Integrative Biology University of Wisconsin ‐ Madison Madison WI USA
| | - Sarah K. Hilton
- Computational Biology Institute George Washington University Washington DC USA
- Department of Genome Sciences University of Washington Washington DC USA
| | - Keith A. Crandall
- Computational Biology Institute George Washington University Washington DC USA
| |
Collapse
|
24
|
Rouïl J, Jousselin E, Coeur d’acier A, Cruaud C, Manzano-Marín A. The Protector within: Comparative Genomics of APSE Phages across Aphids Reveals Rampant Recombination and Diverse Toxin Arsenals. Genome Biol Evol 2020; 12:878-889. [PMID: 32386316 PMCID: PMC7313666 DOI: 10.1093/gbe/evaa089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Phages can fundamentally alter the physiology and metabolism of their hosts. Although these phages are ubiquitous in the bacterial world, they have seldom been described among endosymbiotic bacteria. One notable exception is the APSE phage that is found associated with the gammaproteobacterial Hamiltonella defensa, hosted by several insect species. This secondary facultative endosymbiont is not necessary for the survival of its hosts but can infect certain individuals or even whole populations. Its infection in aphids is often associated with protection against parasitoid wasps. This protective phenotype has actually been linked to the infection of the symbiont strain with an APSE, which carries a toxin cassette that varies among so-called "types." In the present work, we seek to expand our understanding of the diversity of APSE phages as well as the relations of their Hamiltonella hosts. For this, we assembled and annotated the full genomes of 16 APSE phages infecting Hamiltonella symbionts across ten insect species. Molecular and phylogenetic analyses suggest that recombination has occurred repeatedly among lineages. Comparative genomics of the phage genomes revealed two variable regions that are useful for phage typing. Additionally, we find that mobile elements could play a role in the acquisition of new genes in the toxin cassette. Altogether, we provide an unprecedented view of APSE diversity and their genome evolution across aphids. This genomic investigation will provide a valuable resource for the design and interpretation of experiments aiming at understanding the protective phenotype these phages confer to their insect hosts.
Collapse
Affiliation(s)
- Jeff Rouïl
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Emmanuelle Jousselin
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Armelle Coeur d’acier
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Corinne Cruaud
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Évry, France
| | | |
Collapse
|
25
|
Lu X, Liu W, Xiang C, Li X, Wang Q, Wang T, Liu Z, Zhang J, Gao L, Zhang W. Genome-Wide Characterization of GRAS Family and Their Potential Roles in Cold Tolerance of Cucumber ( Cucumis sativus L.). Int J Mol Sci 2020; 21:E3857. [PMID: 32485801 PMCID: PMC7312588 DOI: 10.3390/ijms21113857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is one of the most important cucurbit vegetables but is often subjected to stress during cultivation. GRAS (gibberellic acid insensitive, repressor of GAI, and scarecrow) genes encode a family of transcriptional factors that regulate plant growth and development. In the model plant Arabidopsis thaliana, GRAS family genes function in formation of axillary meristem and root radial structure, phytohormone (gibberellin) signal transduction, light signal transduction and abiotic/biological stress. In this study, a gene family was comprehensively analyzed from the aspects of evolutionary tree, gene structure, chromosome location, evolutionary and expression pattern by means of bioinformatics; 37 GRAS gene family members have been screened from cucumber. We reconstructed an evolutionary tree based on multiple sequence alignment of the typical GRAS domain and conserved motif sequences with those of other species (A. thaliana and Solanum lycopersicum). Cucumber GRAS family was divided into 10 groups according to the classification of Arabidopsis and tomato genes. We conclude that tandem and segmental duplication have played important roles in the expansion and evolution of the cucumber GRAS (CsaGRAS) family. Expression patterns of CsaGRAS genes in different tissues and under cold treatment, combined with gene ontology annotation and interaction network analysis, revealed potentially different functions for CsaGRAS genes in response to cold tolerance, with members of the SHR, SCR and DELLA subfamilies likely playing important roles. In conclusion, this study provides valuable information and candidate genes for improving cucumber tolerance to cold stress.
Collapse
Affiliation(s)
- Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Chenggang Xiang
- College of Life Science and Technology, HongHe University, Mengzi 661100, China;
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Qing Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Jiali Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| |
Collapse
|
26
|
Ma W, Chen H, Jiang X, Wang J, Gelbič I, Guan X, Zhang L. Whole genome sequence analysis of the mosquitocidal Bacillus thuringiensis LLP29. Arch Microbiol 2020; 202:1693-1700. [PMID: 32296870 DOI: 10.1007/s00203-020-01875-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis (Bt) is efficient, strongly specific, and avirulent to humans, making it one of the most popular biopesticides in the world. Bt LLP29 is a mosquitocidal strain that was first isolated from Magnolia denudata. To understand its molecular mechanism against mosquitoes, the genome of Bt LLP29 was sequenced and annotated in this study. The LLP29 genome was found to have a total length of 5.99 Mb, with an average G + C content of 35.21%. A total of 6107 coding sequences were also detected, together with 42 rRNAs and 124 tRNAs and 135 other RNAs. With the help of annotation databases, including GO, COG, KEGG, Nr and Swiss-Prot, most unigene functions were identified. At the same time, a collinear analysis was performed on the genome of LLP29. There were also some virulence genes detected, including cry, chitinase, zwittermicin and vip.
Collapse
Affiliation(s)
- Weibo Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Huicheng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Xiaoyan Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Junxiang Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Ivan Gelbič
- Institute of Entomology, Biological Centre, Czech Academy of Sciences, Branišovská 31, 37005, Ceske Budejovice, Czech Republic.
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| |
Collapse
|
27
|
Galperin MY, Kristensen DM, Makarova KS, Wolf YI, Koonin EV. Microbial genome analysis: the COG approach. Brief Bioinform 2020; 20:1063-1070. [PMID: 28968633 DOI: 10.1093/bib/bbx117] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/01/2017] [Indexed: 11/15/2022] Open
Abstract
For the past 20 years, the Clusters of Orthologous Genes (COG) database had been a popular tool for microbial genome annotation and comparative genomics. Initially created for the purpose of evolutionary classification of protein families, the COG have been used, apart from straightforward functional annotation of sequenced genomes, for such tasks as (i) unification of genome annotation in groups of related organisms; (ii) identification of missing and/or undetected genes in complete microbial genomes; (iii) analysis of genomic neighborhoods, in many cases allowing prediction of novel functional systems; (iv) analysis of metabolic pathways and prediction of alternative forms of enzymes; (v) comparison of organisms by COG functional categories; and (vi) prioritization of targets for structural and functional characterization. Here we review the principles of the COG approach and discuss its key advantages and drawbacks in microbial genome analysis.
Collapse
|
28
|
Jiang J, Yang B, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. Comparative Genomics of Pediococcus pentosaceus Isolated From Different Niches Reveals Genetic Diversity in Carbohydrate Metabolism and Immune System. Front Microbiol 2020; 11:253. [PMID: 32174896 PMCID: PMC7055311 DOI: 10.3389/fmicb.2020.00253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Pediococcus pentosaceus isolated from fermented food and the gastrointestinal tracts of humans and animals have been widely identified, and some strains have been reported to reduce inflammation, encephalopathy, obesity and fatty liver in animals. In this study, the genomes of 65 P. pentosaceus strains isolated from human and animal feces and different fermented food were sequenced and comparative genomics analysis was performed on all strains along with nine sequenced representative strains to preliminarily reveal the lifestyle of P. pentosaceus, and investigate the genomic diversity within this species. The results reveal that P. pentosaceus is not host-specific, and shares core genes encoding proteins related to translation, ribosomal structure and biogenesis and signal transduction mechanisms, while its genetic diversity relates mainly to carbohydrate metabolism, and horizontally transferred DNA, especially prophages and bacteriocins encoded on plasmids. Additionally, this is the first report of a type IIA CRISPR/Cas system in P. pentosaceus. This work provides expanded resources of P. pentosaceus genomes, and offers a framework for understanding the biotechnological potential of this species.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, China
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, China.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, China.,Moorepark Teagasc Food Research Centre, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
29
|
Manzano-Marı N A, Coeur d'acier A, Clamens AL, Orvain C, Cruaud C, Barbe V, Jousselin E. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids' di-symbiotic systems. THE ISME JOURNAL 2020; 14:259-273. [PMID: 31624345 PMCID: PMC6908640 DOI: 10.1038/s41396-019-0533-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/24/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Many insects depend on obligate mutualistic bacteria to provide essential nutrients lacking from their diet. Most aphids, whose diet consists of phloem, rely on the bacterial endosymbiont Buchnera aphidicola to supply essential amino acids and B vitamins. However, in some aphid species, provision of these nutrients is partitioned between Buchnera and a younger bacterial partner, whose identity varies across aphid lineages. Little is known about the origin and the evolutionary stability of these di-symbiotic systems. It is also unclear whether the novel symbionts merely compensate for losses in Buchnera or carry new nutritional functions. Using whole-genome endosymbiont sequences of nine Cinara aphids that harbour an Erwinia-related symbiont to complement Buchnera, we show that the Erwinia association arose from a single event of symbiont lifestyle shift, from a free-living to an obligate intracellular one. This event resulted in drastic genome reduction, long-term genome stasis, and co-divergence with aphids. Fluorescence in situ hybridisation reveals that Erwinia inhabits its own bacteriocytes near Buchnera's. Altogether these results depict a scenario for the establishment of Erwinia as an obligate symbiont that mirrors Buchnera's. Additionally, we found that the Erwinia vitamin-biosynthetic genes not only compensate for Buchnera's deficiencies, but also provide a new nutritional function; whose genes have been horizontally acquired from a Sodalis-related bacterium. A subset of these genes have been subsequently transferred to a new Hamiltonella co-obligate symbiont in one specific Cinara lineage. These results show that the establishment and dynamics of multi-partner endosymbioses can be mediated by lateral gene transfers between co-ocurring symbionts.
Collapse
Affiliation(s)
- Alejandro Manzano-Marı N
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France.
| | - Armelle Coeur d'acier
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Anne-Laure Clamens
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Céline Orvain
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Corinne Cruaud
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Valérie Barbe
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Emmanuelle Jousselin
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| |
Collapse
|
30
|
Chen Y, Zhu P, Wu S, Lu Y, Sun J, Cao Q, Li Z, Xu T. Identification and expression analysis of GRAS transcription factors in the wild relative of sweet potato Ipomoea trifida. BMC Genomics 2019; 20:911. [PMID: 31783728 PMCID: PMC6884806 DOI: 10.1186/s12864-019-6316-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022] Open
Abstract
Background GRAS gene is an important transcription factor gene family that plays a crucial role in plant growth, development, adaptation to adverse environmental condition. Sweet potato is an important food, vegetable, industrial raw material, and biofuel crop in the world, which plays an essential role in food security in China. However, the function of sweet potato GRAS genes remains unknown. Results In this study, we identified and characterised 70 GRAS members from Ipomoea trifida, which is the progenitor of sweet potato. The chromosome distribution, phylogenetic tree, exon-intron structure and expression profiles were analysed. The distribution map showed that GRAS genes were randomly located in 15 chromosomes. In combination with phylogenetic analysis and previous reports in Arabidopsis and rice, the GRAS proteins from I. trifida were divided into 11 subfamilies. Gene structure showed that most of the GRAS genes in I. trifida lacked introns. The tissue-specific expression patterns and the patterns under abiotic stresses of ItfGRAS genes were investigated via RNA-seq and further tested by RT-qPCR. Results indicated the potential functions of ItfGRAS during plant development and stress responses. Conclusions Our findings will further facilitate the functional study of GRAS gene and molecular breeding of sweet potato.
Collapse
Affiliation(s)
- Yao Chen
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Panpan Zhu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, South Korea
| | - Shaoyuan Wu
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yan Lu
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jian Sun
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Qinghe Cao
- Xuzhou Academy of Agricultural Sciences/Sweet Potato Research Institute, Xuzhou, 221121, Jiangsu, China
| | - Zongyun Li
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| | - Tao Xu
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China. .,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
31
|
Qu Y, Bi C, He B, Ye N, Yin T, Xu LA. Genome-wide identification and characterization of the MADS-box gene family in Salix suchowensis. PeerJ 2019; 7:e8019. [PMID: 31720123 PMCID: PMC6842560 DOI: 10.7717/peerj.8019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/09/2019] [Indexed: 01/19/2023] Open
Abstract
MADS-box genes encode transcription factors that participate in various plant growth and development processes, particularly floral organogenesis. To date, MADS-box genes have been reported in many species, the completion of the sequence of the willow genome provides us with the opportunity to conduct a comprehensive analysis of the willow MADS-box gene family. Here, we identified 60 willow MADS-box genes using bioinformatics-based methods and classified them into 22 M-type (11 Mα, seven Mβ and four Mγ) and 38 MIKC-type (32 MIKCc and six MIKC*) genes based on a phylogenetic analysis. Fifty-six of the 60 SsMADS genes were randomly distributed on 19 putative willow chromosomes. By combining gene structure analysis with evolutionary analysis, we found that the MIKC-type genes were more conserved and played a more important role in willow growth. Further study showed that the MIKC* type was a transition between the M-type and MIKC-type. Additionally, the number of MADS-box genes in gymnosperms was notably lower than that in angiosperms. Finally, the expression profiles of these willow MADS-box genes were analysed in five different tissues (root, stem, leave, bud and bark) and validated by RT-qPCR experiments. This study is the first genome-wide analysis of the willow MADS-box gene family, and the results establish a basis for further functional studies of willow MADS-box genes and serve as a reference for related studies of other woody plants.
Collapse
Affiliation(s)
- Yanshu Qu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Changwei Bi
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Bing He
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
32
|
Cosentino S, Iwasaki W. SonicParanoid: fast, accurate and easy orthology inference. Bioinformatics 2019; 35:149-151. [PMID: 30032301 PMCID: PMC6298048 DOI: 10.1093/bioinformatics/bty631] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022] Open
Abstract
Motivation Orthology inference constitutes a common base of many genome-based studies, as a pre-requisite for annotating new genomes, finding target genes for biotechnological applications and revealing the evolutionary history of life. Although its importance keeps rising with the ever-growing number of sequenced genomes, existing tools are computationally demanding and difficult to employ. Results Here, we present SonicParanoid, which is faster than, but comparably accurate to, the well-established tools with a balanced precision-recall trade-off. Furthermore, SonicParanoid substantially relieves the difficulties of orthology inference for those who need to construct and maintain their own genomic datasets. Availability and implementation SonicParanoid is available with a GNU GPLv3 license on the Python Package Index and BitBucket. Documentation is available at http://iwasakilab.bs.s.u-tokyo.ac.jp/sonicparanoid. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Salvatore Cosentino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| |
Collapse
|
33
|
Alabdullah AK, Borrill P, Martin AC, Ramirez-Gonzalez RH, Hassani-Pak K, Uauy C, Shaw P, Moore G. A Co-Expression Network in Hexaploid Wheat Reveals Mostly Balanced Expression and Lack of Significant Gene Loss of Homeologous Meiotic Genes Upon Polyploidization. FRONTIERS IN PLANT SCIENCE 2019; 10:1325. [PMID: 31681395 PMCID: PMC6813927 DOI: 10.3389/fpls.2019.01325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 05/05/2023]
Abstract
Polyploidization has played an important role in plant evolution. However, upon polyploidization, the process of meiosis must adapt to ensure the proper segregation of increased numbers of chromosomes to produce balanced gametes. It has been suggested that meiotic gene (MG) duplicates return to a single copy following whole genome duplication to stabilize the polyploid genome. Therefore, upon the polyploidization of wheat, a hexaploid species with three related (homeologous) genomes, the stabilization process may have involved rapid changes in content and expression of MGs on homeologous chromosomes (homeologs). To examine this hypothesis, sets of candidate MGs were identified in wheat using co-expression network analysis and orthology informed approaches. In total, 130 RNA-Seq samples from a range of tissues including wheat meiotic anthers were used to define co-expressed modules of genes. Three modules were significantly correlated with meiotic tissue samples but not with other tissue types. These modules were enriched for GO terms related to cell cycle, DNA replication, and chromatin modification and contained orthologs of known MGs. Overall, 74.4% of genes within these meiosis-related modules had three homeologous copies which was similar to other tissue-related modules. Amongst wheat MGs identified by orthology, rather than co-expression, the majority (93.7%) were either retained in hexaploid wheat at the same number of copies (78.4%) or increased in copy number (15.3%) compared to ancestral wheat species. Furthermore, genes within meiosis-related modules showed more balanced expression levels between homeologs than genes in non-meiosis-related modules. Taken together, our results do not support extensive gene loss nor changes in homeolog expression of MGs upon wheat polyploidization. The construction of the MG co-expression network allowed identification of hub genes and provided key targets for future studies.
Collapse
Affiliation(s)
| | - Philippa Borrill
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Keywan Hassani-Pak
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
34
|
Hu X, Friedberg I. SwiftOrtho: A fast, memory-efficient, multiple genome orthology classifier. Gigascience 2019; 8:giz118. [PMID: 31648300 PMCID: PMC6812468 DOI: 10.1093/gigascience/giz118] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/07/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Gene homology type classification is required for many types of genome analyses, including comparative genomics, phylogenetics, and protein function annotation. Consequently, a large variety of tools have been developed to perform homology classification across genomes of different species. However, when applied to large genomic data sets, these tools require high memory and CPU usage, typically available only in computational clusters. FINDINGS Here we present a new graph-based orthology analysis tool, SwiftOrtho, which is optimized for speed and memory usage when applied to large-scale data. SwiftOrtho uses long k-mers to speed up homology search, while using a reduced amino acid alphabet and spaced seeds to compensate for the loss of sensitivity due to long k-mers. In addition, it uses an affinity propagation algorithm to reduce the memory usage when clustering large-scale orthology relationships into orthologous groups. In our tests, SwiftOrtho was the only tool that completed orthology analysis of proteins from 1,760 bacterial genomes on a computer with only 4 GB RAM. Using various standard orthology data sets, we also show that SwiftOrtho has a high accuracy. CONCLUSIONS SwiftOrtho enables the accurate comparative genomic analyses of thousands of genomes using low-memory computers. SwiftOrtho is available at https://github.com/Rinoahu/SwiftOrtho.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Veterinary Microbiology and Preventive Medicine, 2118 Veterinary Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, 2118 Veterinary Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
35
|
Dong Y, Chen S, Cheng S, Zhou W, Ma Q, Chen Z, Fu CX, Liu X, Zhao YP, Soltis PS, Wong GKS, Soltis DE, Xiang QYJ. Natural selection and repeated patterns of molecular evolution following allopatric divergence. eLife 2019; 8:45199. [PMID: 31373555 PMCID: PMC6744222 DOI: 10.7554/elife.45199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/01/2019] [Indexed: 11/13/2022] Open
Abstract
Although geographic isolation is a leading driver of speciation, the tempo and pattern of divergence at the genomic level remain unclear. We examine genome-wide divergence of putatively single-copy orthologous genes (POGs) in 20 allopatric species/variety pairs from diverse angiosperm clades, with 16 pairs reflecting the classic eastern Asia-eastern North America floristic disjunction. In each pair, >90% of POGs are under purifying selection, and <10% are under positive selection. A set of POGs are under strong positive selection, 14 of which are shared by 10-15 pairs, and one shared by all pairs; 15 POGs are annotated to biological processes responding to various stimuli. The relative abundance of POGs under different selective forces exhibits a repeated pattern among pairs despite an ~10 million-year difference in divergence time. Species divergence times are positively correlated with abundance of POGs under moderate purifying selection, but negatively correlated with abundance of POGs under strong purifying selection.
Collapse
Affiliation(s)
- Yibo Dong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States.,Plant Biology Division, Noble Research Institute, Ardmore, United States
| | - Shichao Chen
- Florida Museum of Natural History, University of Florida, Gainesville, United States.,Department of Biology, University of Florida, Gainesville, United States.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - Wenbin Zhou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Qing Ma
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Cheng-Xin Fu
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xin Liu
- Beijing Genomics Institute, Shenzhen, China
| | - Yun-Peng Zhao
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, United States
| | - Gane Ka-Shu Wong
- Beijing Genomics Institute, Shenzhen, China.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Medicine, University of Alberta, Edmonton, Canada
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, United States.,Department of Biology, University of Florida, Gainesville, United States
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| |
Collapse
|
36
|
Tuteja R, McKeown PC, Ryan P, Morgan CC, Donoghue MTA, Downing T, O'Connell MJ, Spillane C. Paternally Expressed Imprinted Genes under Positive Darwinian Selection in Arabidopsis thaliana. Mol Biol Evol 2019; 36:1239-1253. [PMID: 30913563 PMCID: PMC6526901 DOI: 10.1093/molbev/msz063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon where autosomal genes display uniparental expression depending on whether they are maternally or paternally inherited. Genomic imprinting can arise from parental conflicts over resource allocation to the offspring, which could drive imprinted loci to evolve by positive selection. We investigate whether positive selection is associated with genomic imprinting in the inbreeding species Arabidopsis thaliana. Our analysis of 140 genes regulated by genomic imprinting in the A. thaliana seed endosperm demonstrates they are evolving more rapidly than expected. To investigate whether positive selection drives this evolutionary acceleration, we identified orthologs of each imprinted gene across 34 plant species and elucidated their evolutionary trajectories. Increased positive selection was sought by comparing its incidence among imprinted genes with nonimprinted controls. Strikingly, we find a statistically significant enrichment of imprinted paternally expressed genes (iPEGs) evolving under positive selection, 50.6% of the total, but no such enrichment for positive selection among imprinted maternally expressed genes (iMEGs). This suggests that maternally- and paternally expressed imprinted genes are subject to different selective pressures. Almost all positively selected amino acids were fixed across 80 sequenced A. thaliana accessions, suggestive of selective sweeps in the A. thaliana lineage. The imprinted genes under positive selection are involved in processes important for seed development including auxin biosynthesis and epigenetic regulation. Our findings support a genomic imprinting model for plants where positive selection can affect paternally expressed genes due to continued conflict with maternal sporophyte tissues, even when parental conflict is reduced in predominantly inbreeding species.
Collapse
Affiliation(s)
- Reetu Tuteja
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,Center for Genomics and Systems Biology, New York University, New York, NY
| | - Peter C McKeown
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Pat Ryan
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Claire C Morgan
- School of Biotechnology, Faculty of Biological Sciences, Dublin City University, Dublin, Ireland.,Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Mark T A Donoghue
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tim Downing
- School of Biotechnology, Faculty of Biological Sciences, Dublin City University, Dublin, Ireland
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, United Kingdom.,Computational and Molecular Evolutionary Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Charles Spillane
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
37
|
Rey C, Veber P, Boussau B, Sémon M. CAARS: comparative assembly and annotation of RNA-Seq data. Bioinformatics 2019; 35:2199-2207. [PMID: 30452539 PMCID: PMC6596894 DOI: 10.1093/bioinformatics/bty903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/13/2018] [Accepted: 11/16/2018] [Indexed: 02/05/2023] Open
Abstract
MOTIVATION RNA sequencing (RNA-Seq) is a widely used approach to obtain transcript sequences in non-model organisms, notably for performing comparative analyses. However, current bioinformatic pipelines do not take full advantage of pre-existing reference data in related species for improving RNA-Seq assembly, annotation and gene family reconstruction. RESULTS We built an automated pipeline named CAARS to combine novel data from RNA-Seq experiments with existing multi-species gene family alignments. RNA-Seq reads are assembled into transcripts by both de novo and assisted assemblies. Then, CAARS incorporates transcripts into gene families, builds gene alignments and trees and uses phylogenetic information to classify the genes as orthologs and paralogs of existing genes. We used CAARS to assemble and annotate RNA-Seq data in rodents and fishes using distantly related genomes as reference, a difficult case for this kind of analysis. We showed CAARS assemblies are more complete and accurate than those assembled by a standard pipeline consisting of de novo assembly coupled with annotation by sequence similarity on a guide species. In addition to annotated transcripts, CAARS provides gene family alignments and trees, annotated with orthology relationships, directly usable for downstream comparative analyses. AVAILABILITY AND IMPLEMENTATION CAARS is implemented in Python and Ocaml and is freely available at https://github.com/carinerey/caars. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Carine Rey
- UnivLyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UMR, INSERM U1210, LBMC, F-69007, Lyon, France
| | - Philippe Veber
- UnivLyon, Université Claude Bernard Lyon 1, CNRS, UMR, LBBE, F-69100, Villeurbanne, France
| | - Bastien Boussau
- UnivLyon, Université Claude Bernard Lyon 1, CNRS, UMR, LBBE, F-69100, Villeurbanne, France
| | - Marie Sémon
- UnivLyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS UMR, INSERM U1210, LBMC, F-69007, Lyon, France
| |
Collapse
|
38
|
Xiong J, Yang W, Chen K, Jiang C, Ma Y, Chai X, Yan G, Wang G, Yuan D, Liu Y, Bidwell SL, Zafar N, Hadjithomas M, Krishnakumar V, Coyne RS, Orias E, Miao W. Hidden genomic evolution in a morphospecies-The landscape of rapidly evolving genes in Tetrahymena. PLoS Biol 2019; 17:e3000294. [PMID: 31158217 PMCID: PMC6564038 DOI: 10.1371/journal.pbio.3000294] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 06/13/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
A morphospecies is defined as a taxonomic species based wholly on morphology, but often morphospecies consist of clusters of cryptic species that can be identified genetically or molecularly. The nature of the evolutionary novelty that accompanies speciation in a morphospecies is an intriguing question. Morphospecies are particularly common among ciliates, a group of unicellular eukaryotes that separates 2 kinds of nuclei—the silenced germline nucleus (micronucleus [MIC]) and the actively expressed somatic nucleus (macronucleus [MAC])—within a common cytoplasm. Because of their very similar morphologies, members of the Tetrahymena genus are considered a morphospecies. We explored the hidden genomic evolution within this genus by performing a comprehensive comparative analysis of the somatic genomes of 10 species and the germline genomes of 2 species of Tetrahymena. These species show high genetic divergence; phylogenomic analysis suggests that the genus originated about 300 million years ago (Mya). Seven universal protein domains are preferentially included among the species-specific (i.e., the youngest) Tetrahymena genes. In particular, leucine-rich repeat (LRR) genes make the largest contribution to the high level of genome divergence of the 10 species. LRR genes can be sorted into 3 different age groups. Parallel evolutionary trajectories have independently occurred among LRR genes in the different Tetrahymena species. Thousands of young LRR genes contain tandem arrays of exactly 90-bp exons. The introns separating these exons show a unique, extreme phase 2 bias, suggesting a clonal origin and successive expansions of 90-bp–exon LRR genes. Identifying LRR gene age groups allowed us to document a Tetrahymena intron length cycle. The youngest 90-bp exon LRR genes in T. thermophila are concentrated in pericentromeric and subtelomeric regions of the 5 micronuclear chromosomes, suggesting that these regions act as genome innovation centers. Copies of a Tetrahymena Long interspersed element (LINE)-like retrotransposon are very frequently found physically adjacent to 90-bp exon/intron repeat units of the youngest LRR genes. We propose that Tetrahymena species have used a massive exon-shuffling mechanism, involving unequal crossing over possibly in concert with retrotransposition, to create the unique 90-bp exon array LRR genes. Genomic comparison of ten morphologically very similar species of ciliate from the genus Tetrahymena reveals how parallel microevolutionary processes have shaped their genomes and created unique genes through retrotransposition.
Collapse
Affiliation(s)
- Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Ma
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Chai
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guanxiong Yan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxia Yuan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yifan Liu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shelby L. Bidwell
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Nikhat Zafar
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Vivek Krishnakumar
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Robert S. Coyne
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Eduardo Orias
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California, United States of America
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming, China
- State Key Laboratory of Freshwater Ecology and Biotechnology of China, Wuhan, China
- * E-mail:
| |
Collapse
|
39
|
Wei Q, Du L, Wang W, Hu T, Hu H, Wang J, David K, Bao C. Comparative Transcriptome Analysis in Eggplant Reveals Selection Trends during Eggplant Domestication. Int J Genomics 2019; 2019:7924383. [PMID: 31211132 PMCID: PMC6532321 DOI: 10.1155/2019/7924383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022] Open
Abstract
Eggplant (Solanum melongena L.) is an economically and nutritionally important fruit crop of the Solanaceae family, which was domesticated in India and southern China. However, the genome regions subjected to selective sweeps in eggplant remain unknown. In the present study, we performed comparative transcriptome analysis of cultivated and wild eggplant species with emphasis on the selection pattern during domestication. In total, 44,073 (S. sisymbriifolium) to 58,677 (S. melongena cultivar S58) unigenes were generated for the six eggplant accessions with total lengths of 36.6-46 Mb. The orthologous genes were assessed using the ratio of nonsynonymous (K a) to synonymous (K s) nucleotide substitutions to characterize selective patterns during eggplant domestication. We identified 19 genes under positive selection across the phylogeny that were classified into four groups. The gene (OG12205) under positive selection was possibly associated with fruit-related traits in eggplant, which may have resulted from human manipulation. Eight positive selected genes were potentially involved in stress tolerance or disease resistance, suggesting that environmental changes and biotic stresses were important selective pressures in eggplant domestication. Taken together, our results shed light on the effects of artificial and natural selection on the transcriptomes of eggplant and its wild relatives. Identification of the selected genes will facilitate the understanding of genetic architecture of domesticated-related traits and provide resources for resistant breeding in eggplant.
Collapse
Affiliation(s)
- Qingzhen Wei
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 30021, China
| | - Liming Du
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 30021, China
| | - Wuhong Wang
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 30021, China
| | - Tianhua Hu
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 30021, China
| | - Haijiao Hu
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 30021, China
| | - Jinglei Wang
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 30021, China
| | - Karine David
- The University of Auckland, School of Biological Sciences, Private Bag 91019, Auckland 1010, New Zealand
| | - Chonglai Bao
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 30021, China
| |
Collapse
|
40
|
Jain A, Perisa D, Fliedner F, von Haeseler A, Ebersberger I. The Evolutionary Traceability of a Protein. Genome Biol Evol 2019; 11:531-545. [PMID: 30649284 PMCID: PMC6394115 DOI: 10.1093/gbe/evz008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Orthologs document the evolution of genes and metabolic capacities encoded in extant and ancient genomes. However, the similarity between orthologs decays with time, and ultimately it becomes insufficient to infer common ancestry. This leaves ancient gene set reconstructions incomplete and distorted to an unknown extent. Here we introduce the “evolutionary traceability” as a measure that quantifies, for each protein, the evolutionary distance beyond which the sensitivity of the ortholog search becomes limiting. Using yeast, we show that genes that were thought to date back to the last universal common ancestor are of high traceability. Their functions mostly involve catalysis, ion transport, and ribonucleoprotein complex assembly. In turn, the fraction of yeast genes whose traceability is not sufficient to infer their presence in last universal common ancestor is enriched for regulatory functions. Computing the traceabilities of genes that have been experimentally characterized as being essential for a self-replicating cell reveals that many of the genes that lack orthologs outside bacteria have low traceability. This leaves open whether their orthologs in the eukaryotic and archaeal domains have been overlooked. Looking at the example of REC8, a protein essential for chromosome cohesion, we demonstrate how a traceability-informed adjustment of the search sensitivity identifies hitherto missed orthologs in the fast-evolving microsporidia. Taken together, the evolutionary traceability helps to differentiate between true absence and nondetection of orthologs, and thus improves our understanding about the evolutionary conservation of functional protein networks. “protTrace,” a software tool for computing evolutionary traceability, is freely available at https://github.com/BIONF/protTrace.git; last accessed February 10, 2019.
Collapse
Affiliation(s)
- Arpit Jain
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany
| | - Dominik Perisa
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany
| | - Fabian Fliedner
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Austria
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Center (BiK-F), Frankfurt, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| |
Collapse
|
41
|
Evolutionary Patterns of Non-Coding RNA in Cardiovascular Biology. Noncoding RNA 2019; 5:ncrna5010015. [PMID: 30709035 PMCID: PMC6468844 DOI: 10.3390/ncrna5010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVDs) affect the heart and the vascular system with a high prevalence and place a huge burden on society as well as the healthcare system. These complex diseases are often the result of multiple genetic and environmental risk factors and pose a great challenge to understanding their etiology and consequences. With the advent of next generation sequencing, many non-coding RNA transcripts, especially long non-coding RNAs (lncRNAs), have been linked to the pathogenesis of CVD. Despite increasing evidence, the proper functional characterization of most of these molecules is still lacking. The exploration of conservation of sequences across related species has been used to functionally annotate protein coding genes. In contrast, the rapid evolutionary turnover and weak sequence conservation of lncRNAs make it difficult to characterize functional homologs for these sequences. Recent studies have tried to explore other dimensions of interspecies conservation to elucidate the functional role of these novel transcripts. In this review, we summarize various methodologies adopted to explore the evolutionary conservation of cardiovascular non-coding RNAs at sequence, secondary structure, syntenic, and expression level.
Collapse
|
42
|
Relation of the pdxB-usg- truA- dedA Operon and the truA Gene to the Intracellular Survival of Salmonella enterica Serovar Typhimurium. Int J Mol Sci 2019; 20:ijms20020380. [PMID: 30658401 PMCID: PMC6358828 DOI: 10.3390/ijms20020380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 11/28/2022] Open
Abstract
Salmonella is the genus of Gram-negative, facultative intracellular pathogens that have the ability to infect large numbers of animal or human hosts. The S. enterica usg gene is associated with intracellular survival based on ortholog screening and identification. In this study, the λ-Red recombination system was used to construct gene deletion strains and to investigate whether the identified operon was related to intracellular survival. The pdxB-usg-truA-dedA operon enhanced the intracellular survival of S. enterica by resisting the oxidative environment and the usg and truA gene expression was induced by H2O2. Moreover, the genes in this operon (except for dedA) contributed to virulence in mice. These findings indicate that the pdxB-usg-truA-dedA operon functions in resistance to oxidative environments during intracellular survival and is required for in vivo S. enterica virulence. This study provides insight toward a better understand of the characteristics of intracellular pathogens and explores the gene modules involved in their intracellular survival.
Collapse
|
43
|
Abstract
The distinction between orthologs and paralogs, genes that started diverging by speciation versus duplication, is relevant in a wide range of contexts, most notably phylogenetic tree inference and protein function annotation. In this chapter, we provide an overview of the methods used to infer orthology and paralogy. We survey both graph-based approaches (and their various grouping strategies) and tree-based approaches, which solve the more general problem of gene/species tree reconciliation. We discuss conceptual differences among the various orthology inference methods and databases and examine the difficult issue of verifying and benchmarking orthology predictions. Finally, we review typical applications of orthologous genes, groups, and reconciled trees and conclude with thoughts on future methodological developments.
Collapse
|
44
|
Rivera-Pérez WA, Yépes-Pérez AF, Martínez-Pabón MC. Molecular docking and in silico studies of the physicochemical properties of potential inhibitors for the phosphotransferase system of Streptococcus mutans. Arch Oral Biol 2018; 98:164-175. [PMID: 30500666 DOI: 10.1016/j.archoralbio.2018.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 10/27/2022]
Abstract
This study identified potential inhibitory compounds of the phosphoenolpyruvate-sugar. Phosphotransferase system of S. mutans, specifically enzyme II mannose transporter (EIIMan) in its subunits IIA, IIB and IIC by means of a selection protocol and in silico molecular analysis. Intervening the phosphotransferase system would compromise the physiological behavior and the pathogenic expression of S. mutans, and possibly other acidogenic bacteria that use phosphotransferases in their metabolism-making the phosphotransferase system a therapeutic target for the selective control of acidogenic microorganisms in caries control. Several computational techniques were used to evaluate molecular, physicochemical, and toxicological aspects of various compounds. Molecular docking was used to calculate the binding potential (ΔG) between receptor protein subunits and more than 836,000 different chemical compounds from the ZINC database. Physicochemical parameters related to the compounds' pharmacokinetic and pharmacodynamic indicators were evaluated, including absorption, distribution, metabolism, excretion, and toxicity (ADMET), and chemical analysis characterized the compounds structures. Thirteen compounds with EII binding potential of the phosphotransferase system of S. mutans and favorable ADMET properties were identified. Six spirooxindoles and three pyrrolidones stand out from the found compounds; unique structural characteristics of spirooxindoles and pyrrolidones associated with various reported biological activities like anti-microbial, antiinflammatory, anticancer, nootropic, neuroprotective and antiepileptic effects, among other pharmacological effects with surprising differences in terms of mechanisms of action. Following studies will provide more evidence of the action of these compounds on the phosphotransferase system of S. mutans, and its possible applications.
Collapse
Affiliation(s)
- Wbeimar Andrey Rivera-Pérez
- Faculty of Dentistry, University of Antioquia- UdeA, 64 Street No. 52-59, Block 31, Oral Microbiology Laboratory No. 216, Health Area, Medellin, Colombia.
| | - Andrés Felipe Yépes-Pérez
- Exact and Natural Sciences School, University of Antioquia-UdeA, Universidad de Antioquia. 67 street No. 53-108, Block 2, Chemistry of Colombian, Plants Laboratory, Office 330, Medellin, Colombia.
| | - Maria Cecilia Martínez-Pabón
- Faculty of Dentistry, University of Antioquia- UdeA, 64 Street No. 52-59, Block 31, Oral Microbiology Laboratory No. 216, Health Area, Medellin, Colombia.
| |
Collapse
|
45
|
Song H, Sun J, Yang G. Comparative analysis of selection mode reveals different evolutionary rate and expression pattern in Arachis duranensis and Arachis ipaënsis duplicated genes. PLANT MOLECULAR BIOLOGY 2018; 98:349-361. [PMID: 30298428 DOI: 10.1007/s11103-018-0784-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Our results reveal that Ks is a determining factor affecting selective pressure and different evolution and expression patterns are detected between PSGs and NSGs in wild Arachis duplicates. Selective pressure, including purifying (negative) and positive selection, can be detected in organisms. However, studies on comparative evolutionary rates, gene expression patterns and gene features between negatively selected genes (NSGs) and positively selected genes (PSGs) are lagging in paralogs of plants. Arachis duranensis and Arachis ipaënsis are ancestors of the cultivated peanut, an important oil and protein crop. Here, we carried out a series of systematic analyses, comparing NSG and PSG in paralogs, using genome sequences and transcriptome datasets in A. duranensis and A. ipaënsis. We found that synonymous substitution rate (Ks) is a determining factor affecting selective pressure in A. duranensis and A. ipaënsis duplicated genes. Lower expression level, lower gene expression breadth, higher codon bias and shorter polypeptide length were found in PSGs and not in NSGs. The correlation analyses showed that gene expression breadth was positively correlated with polypeptide length and GC content at the first codon site (GC1) in PSGs and NSGs, respectively. There was a negative correlation between expression level and polypeptide length in PSGs. In NSGs, the Ks was positively correlated with expression level, gene expression breadth, GC1, and GC content at the third codon site (GC3), but selective pressure was negatively correlated with expression level, gene expression breadth, polypeptide length, GC1, and GC3 content. The function of most duplicated gene pairs was divergent under drought and nematode stress. Taken together, our results show that different evolution and expression patterns occur between PSGs and NSGs in paralogs of two wild Arachis species.
Collapse
Affiliation(s)
- Hui Song
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, China.
| | - Juan Sun
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-husbandry Research Center, Qingdao Agricultural University, 700# Changcheng Road, Qingdao, China.
| |
Collapse
|
46
|
Rosli R, Chan PL, Chan KL, Amiruddin N, Low ETL, Singh R, Harwood JL, Murphy DJ. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:84-96. [PMID: 30107884 DOI: 10.1016/j.plantsci.2018.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 05/14/2023]
Abstract
The diacylglycerol acyltransferases (DGAT) (diacylglycerol:acyl-CoA acyltransferase, EC 2.3.1.20) are a key group of enzymes that catalyse the final and usually the most important rate-limiting step of triacylglycerol biosynthesis in plants and other organisms. Genes encoding four distinct functional families of DGAT enzymes have been characterised in the genome of the African oil palm, Elaeis guineensis. The contrasting features of the various isoforms within the four families of DGAT genes, namely DGAT1, DGAT2, DGAT3 and WS/DGAT are presented both in the oil palm itself and, for comparative purposes, in 12 other oil crop or model/related plants, namely Arabidopsis thaliana, Brachypodium distachyon, Brassica napus, Elaeis oleifera, Glycine max, Gossypium hirsutum, Helianthus annuus, Musa acuminata, Oryza sativa, Phoenix dactylifera, Sorghum bicolor, and Zea mays. The oil palm genome contains respectively three, two, two and two distinctly expressed functional copies of the DGAT1, DGAT2, DGAT3 and WS/DGAT genes. Phylogenetic analyses of the four DGAT families showed that the E. guineensis genes tend to cluster with sequences from P. dactylifera and M. acuminata rather than with other members of the Commelinid monocots group, such as the Poales which include the major cereal crops such as rice and maize. Comparison of the predicted DGAT protein sequences with other animal and plant DGATs was consistent with the E. guineensis DGAT1 being ER located with its active site facing the lumen while DGAT2, although also ER located, had a predicted cytosol-facing active site. In contrast, DGAT3 and some (but not all) WS/DGAT in E. guineensis are predicted to be soluble, cytosolic enzymes. Evaluation of E. guineensis DGAT gene expression in different tissues and developmental stages suggests that the four DGAT groups have distinctive physiological roles and are particularly prominent in developmental processes relating to reproduction, such as flowering, and in fruit/seed formation especially in the mesocarp and endosperm tissues.
Collapse
Affiliation(s)
- Rozana Rosli
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF37 1DL, United Kingdom; Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Pek-Lan Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Kuang-Lim Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nadzirah Amiruddin
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Rajinder Singh
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - John L Harwood
- School of Biosciences, University of Cardiff, Cardiff, CF10 3AX, United Kingdom
| | - Denis J Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
47
|
Manzano-Marín A, Coeur d'acier A, Clamens AL, Orvain C, Cruaud C, Barbe V, Jousselin E. A Freeloader? The Highly Eroded Yet Large Genome of the Serratia symbiotica Symbiont of Cinara strobi. Genome Biol Evol 2018; 10:2178-2189. [PMID: 30102395 PMCID: PMC6125246 DOI: 10.1093/gbe/evy173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Genome reduction is pervasive among maternally inherited bacterial endosymbionts. This genome reduction can eventually lead to serious deterioration of essential metabolic pathways, thus rendering an obligate endosymbiont unable to provide essential nutrients to its host. This loss of essential pathways can lead to either symbiont complementation (sharing of the nutrient production with a novel co-obligate symbiont) or symbiont replacement (complete takeover of nutrient production by the novel symbiont). However, the process by which these two evolutionary events happen remains somewhat enigmatic by the lack of examples of intermediate stages of this process. Cinara aphids (Hemiptera: Aphididae) typically harbor two obligate bacterial symbionts: Buchnera and Serratia symbiotica. However, the latter has been replaced by different bacterial taxa in specific lineages, and thus species within this aphid lineage could provide important clues into the process of symbiont replacement. In the present study, using 16S rRNA high-throughput amplicon sequencing, we determined that the aphid Cinara strobi harbors not two, but three fixed bacterial symbionts: Buchnera aphidicola, a Sodalis sp., and S. symbiotica. Through genome assembly and genome-based metabolic inference, we have found that only the first two symbionts (Buchnera and Sodalis) actually contribute to the hosts' supply of essential nutrients while S. symbiotica has become unable to contribute towards this task. We found that S. symbiotica has a rather large and highly eroded genome which codes only for a few proteins and displays extensive pseudogenization. Thus, we propose an ongoing symbiont replacement within C. strobi, in which a once "competent" S. symbiotica does no longer contribute towards the beneficial association. These results suggest that in dual symbiotic systems, when a substitute cosymbiont is available, genome deterioration can precede genome reduction and a symbiont can be maintained despite the apparent lack of benefit to its host.
Collapse
Affiliation(s)
- Alejandro Manzano-Marín
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| | - Armelle Coeur d'acier
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| | - Anne-Laure Clamens
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| | - Céline Orvain
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Corinne Cruaud
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Valérie Barbe
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Emmanuelle Jousselin
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| |
Collapse
|
48
|
OrthoList 2: A New Comparative Genomic Analysis of Human and Caenorhabditis elegans Genes. Genetics 2018; 210:445-461. [PMID: 30120140 DOI: 10.1534/genetics.118.301307] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/15/2018] [Indexed: 11/18/2022] Open
Abstract
OrthoList, a compendium of Caenorhabditis elegans genes with human orthologs compiled in 2011 by a meta-analysis of four orthology-prediction methods, has been a popular tool for identifying conserved genes for research into biological and disease mechanisms. However, the efficacy of orthology prediction depends on the accuracy of gene-model predictions, an ongoing process, and orthology-prediction algorithms have also been updated over time. Here we present OrthoList 2 (OL2), a new comparative genomic analysis between C. elegans and humans, and the first assessment of how changes over time affect the landscape of predicted orthologs between two species. Although we find that updates to the orthology-prediction methods significantly changed the landscape of C. elegans-human orthologs predicted by individual programs and-unexpectedly-reduced agreement among them, we also show that our meta-analysis approach "buffered" against changes in gene content. We show that adding results from more programs did not lead to many additions to the list and discuss reasons to avoid assigning "scores" based on support by individual orthology-prediction programs; the treatment of "legacy" genes no longer predicted by these programs; and the practical difficulties of updating due to encountering deprecated, changed, or retired gene identifiers. In addition, we consider what other criteria may support claims of orthology and alternative approaches to find potential orthologs that elude identification by these programs. Finally, we created a new web-based tool that allows for rapid searches of OL2 by gene identifiers, protein domains [InterPro and SMART (Simple Modular Architecture Research Tool], or human disease associations ([OMIM (Online Mendelian Inheritence in Man], and also includes available RNA-interference resources to facilitate potential translational cross-species studies.
Collapse
|
49
|
Moulos P, Alexandratos A, Nellas I, Dedos SG. Refining a steroidogenic model: an analysis of RNA-seq datasets from insect prothoracic glands. BMC Genomics 2018; 19:537. [PMID: 30005604 PMCID: PMC6045881 DOI: 10.1186/s12864-018-4896-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The prothoracic gland (PG), the principal steroidogenic organ of insects, has been proposed as a model for steroid hormone biosynthesis and regulation. RESULTS To validate the robustness of the model, we present an analysis of accumulated transcriptomic data from PGs of two model species, Drosophila melanogaster and Bombyx mori. We identify that the common core components of the model in both species are encoded by nine genes. Five of these are Halloween genes whose expression differs substantially between the PGs of these species. CONCLUSIONS We conclude that the PGs can be a model for steroid hormone synthesis and regulation within the context of mitochondrial cholesterol transport and steroid biosynthesis but beyond these core mechanisms, gene expression in insect PGs is too diverse to fit in a context-specific model and should be analysed within a species-specific framework.
Collapse
Affiliation(s)
- Panagiotis Moulos
- HybridStat Predictive Analytics, Aiolou 19, 10551 Athens, Greece
- Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672 Vari, Greece
| | | | - Ioannis Nellas
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Skarlatos G. Dedos
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
50
|
Dupuis JR, Bremer FT, Kauwe A, San Jose M, Leblanc L, Rubinoff D, Geib SM. HiMAP: Robust phylogenomics from highly multiplexed amplicon sequencing. Mol Ecol Resour 2018. [PMID: 29633537 DOI: 10.1101/213454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
High-throughput sequencing has fundamentally changed how molecular phylogenetic data sets are assembled, and phylogenomic data sets commonly contain 50- to 100-fold more loci than those generated using traditional Sanger sequencing-based approaches. Here, we demonstrate a new approach for building phylogenomic data sets using single-tube, highly multiplexed amplicon sequencing, which we name HiMAP (highly multiplexed amplicon-based phylogenomics) and present bioinformatic pipelines for locus selection based on genomic and transcriptomic data resources and postsequencing consensus calling and alignment. This method is inexpensive and amenable to sequencing a large number (hundreds) of taxa simultaneously and requires minimal hands-on time at the bench (<1/2 day), and data analysis can be accomplished without the need for read mapping or assembly. We demonstrate this approach by sequencing 878 amplicons in single reactions for 82 species of tephritid fruit flies across seven genera (384 individuals), including some of the most economically important agricultural insect pests. The resulting filtered data set (>150,000-bp concatenated alignment, ~20% missing character sites across all individuals and amplicons) contained >40,000 phylogenetically informative characters, and although some discordance was observed between analyses, it provided unparalleled resolution of many phylogenetic relationships in this group. Most notably, we found high support for the generic status of Zeugodacus and the sister relationship between Dacus and Zeugodacus. We discuss HiMAP, with regard to its molecular and bioinformatic strengths, and the insight the resulting data set provides into relationships of this diverse insect group.
Collapse
Affiliation(s)
- Julian R Dupuis
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Forest T Bremer
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Angela Kauwe
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii
| | - Michael San Jose
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Luc Leblanc
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho
| | - Daniel Rubinoff
- Department of Plant and Environmental Protection Services, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Scott M Geib
- U.S. Department of Agriculture-Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii
| |
Collapse
|