1
|
Heo R, Park M, Mun SY, Zhuang W, Jeong J, Park H, Han ET, Han JH, Chun W, Jung WK, Choi IW, Park WS. Vasorelaxant mechanisms of the antidiabetic anagliptin in rabbit aorta: roles of Kv channels and SERCA pump. Acta Diabetol 2024:10.1007/s00592-024-02351-9. [PMID: 39103505 DOI: 10.1007/s00592-024-02351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
AIMS The present study investigated the vasorelaxant mechanisms of an oral antidiabetic drug, anagliptin, using phenylephrine (Phe)-induced pre-contracted rabbit aortic rings. METHODS Arterial tone measurement was performed in rabbit thoracic aortic rings. RESULTS Anagliptin induced vasorelaxation in a dose-dependent manner. Pre-treatment with the classical voltagedependent K+ (Kv) channel inhibitors 4-aminopyridine and tetraethylammonium significantly decreased the vasorelaxant effect of anagliptin, whereas pre-treatment with the inwardly rectifying K+ (Kir) channel inhibitor Ba2+, the ATP-sensitive K+ (KATP) channel inhibitor glibenclamide, and the large-conductance Ca2+-activated K+ (BKCa) channel inhibitor paxilline did not attenuate the vasorelaxant effect. Furthermore, the vasorelaxant response of anagliptin was effectively inhibited by pre-treatment with the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid. Neither cAMP/protein kinase A (PKA)-related signaling pathway inhibitors (adenylyl cyclase inhibitor SQ 22536 and PKA inhibitor KT 5720) nor cGMP/protein kinase G (PKG)-related signaling pathway inhibitors (guanylyl cyclase inhibitor ODQ and PKG inhibitor KT 5823) reduced the vasorelaxant effect of anagliptin. Similarly, the anagliptin-induced vasorelaxation was independent of the endothelium. CONCLUSIONS Based on these results, we suggest that anagliptin-induced vasorelaxation in rabbit aortic smooth muscle occurs by activating Kv channels and the SERCA pump, independent of other vascular K+ channels, cAMP/PKA- or cGMP/PKG-related signaling pathways, and the endothelium.
Collapse
Affiliation(s)
- Ryeon Heo
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Minju Park
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Wenwen Zhuang
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Junsu Jeong
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, 48516, South Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, Kangwon National University School of Medicine, 1 Kangwondaehak-Gil, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Sokolowski DJ, Vasquez OE, Wilson MD, Sokolowski MB, Anreiter I. Transcriptomic effects of the foraging gene shed light on pathways of pleiotropy and plasticity. Ann N Y Acad Sci 2023; 1526:99-113. [PMID: 37350250 DOI: 10.1111/nyas.15015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Genes are often pleiotropic and plastic in their expression, features which increase and diversify the functionality of the genome. The foraging (for) gene in Drosophila melanogaster is highly pleiotropic and a long-standing model for studying individual differences in behavior and plasticity from ethological, evolutionary, and genetic perspectives. Its pleiotropy is known to be linked to its complex molecular structure; however, the downstream pathways and interactors remain mostly elusive. To uncover these pathways and interactors and gain a better understanding of how pleiotropy and plasticity are achieved at the molecular level, we explore the effects of different for alleles on gene expression at baseline and in response to 4 h of food deprivation, using RNA sequencing analysis in different Drosophila larval tissues. The results show tissue-specific transcriptomic dynamics influenced by for allelic variation and food deprivation, as well as genotype by treatment interactions. Differentially expressed genes yielded pathways linked to previously described for phenotypes and several potentially novel phenotypes. Together, these findings provide putative genes and pathways through which for might regulate its varied phenotypes in a pleiotropic, plastic, and gene-structure-dependent manner.
Collapse
Affiliation(s)
- Dustin J Sokolowski
- Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Oscar E Vasquez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Michael D Wilson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Ina Anreiter
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Chen J, Zhou Y, Lei Y, Shi Q, Qi G, He Y, Lyu L. Role of the foraging gene in worker behavioral transition in the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). PEST MANAGEMENT SCIENCE 2022; 78:2964-2975. [PMID: 35419943 DOI: 10.1002/ps.6921] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Worker division of labor is predominant in social insects. The foraging (for) gene, which encodes cGMP-dependent protein kinase (PKG), has been implicated in the regulation of behavioral transitions in honeybees, but information regarding its function in other social insects is scarce. RESULTS We investigated the role of the for (Sifor) gene in the red imported fire ant, Solenopsis invicta, and found that Sifor and PKG exhibited different expression patterns in different castes, body sizes, ages and tissues of fire ants, especially in foragers and nurses. Foragers displayed greater locomotor activity but showed no preference for larval or adult odors, whereas nurses showed lesser locomotor activity but had a strong preference for larval odors. We found that the expression of Sifor was significantly higher in the heads of foragers (compared to nurses). RNA interference-mediated Sifor knockdown in foraging workers induced behavioral transition of foragers toward the nurse phenotype characterized by reduced locomotor activity and a stronger preference for larval odors. By contrast, treating nurses with 8-Br-cGMP, an activator of PKG, resulted in behavioral transition toward the forager phenotype characterized by higher locomotor activity but reduced preference for larval odors. CONCLUSION Our results suggest that Sifor plays a critical role in the behavioral transition between foragers and nurses of workers, which may be a promising target for RNAi-based management of worker caste organization in S. invicta. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yangyang Zhou
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yanyuan Lei
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qingxing Shi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guojun Qi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yurong He
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lihua Lyu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Awde DN, Skandalis A, Richards MH. Foraging gene expression patterns in queens, workers, and males in a eusocial insect. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reproductive division of labour is based on biased expression of complementary parental behaviours, brood production (egg-laying) by queens and brood care (in particular, brood-provisioning) by workers. In many social insect species, queens provision brood when establishing colonies at the beginning of a breeding season and reproductive division of labour begins with the emergence of workers. In many social insect species, the expression of foraging (for) mRNA is associated with the intensity of foraging behaviour and therefore brood-provisioning. However, only two studies have compared queen and worker for expression levels and neither accounted for transcript splice variation. In this study, we compare the expression level of the for-α transcript variant across four life stages of the queen caste, two behavioural groups of workers, and males of a eusocial sweat bee Lasioglossum laevissimum (Smith, 1853). Foundresses collected prior to the onset of the foraging season and males had the highest for-α expression levels. All active (post-hibernatory) queens and workers had similar for-α expression levels independent of behaviour. These results suggest that the for gene in L. laevissimum acts as a primer before foraging activity and that caste-specific expression patterns correlate with the timing of foraging activity in queens and workers.
Collapse
Affiliation(s)
- David N. Awde
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Adonis Skandalis
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Miriam H. Richards
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
5
|
Seo MS, An JR, Kang M, Heo R, Park H, Han ET, Han JH, Chun W, Park WS. Mechanisms underlying the vasodilatory effects of canagliflozin in the rabbit thoracic aorta: Involvement of the SERCA pump and Kv channels. Life Sci 2021; 287:120101. [PMID: 34715136 DOI: 10.1016/j.lfs.2021.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
AIMS Canagliflozin is an anti-diabetic agent and sodium glucose co-transporter-2 inhibitor. Despite numerous clinical trials demonstrating its beneficial effects on blood pressure, the cellular mechanisms underlying the effects of canagliflozin on vascular reactivity have yet to be clarified. We investigated the vasodilatory effect of canagliflozin on aortic rings isolated from rabbits. MAIN METHODS We used rabbit thoracic aortic rings and its arterial tone was tested by using wire myography system. KEY FINDINGS Canagliflozin caused concentration-dependent vasodilation in aortic rings pre-constricted with phenylephrine or high K+. However, the degree of canagliflozin-induced vasodilation of the aortic rings pre-constricted with high K+ was less than that of rings pre-constricted with phenylephrine. Application of 4-aminopyridine, a voltage-dependent K+ (Kv) channel inhibitor, reduced canagliflozin-induced vasodilation. However, pre-incubation of an inwardly rectifying K+ channel inhibitor, a large-conductance Ca2+-activated K+ channel inhibitor, and an ATP-sensitive K+ inhibitor did not modulate the vasodilatory effects of canagliflozin. Indeed, canagliflozin increased Kv currents in aortic smooth muscle cells. Pre-treatment with thapsigargin or cyclopiazonic acid, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors, reduced the vasodilatory effects of canagliflozin. Conversely, pre-treatment with a Ca2+ channel inhibitor, adenylyl cyclase/PKA inhibitors, and guanylyl cyclase/PKG inhibitors did not modulate the vasodilatory effects of canagliflozin. Endothelium removal, and pre-treatment with the nitric oxide synthase inhibitor L-NAME, and small- and intermediate-conductance Ca2+-activated K+ channel inhibitor apamin and TRAM-34, did not diminish the vasodilatory effects of canagliflozin. SIGNIFICANCE Our results indicate that canagliflozin induces vasodilation, which is dependent on the robust SERCA activity and Kv channel activation.
Collapse
Affiliation(s)
- Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
6
|
Dason JS, Anreiter I, Wu CF. Transcending boundaries: from quantitative genetics to single genes. J Neurogenet 2021; 35:95-98. [PMID: 34544325 DOI: 10.1080/01677063.2021.1960519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jeffrey S Dason
- Department of Biomedical Sciences, University of Windsor, Windsor, Canada
| | - Ina Anreiter
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Chun-Fang Wu
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
7
|
Oepen AS, Catalano JL, Azanchi R, Kaun KR. The foraging gene affects alcohol sensitivity, metabolism and memory in Drosophila. J Neurogenet 2021; 35:236-248. [PMID: 34092172 PMCID: PMC9215342 DOI: 10.1080/01677063.2021.1931178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The genetic basis of alcohol use disorder (AUD) is complex. Understanding how natural genetic variation contributes to alcohol phenotypes can help us identify and understand the genetic basis of AUD. Recently, a single nucleotide polymorphism in the human foraging (for) gene ortholog, Protein Kinase cGMP-Dependent 1 (PRKG1), was found to be associated with stress-induced risk for alcohol abuse. However, the mechanistic role that PRKG1 plays in AUD is not well understood. We use natural variation in the Drosophila for gene to describe how variation of cGMP-dependent protein kinase (PKG) activity modifies ethanol-induced phenotypes. We found that variation in for affects ethanol-induced increases in locomotion and memory of the appetitive properties of ethanol intoxication. Further, these differences may stem from the ability to metabolize ethanol. Together, this data suggests that natural variation in PKG modulates cue reactivity for alcohol, and thus could influence alcohol cravings by differentially modulating metabolic and behavioral sensitivities to alcohol.
Collapse
Affiliation(s)
- Anne S. Oepen
- Department of Neuroscience, Brown University, Providence,
RI, USA
- Masters Program in Developmental, Neuronal and Behavioral
Biology, Georg-August-University, Göttingen, Germany
| | - Jamie L. Catalano
- Department of Neuroscience, Brown University, Providence,
RI, USA
- Molecular Pharmacology and Physiology Graduate Program,
Brown University, Providence, RI, USA
| | - Reza Azanchi
- Department of Neuroscience, Brown University, Providence,
RI, USA
| | - Karla R. Kaun
- Department of Neuroscience, Brown University, Providence,
RI, USA
| |
Collapse
|
8
|
Allen AM, B Sokolowski M. Expression of the foraging gene in adult Drosophila melanogaster. J Neurogenet 2021; 35:192-212. [PMID: 34382904 PMCID: PMC8846931 DOI: 10.1080/01677063.2021.1941946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The foraging gene in Drosophila melanogaster, which encodes a cGMP-dependent protein kinase, is a highly conserved, complex gene with multiple pleiotropic behavioral and physiological functions in both the larval and adult fly. Adult foraging expression is less well characterized than in the larva. We characterized foraging expression in the brain, gastric system, and reproductive systems using a T2A-Gal4 gene-trap allele. In the brain, foraging expression appears to be restricted to multiple sub-types of glia. This glial-specific cellular localization of foraging was supported by single-cell transcriptomic atlases of the adult brain. foraging is extensively expressed in most cell types in the gastric and reproductive systems. We then mapped multiple cis-regulatory elements responsible for parts of the observed expression patterns by a nested cloned promoter-Gal4 analysis. The mapped cis-regulatory elements were consistently modular when comparing the larval and adult expression patterns. These new data using the T2A-Gal4 gene-trap and cloned foraging promoter fusion GAL4's are discussed with respect to previous work using an anti-FOR antibody, which we show here to be non-specific. Future studies of foraging's function will consider roles for glial subtypes and peripheral tissues (gastric and reproductive systems) in foraging's pleiotropic behavioral and physiological effects.
Collapse
Affiliation(s)
- Aaron M Allen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Marla B Sokolowski
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| |
Collapse
|
9
|
Krill JL, Dawson-Scully K. Characterization of a novel stimulus-induced glial calcium wave in Drosophila larval peripheral segmental nerves and its role in PKG-modulated thermoprotection. J Neurogenet 2021; 35:221-235. [PMID: 34309496 DOI: 10.1080/01677063.2021.1941945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Insects, as poikilotherms, have adaptations to deal with wide ranges in temperature fluctuation. Allelic variations in the foraging gene that encodes a cGMP dependent protein kinase, were discovered to have effects on behavior in Drosophila by Dr. Marla Sokolowski in 1980. This single gene has many pleiotropic effects and influences feeding behavior, metabolic storage, learning and memory and has been shown to affect stress tolerance. PKG regulation affects motoneuronal thermotolerance in Drosophila larvae as well as adults. While the focus of thermotolerance studies has been on the modulation of neuronal function, other cell types have been overlooked. Because glia are vital to neuronal function and survival, we wanted to determine if glia play a role in thermotolerance as well. In our investigation, we discovered a novel calcium wave at the larval NMJ and set out to characterize the wave's dynamics and the potential mechanism underlying the wave prior to determining what effect, if any, PKG modulation has on the thermotolerance of glia cells. Using pharmacology, we determined that calcium buffering mechanisms of the mitochondria and endoplasmic reticulum play a role in the propagation of our novel glial calcium wave. By coupling pharmacology with genetic manipulation using RNA interference (RNAi), we found that PKG modulation in glia alters thermoprotection of function as well as glial calcium wave dynamics.
Collapse
Affiliation(s)
- Jennifer L Krill
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| |
Collapse
|
10
|
The Foraging Gene, a New Environmental Adaptation Player Involved in Xenobiotic Detoxification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147508. [PMID: 34299961 PMCID: PMC8305630 DOI: 10.3390/ijerph18147508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Foraging is vital for animals, especially for food. In Drosophila melanogaster, this behavior is controlled by the foraging gene (for) which encodes a cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). In wild populations of Drosophila, rover individuals that exhibit long foraging trails and sitter individuals that exhibit short ones coexist and are characterized by high and low levels of PKG activity, respectively. We, therefore, postulated that rover flies are more exposed to environmental stresses, including xenobiotics contamination, than sitter flies. We then tested whether these flies differed in their ability to cope with xenobiotics by exposing them to insecticides from different chemical families. We performed toxicological tests and measured the activity and expression levels of different classes of detoxification enzymes. We have shown that a link exists between the for gene and certain cytochrome P450-dependent activities and that the expression of the insecticide-metabolizing cytochrome P450 Cyp6a2 is controlled by the for gene. An unsuspected regulatory pathway of P450s expression involving the for gene in Drosophila is revealed and we demonstrate its involvement in adaptation to chemicals in the environment. This work can serve as a basis for reconsidering adaptation to xenobiotics in light of the behavior of species, including humans.
Collapse
|
11
|
Alwash N, Allen AM, B Sokolowski M, Levine JD. The Drosophila melanogaster foraging gene affects social networks. J Neurogenet 2021; 35:249-261. [PMID: 34121597 DOI: 10.1080/01677063.2021.1936517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Drosophila melanogaster displays social behaviors including courtship, mating, aggression, and group foraging. Recent studies employed social network analyses (SNAs) to show that D. melanogaster strains differ in their group behavior, suggesting that genes influence social network phenotypes. Aside from genes associated with sensory function, few studies address the genetic underpinnings of these networks. The foraging gene (for) is a well-established example of a pleiotropic gene that regulates multiple behavioral phenotypes and their plasticity. In D. melanogaster, there are two naturally occurring alleles of for called rover and sitter that differ in their larval and adult food-search behavior as well as other behavioral phenotypes. Here, we hypothesize that for affects behavioral elements required to form social networks and the social networks themselves. These effects are evident when we manipulate gene dosage. We found that flies of the rover and sitter strains exhibit differences in duration, frequency, and reciprocity of pairwise interactions, and they form social networks with differences in assortativity and global efficiency. Consistent with other adult phenotypes influenced by for, rover-sitter heterozygotes show intermediate patterns of dominance in many of these characteristics. Multiple generations of backcrossing a rover allele into a sitter strain showed that many but not all of these rover-sitter differences may be attributed to allelic variation at for. Our findings reveal the significant role that for plays in affecting social network properties and their behavioral elements in Drosophila melanogaster.
Collapse
Affiliation(s)
- Nawar Alwash
- Department of Biology, University of Toronto at Mississauga, Mississauga, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Aaron M Allen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Centre for Neural Circuits and Behavior, University of Oxford, Oxford, UK
| | - Marla B Sokolowski
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), MaRS Centre, Toronto, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, Mississauga, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), MaRS Centre, Toronto, Canada
| |
Collapse
|
12
|
Dason JS, Sokolowski MB. A cGMP-dependent protein kinase, encoded by the Drosophila foraging gene, regulates neurotransmission through changes in synaptic structure and function. J Neurogenet 2021; 35:213-220. [PMID: 33998378 DOI: 10.1080/01677063.2021.1905639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A cGMP-dependent protein kinase (PKG) encoded by the Drosophila foraging (for) gene regulates both synaptic structure (nerve terminal growth) and function (neurotransmission) through independent mechanisms at the Drosophila larval neuromuscular junction (nmj). Glial for is known to restrict nerve terminal growth, whereas presynaptic for inhibits synaptic vesicle (SV) exocytosis during low frequency stimulation. Presynaptic for also facilitates SV endocytosis during high frequency stimulation. for's effects on neurotransmission can occur independent of any changes in nerve terminal growth. However, it remains unclear if for's effects on neurotransmission affect nerve terminal growth. Furthermore, it's possible that for's effects on synaptic structure contribute to changes in neurotransmission. In the present study, we examined these questions using RNA interference to selectively knockdown for in presynaptic neurons or glia at the Drosophila larval nmj. Consistent with our previous findings, presynaptic knockdown of for impaired SV endocytosis, whereas knockdown of glial for had no effect on SV endocytosis. Surprisingly, we found that knockdown of either presynaptic or glial for increased neurotransmitter release in response to low frequency stimulation. Knockdown of presynaptic for did not affect nerve terminal growth, demonstrating that for's effects on neurotransmission does not alter nerve terminal growth. In contrast, knockdown of glial for enhanced nerve terminal growth. This enhanced nerve terminal growth was likely the cause of the enhanced neurotransmitter release seen following knockdown of glial for. Overall, we show that for can affect neurotransmitter release by regulating both synaptic structure and function.
Collapse
Affiliation(s)
- Jeffrey S Dason
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Biomedical Sciences, University of Windsor, Windsor, Canada
| | - Marla B Sokolowski
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada
| |
Collapse
|
13
|
Merchant A, Song D, Yang X, Li X, Zhou X“J. Candidate
foraging
gene orthologs in a lower termite,
Reticulitermes flavipes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:168-177. [DOI: 10.1002/jez.b.22918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/24/2019] [Accepted: 09/14/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Austin Merchant
- Department of EntomologyUniversity of KentuckyLexington Kentucky
| | - Dongyan Song
- Department of EntomologyUniversity of KentuckyLexington Kentucky
| | - Xiaowei Yang
- Department of EntomologyUniversity of KentuckyLexington Kentucky
| | - Xiangrui Li
- Department of EntomologyUniversity of KentuckyLexington Kentucky
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing China
| | - Xuguo “Joe” Zhou
- Department of EntomologyUniversity of KentuckyLexington Kentucky
| |
Collapse
|
14
|
Robertson RM, Dawson-Scully KD, Andrew RD. Neural shutdown under stress: an evolutionary perspective on spreading depolarization. J Neurophysiol 2020; 123:885-895. [PMID: 32023142 PMCID: PMC7099469 DOI: 10.1152/jn.00724.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022] Open
Abstract
Neural function depends on maintaining cellular membrane potentials as the basis for electrical signaling. Yet, in mammals and insects, neuronal and glial membrane potentials can reversibly depolarize to zero, shutting down neural function by the process of spreading depolarization (SD) that collapses the ion gradients across membranes. SD is not evident in all metazoan taxa with centralized nervous systems. We consider the occurrence and similarities of SD in different animals and suggest that it is an emergent property of nervous systems that have evolved to control complex behaviors requiring energetically expensive, rapid information processing in a tightly regulated extracellular environment. Whether SD is beneficial or not in mammals remains an open question. However, in insects, it is associated with the response to harsh environments and may provide an energetic advantage that improves the chances of survival. The remarkable similarity of SD in diverse taxa supports a model systems approach to understanding the mechanistic underpinning of human neuropathology associated with migraine, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- R Meldrum Robertson
- Department of Biology and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Ken D Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| | - R David Andrew
- Department of Biomedical and Molecular Sciences and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Abstract
The Drosophila melanogaster foraging (for) gene is a well-established example of a gene with major effects on behavior and natural variation. This gene is best known for underlying the behavioral strategies of rover and sitter foraging larvae, having been mapped and named for this phenotype. Nevertheless, in the last three decades an extensive array of studies describing for's role as a modifier of behavior in a wide range of phenotypes, in both Drosophila and other organisms, has emerged. Furthermore, recent work reveals new insights into the genetic and molecular underpinnings of how for affects these phenotypes. In this article, we discuss the history of the for gene and its role in natural variation in behavior, plasticity, and behavioral pleiotropy, with special attention to recent findings on the molecular structure and transcriptional regulation of this gene.
Collapse
Affiliation(s)
- Ina Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada;
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada;
| |
Collapse
|
16
|
Mahneva O, Caplan SL, Ivko P, Dawson-Scully K, Milton SL. NO/cGMP/PKG activation protects Drosophila cells subjected to hypoxic stress. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:106-114. [PMID: 31150868 DOI: 10.1016/j.cbpc.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/28/2023]
Abstract
The anoxia-tolerant fruit fly, Drosophila melanogaster, has routinely been used to examine cellular mechanisms responsible for anoxic and oxidative stress resistance. Nitric oxide (NO), an important cellular signaling molecule, and its downstream activation of cGMP-dependent protein kinase G (PKG) has been implicated as a protective mechanism against ischemic injury in diverse animal models from insects to mammals. In Drosophila, increased PKG signaling results in increased survival of animals exposed to anoxic stress. To determine if activation of the NO/cGMP/PKG pathway is protective at the cellular level, the present study employed a pharmacological protocol to mimic hypoxic injury in Drosophila S2 cells. The commonly used S2 cell line was derived from a primary culture of late stage (20-24 h old) Drosophila melanogaster embryos. Hypoxic stress was induced by exposure to either sodium azide (NaN3) or cobalt chloride (CoCl2). During chemical hypoxic stress, NO/cGMP/PKG activation protected against cell death and this mechanism involved modulation of downstream mitochondrial ATP-sensitive potassium ion channels (mitoKATP). The cellular protection afforded by NO/cGMP/PKG activation during ischemia-like stress may be an adaptive cytoprotective mechanism and modulation of this signaling cascade could serve as a potential therapeutic target for protection against hypoxia or ischemia-induced cellular injury.
Collapse
Affiliation(s)
- Olena Mahneva
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Stacee Lee Caplan
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Polina Ivko
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| |
Collapse
|
17
|
Bollinger WL, Sial N, Dawson-Scully K. BK channels and a cGMP-dependent protein kinase (PKG) function through independent mechanisms to regulate the tolerance of synaptic transmission to acute oxidative stress at the Drosophila larval neuromuscular junction. J Neurogenet 2018; 32:246-255. [DOI: 10.1080/01677063.2018.1500571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wesley L. Bollinger
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Nadia Sial
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
- Brain Institute Research Scholars Program, Florida Atlantic University, Boca Raton, FL, USA
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
18
|
Kelly SP, Risley MG, Miranda LE, Dawson-Scully K. Contribution of a natural polymorphism in protein kinase G modulates electroconvulsive seizure recovery in Drosophila melanogaster. ACTA ACUST UNITED AC 2018; 221:jeb.179747. [PMID: 29798846 DOI: 10.1242/jeb.179747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/21/2018] [Indexed: 11/20/2022]
Abstract
Drosophila melanogaster is a well-characterized model for neurological disorders and is widely used for investigating causes of altered neuronal excitability leading to seizure-like behavior. One method used to analyze behavioral output of neuronal perturbance is recording the time to locomotor recovery from an electroconvulsive shock. Based on this behavior, we sought to quantify seizure susceptibility in larval D. melanogaster with differences in the enzymatic activity levels of a major protein, cGMP-dependent protein kinase (PKG). PKG, encoded by foraging, has two natural allelic variants and has previously been implicated in several important physiological characteristics including: foraging patterns, learning and memory, and environmental stress tolerance. The well-established NO/cGMP/PKG signaling pathway found in the fly, which potentially targets downstream K+ channel(s), ultimately impacts membrane excitability, leading to our hypothesis: altering PKG enzymatic activity modulates time to recovery from an electroconvulsive seizure. Our results show that by both genetically and pharmacologically increasing PKG enzymatic activity, we can decrease the locomotor recovery time from an electroconvulsive seizure in larval D. melanogaster.
Collapse
Affiliation(s)
- Stephanie P Kelly
- Florida Atlantic University, Department of Biological Sciences, Boca Raton, FL 33431, USA
| | - Monica G Risley
- Florida Atlantic University, Department of Biological Sciences, Boca Raton, FL 33431, USA.,International Max-Planck Research School (IMPRS) for Brain and Behavior, Boca Raton, FL 33431, USA
| | - Leonor E Miranda
- Florida Atlantic University, Department of Biological Sciences, Boca Raton, FL 33431, USA
| | - Ken Dawson-Scully
- Florida Atlantic University, Department of Biological Sciences, Boca Raton, FL 33431, USA
| |
Collapse
|
19
|
McConnell MW, Fitzpatrick MJ. 'Foraging' for a place to lay eggs: A genetic link between foraging behaviour and oviposition preferences. PLoS One 2017; 12:e0179362. [PMID: 28622389 PMCID: PMC5473555 DOI: 10.1371/journal.pone.0179362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/30/2017] [Indexed: 11/18/2022] Open
Abstract
Gravid female arthropods in search of egg-laying substrates embark on foraging-like forays: they survey the environment assessing multiple patches, tasting each with their tarsi and proboscis, and then, if interested, they deposit an egg (or eggs). In fruit flies, Drosophila melanogaster, allelic variation in the foraging gene (for) underlies the rover/sitter foraging behaviour polymorphism. Rover flies (forR) are more active foragers (both within and between food patches) compared to sitters (fors). In nematodes, Caenorhabditis elegans, a mutation in egl-4, the ortholog of for, leads to aberrations in egg laying. Given this and the notion that females may 'forage' for a place to oviposit, we hypothesized that for may underlie egg-laying decisions in the fruit fly. Indeed, when given a choice between patches of low- and high-nutrient availability, rovers lay significantly more eggs on the low-nutrient patches than sitters and also a sitter mutant (fors2). We confirm the role of for by inducing rover-like oviposition preferences in a sitter fly using the transgenic overexpression of for-mRNA in the nervous system.
Collapse
Affiliation(s)
- Murray W. McConnell
- Integrative Behaviour & Neuroscience Group, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Mark J. Fitzpatrick
- Integrative Behaviour & Neuroscience Group, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Sokolowski HM, Vasquez OE, Unternaehrer E, Sokolowski DJ, Biergans SD, Atkinson L, Gonzalez A, Silveira PP, Levitan R, O'Donnell KJ, Steiner M, Kennedy J, Meaney MJ, Fleming AS, Sokolowski MB. The Drosophila foraging gene human orthologue PRKG1 predicts individual differences in the effects of early adversity on maternal sensitivity. COGNITIVE DEVELOPMENT 2016; 42:62-73. [PMID: 28827895 DOI: 10.1016/j.cogdev.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is variation in the extent to which childhood adverse experience affects adult individual differences in maternal behavior. Genetic variation in the animal foraging gene, which encodes a cGMP-dependent protein kinase, contributes to variation in the responses of adult fruit flies, Drosophila melanogaster, to early life adversity and is also known to play a role in maternal behavior in social insects. Here we investigate genetic variation in the human foraging gene (PRKG1) as a predictor of individual differences in the effects of early adversity on maternal behavior in two cohorts. We show that the PRKG1 genetic polymorphism rs2043556 associates with maternal sensitivity towards their infants. We also show that rs2043556 moderates the association between self-reported childhood adversity of the mother and her later maternal sensitivity. Mothers with the TT allele of rs2043556 appeared buffered from the effects of early adversity, whereas mothers with the presence of a C allele were not. Our study used the Toronto Longitudinal Cohort (N=288 mother-16 month old infant pairs) and the Maternal Adversity and Vulnerability and Neurodevelopment Cohort (N=281 mother-18 month old infant pairs). Our findings expand the literature on the contributions of both genetics and gene-environment interactions to maternal sensitivity, a salient feature of the early environment relevant for child neurodevelopment.
Collapse
Affiliation(s)
- H Moriah Sokolowski
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, Westminster Hall, Room 325, London, Ontario, Canada, N6A 3K7
| | - Oscar E Vasquez
- Department of Ecology and Evolutionary Biology, 25 Wilcocks St. University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Eva Unternaehrer
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875, Boulevard LaSalle, Montréal, Québec, Canada H4H 1R3
| | - Dustin J Sokolowski
- Department of Biology, University of Western, Ontario, Toronto, Canada, N6A 3K7
| | - Stephanie D Biergans
- Department of Ecology and Evolutionary Biology, 25 Wilcocks St. University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Leslie Atkinson
- Department of Psychology, Ryerson University, Toronto, Ontario, Canada, M5B2K3
| | - Andrea Gonzalez
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster Innovation Park, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875, Boulevard LaSalle, Montréal, Québec, Canada H4H 1R3
| | - Robert Levitan
- Women's Health Concerns Clinic, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, Ontario, Canada, L8G 5E4
| | - Kieran J O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875, Boulevard LaSalle, Montréal, Québec, Canada H4H 1R3.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), 180 Dundas St West, Suite 1400, Toronto, Ontario Canada M5G 1Z8
| | - Meir Steiner
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster Innovation Park, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1.,Women's Health Concerns Clinic, St. Joseph's Healthcare, 50 Charlton Avenue East, Hamilton, Ontario, Canada, L8G 5E4
| | - James Kennedy
- Department of Psychiatry, University of Toronto and Centre for Addiction an Mental Health, 33 Russell St, Toronto, Ontario, M5S 3M1
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875, Boulevard LaSalle, Montréal, Québec, Canada H4H 1R3.,Singapore Institute for Clinical Science, Brenner Centre for Molecular Medicine 30 Medical Drive, Singapore 117609.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), 180 Dundas St West, Suite 1400, Toronto, Ontario Canada M5G 1Z8
| | - Alison S Fleming
- Department of Psychology, 100 St. George Street, Sidney Smith Hall Toronto, Ontario, Canada M5S 3G3
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, 25 Wilcocks St. University of Toronto, Toronto, Ontario, Canada, M5S 3B2.,Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), 180 Dundas St West, Suite 1400, Toronto, Ontario Canada M5G 1Z8
| |
Collapse
|
21
|
Krill JL, Dawson-Scully K. cGMP-Dependent Protein Kinase Inhibition Extends the Upper Temperature Limit of Stimulus-Evoked Calcium Responses in Motoneuronal Boutons of Drosophila melanogaster Larvae. PLoS One 2016; 11:e0164114. [PMID: 27711243 PMCID: PMC5053426 DOI: 10.1371/journal.pone.0164114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022] Open
Abstract
While the mammalian brain functions within a very narrow range of oxygen concentrations and temperatures, the fruit fly, Drosophila melanogaster, has employed strategies to deal with a much wider range of acute environmental stressors. The foraging (for) gene encodes the cGMP-dependent protein kinase (PKG), has been shown to regulate thermotolerance in many stress-adapted species, including Drosophila, and could be a potential therapeutic target in the treatment of hyperthermia in mammals. Whereas previous thermotolerance studies have looked at the effects of PKG variation on Drosophila behavior or excitatory postsynaptic potentials at the neuromuscular junction (NMJ), little is known about PKG effects on presynaptic mechanisms. In this study, we characterize presynaptic calcium ([Ca2+]i) dynamics at the Drosophila larval NMJ to determine the effects of high temperature stress on synaptic transmission. We investigated the neuroprotective role of PKG modulation both genetically using RNA interference (RNAi), and pharmacologically, to determine if and how PKG affects presynaptic [Ca2+]i dynamics during hyperthermia. We found that PKG activity modulates presynaptic neuronal Ca2+ responses during acute hyperthermia, where PKG activation makes neurons more sensitive to temperature-induced failure of Ca2+ flux and PKG inhibition confers thermotolerance and maintains normal Ca2+ dynamics under the same conditions. Targeted motoneuronal knockdown of PKG using RNAi demonstrated that decreased PKG expression was sufficient to confer thermoprotection. These results demonstrate that the PKG pathway regulates presynaptic motoneuronal Ca2+ signaling to influence thermotolerance of presynaptic function during acute hyperthermia.
Collapse
Affiliation(s)
- Jennifer L. Krill
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail:
| |
Collapse
|
22
|
Chia KKM, Liu CC, Hamilton EJ, Garcia A, Fry NA, Hannam W, Figtree GA, Rasmussen HH. Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition. Am J Physiol Cell Physiol 2015; 309:C239-50. [PMID: 26084308 DOI: 10.1152/ajpcell.00392.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/09/2015] [Indexed: 11/22/2022]
Abstract
Protein kinase C can activate NADPH oxidase and induce glutathionylation of the β1-Na(+)-K(+) pump subunit, inhibiting activity of the catalytic α-subunit. To examine if signaling of nitric oxide-induced soluble guanylyl cyclase (sGC)/cGMP/protein kinase G can cause Na(+)-K(+) pump stimulation by counteracting PKC/NADPH oxidase-dependent inhibition, cardiac myocytes were exposed to ANG II to activate NADPH oxidase and inhibit Na(+)-K(+) pump current (Ip). Coexposure to 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) to stimulate sGC prevented the decrease of Ip. Prevention of the decrease was abolished by inhibition of protein phosphatases (PP) 2A but not by inhibition of PP1, and it was reproduced by an activator of PP2A. Consistent with a reciprocal relationship between β1-Na(+)-K(+) pump subunit glutathionylation and pump activity, YC-1 decreased ANG II-induced β1-subunit glutathionylation. The decrease induced by YC-1 was abolished by a PP2A inhibitor. YC-1 decreased phosphorylation of the cytosolic p47(phox) NADPH oxidase subunit and its coimmunoprecipitation with the membranous p22(phox) subunit, and it decreased O2 (·-)-sensitive dihydroethidium fluorescence of myocytes. Addition of recombinant PP2A to myocyte lysate decreased phosphorylation of p47(phox) indicating the subunit could be a substrate for PP2A. The effects of YC-1 to decrease coimmunoprecipitation of p22(phox) and p47(phox) NADPH oxidase subunits and decrease β1-Na(+)-K(+) pump subunit glutathionylation were reproduced by activation of nitric oxide-dependent receptor signaling. We conclude that sGC activation in cardiac myocytes causes a PP2A-dependent decrease in NADPH oxidase activity and a decrease in β1 pump subunit glutathionylation. This could account for pump stimulation with neurohormonal oxidative stress expected in vivo.
Collapse
Affiliation(s)
- Karin K M Chia
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia; Royal Brisbane and Women's Hospital, The University of Queensland, Queensland, Australia; and
| | - Chia-Chi Liu
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia
| | - Elisha J Hamilton
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia
| | - Alvaro Garcia
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia
| | - Natasha A Fry
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia
| | - William Hannam
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia
| | - Gemma A Figtree
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital, St. Leonards, Australia
| | - Helge H Rasmussen
- North Shore Heart Research Group, Kolling Medical Research Institute, University of Sydney, Sydney, Australia; Department of Cardiology, Royal North Shore Hospital, St. Leonards, Australia
| |
Collapse
|
23
|
Hou N, Armstrong GAB, Chakraborty-Chatterjee M, Sokolowski MB, Robertson RM. Na+-K+-ATPase trafficking induced by heat shock pretreatment correlates with increased resistance to anoxia in locusts. J Neurophysiol 2014; 112:814-23. [PMID: 24848469 PMCID: PMC4122745 DOI: 10.1152/jn.00201.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/17/2014] [Indexed: 01/02/2023] Open
Abstract
The sensitivity of insect nervous systems to anoxia can be modulated genetically and pharmacologically, but the cellular mechanisms responsible are poorly understood. We examined the effect of a heat shock pretreatment (HS) on the sensitivity of the locust (Locusta migratoria) nervous system to anoxia induced by water immersion. Prior HS made locusts more resistant to anoxia by increasing the time taken to enter a coma and by reducing the time taken to recover the ability to stand. Anoxic comas were accompanied by surges of extracellular potassium ions in the neuropile of the metathoracic ganglion, and HS reduced the time taken for clearance of excess extracellular potassium ions. This could not be attributed to a decrease in the activity of protein kinase G, which was increased by HS. In homogenates of the metathoracic ganglion, HS had only a mild effect on the activity of Na(+)-K(+)-ATPase. However, we demonstrated that HS caused a threefold increase in the immunofluorescent localization of the α-subunit of Na(+)-K(+)-ATPase in metathoracic neuronal plasma membranes relative to background labeling of the nucleus. We conclude that HS induced trafficking of Na(+)-K(+)-ATPase into neuronal plasma membranes and suggest that this was at least partially responsible for the increased resistance to anoxia and the increased rate of recovery of neural function after a disturbance of K(+) homeostasis.
Collapse
Affiliation(s)
- Nicholas Hou
- Department of Biology, Queen's University, Kingston, Ontario, Canada; and
| | - Gary A B Armstrong
- Department of Biology, Queen's University, Kingston, Ontario, Canada; and
| | | | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
24
|
Identification of Mob2, a novel regulator of larval neuromuscular junction morphology, in natural populations of Drosophila melanogaster. Genetics 2013; 195:915-26. [PMID: 23979583 DOI: 10.1534/genetics.113.156562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although evolutionary changes must take place in neural connectivity and synaptic architecture as nervous systems become more complex, we lack understanding of the general principles and specific mechanisms by which these changes occur. Previously, we found that morphology of the larval neuromuscular junction (NMJ) varies extensively among different species of Drosophila but is relatively conserved within a species. To identify specific genes as candidates that might underlie phenotypic differences in NMJ morphology among Drosophila species, we performed a genetic analysis on one of two phenotypic variants we found among 20 natural isolates of Drosophila melanogaster. We discovered genetic polymorphisms for both positive and negative regulators of NMJ growth segregating within the variant line. Focusing on one subline, that displayed NMJ overgrowth, we mapped the phenotype to Mob2 [Monopolar spindle (Mps) one binding protein 2)], a gene encoding a Nuclear Dbf2 (Dumbbell formation 2)-Related (NDR) kinase activator. We confirmed this identification by transformation rescue experiments and showed that presynaptic expression of Mob2 is necessary and sufficient to regulate NMJ growth. Mob2 interacts in a dominant, dose-dependent manner with tricornered but not with warts, to cause NMJ overgrowth, suggesting that Mob2 specifically functions in combination with the former NDR kinase to regulate NMJ development. These results demonstrate the feasibility and utility of identifying genetic variants affecting NMJ morphology in natural populations of Drosophila. These variants can lead to discovery of new genes and molecular mechanisms that regulate NMJ development while also providing new information that can advance our understanding of mechanisms that underlie nervous system evolution.
Collapse
|
25
|
Milton SL, Dawson-Scully K. Alleviating brain stress: what alternative animal models have revealed about therapeutic targets for hypoxia and anoxia. FUTURE NEUROLOGY 2013; 8:287-301. [PMID: 25264428 DOI: 10.2217/fnl.13.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
While the mammalian brain is highly dependent on oxygen, and can withstand only a few minutes without air, there are both vertebrate and invertebrate examples of anoxia tolerance. One example is the freshwater turtle, which can withstand days without oxygen, thus providing a vertebrate model with which to examine the physiology of anoxia tolerance without the pathology seen in mammalian ischemia/reperfusion studies. Insect models such as Drosophila melanogaster have additional advantages, such as short lifespans, low cost and well-described genetics. These models of anoxia tolerance share two common themes that enable survival without oxygen: entrance into a state of deep hypometabolism, and the suppression of cellular injury during anoxia and upon restoration of oxygen. The study of such models of anoxia tolerance, adapted through millions of years of evolution, may thus suggest protective pathways that could serve as therapeutic targets for diseases characterized by oxygen deprivation and ischemic/reperfusion injuries.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
26
|
Charabidze D, Hedouin V, Gosset D. Discontinuous foraging behavior of necrophagous Lucilia sericata (Meigen 1826) (Diptera Calliphoridae) larvae. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:325-331. [PMID: 23333403 DOI: 10.1016/j.jinsphys.2012.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 06/01/2023]
Abstract
Larvae of the necrophagous Blowfly Lucilia sericata (Diptera Calliphoridae) live on vertebrate cadavers. Although continuously feeding was previously assumed for this species, we hypothesized that larvae do not feed constantly. According to this hypothesis, their crop should not always be full, which should be reflected in crop surfaces. We dissected and measured the crops of larvae of the same age and bred in the same conditions. Crop surfaces of 117 larvae just removed from the food ranged from 0 to 16.6 mm(2) (mean=5.325±2.84 mm(2)). The distribution of these crop surfaces indicates a continuous variation of satiation/feeding activity in the population. Starving experiments showed a quite long digestive process. After 90 min of starving, the decrease in crop surfaces became obvious, but 150 min were necessary to observe more than a half of the population with an empty crop (less than 2 mm(2)). No more differences were observed after 150, 180 and 240 min of starving. We finally used starved larvae to observe the kinetic of food absorption and the duration of the food-intake phase. Our results indicates that larvae can ingest faster than they digest. After 5 min spent in the food, 70% of the larvae had a crop surface larger or equal to 8 mm(2). We observed for the first time an over-feeding of the larvae, with high crop surfaces overrepresented compared to larvae never starved (control). Together, these results indicate that larvae do not feed continuously, and regulate their foraging behavior. We propose that the foraging behavior of the larvae creates a permanent movement inside the larval masses. This turnover/scramble competition may be linked to the larval-mass effect, i.e. the local temperature increase observed in large necrophagous larvae aggregates.
Collapse
|
27
|
Caplan SL, Milton SL, Dawson-Scully K. A cGMP-dependent protein kinase (PKG) controls synaptic transmission tolerance to acute oxidative stress at the Drosophila larval neuromuscular junction. J Neurophysiol 2013; 109:649-58. [DOI: 10.1152/jn.00784.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence demonstrates that modulating the cGMP-dependent protein kinase G (PKG) pathway produces an array of behavioral phenotypes in the fruit fly, Drosophila melanogaster. Altering PKG activity, either genetically via the foraging ( for) gene or using pharmacology modifies tolerance to acute abiotic stresses such as hyperthermia and hypoxia. PKG signaling has been shown to modulate neuroprotection in many experimental paradigms of acute brain trauma and chronic neurodegenerative diseases. However, relatively little is known about how this stress-induced neuroprotective mechanism affects neural communication. In this study, we investigated the role PKG activity has on synaptic transmission at the Drosophila larval neuromuscular junction (NMJ) during acute oxidative stress and found that the application of 2.25 mM hydrogen peroxide (H2O2) disrupts synaptic function by rapidly increasing the rate of neuronal failure. Here, we report that reducing PKG activity through either natural genetic variation or an induced mutation of the for gene increases synaptic tolerance during acute oxidative conditions. Furthermore, pharmacological manipulations revealed that neurotransmission is significantly extended during acute H2O2 exposure upon inhibition of the PKG pathway. Conversely, activation of this signaling cascade using either genetics or pharmacology significantly reduced the time until synaptic failure. Therefore, these findings suggest a potential role for PKG activity to regulate the tolerance of synaptic transmission during acute oxidative stress, where inhibition promotes functional protection while activation increases susceptibility to neurotransmission breakdown.
Collapse
Affiliation(s)
- Stacee Lee Caplan
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| | - Sarah L. Milton
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida
| |
Collapse
|
28
|
Burns JG, Svetec N, Rowe L, Mery F, Dolan MJ, Boyce WT, Sokolowski MB. Gene-environment interplay in Drosophila melanogaster: chronic food deprivation in early life affects adult exploratory and fitness traits. Proc Natl Acad Sci U S A 2012; 109 Suppl 2:17239-44. [PMID: 23045644 PMCID: PMC3477394 DOI: 10.1073/pnas.1121265109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Early life adversity has known impacts on adult health and behavior, yet little is known about the gene-environment interactions (GEIs) that underlie these consequences. We used the fruit fly Drosophila melanogaster to show that chronic early nutritional adversity interacts with rover and sitter allelic variants of foraging (for) to affect adult exploratory behavior, a phenotype that is critical for foraging, and reproductive fitness. Chronic nutritional adversity during adulthood did not affect rover or sitter adult exploratory behavior; however, early nutritional adversity in the larval period increased sitter but not rover adult exploratory behavior. Increasing for gene expression in the mushroom bodies, an important center of integration in the fly brain, changed the amount of exploratory behavior exhibited by sitter adults when they did not experience early nutritional adversity but had no effect in sitters that experienced early nutritional adversity. Manipulation of the larval nutritional environment also affected adult reproductive output of sitters but not rovers, indicating GEIs on fitness itself. The natural for variants are an excellent model to examine how GEIs underlie the biological embedding of early experience.
Collapse
Affiliation(s)
- James Geoffrey Burns
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Nicolas Svetec
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Frederic Mery
- Laboratoire Évolution, Génomes, et Spéciation, Unité Propre de Recherche 9034, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
- Université Paris-Sud 11, 91405 Orsay, France; and
| | - Michael J. Dolan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - W. Thomas Boyce
- School of Population and Public Health and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Marla B. Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| |
Collapse
|
29
|
Zayed A, Robinson GE. Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. Annu Rev Genet 2012; 46:591-615. [PMID: 22994354 DOI: 10.1146/annurev-genet-110711-155517] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Behavior is a complex phenotype that is plastic and evolutionarily labile. The advent of genomics has revolutionized the field of behavioral genetics by providing tools to quantify the dynamic nature of brain gene expression in relation to behavioral output. The honey bee Apis mellifera provides an excellent platform for investigating the relationship between brain gene expression and behavior given both the remarkable behavioral repertoire expressed by members of its intricate society and the degree to which behavior is influenced by heredity and the social environment. Here, we review a linked series of studies that assayed changes in honey bee brain transcriptomes associated with natural and experimentally induced changes in behavioral state. These experiments demonstrate that brain gene expression is closely linked with behavior, that changes in brain gene expression mediate changes in behavior, and that the association between specific genes and behavior exists over multiple timescales, from physiological to evolutionary.
Collapse
Affiliation(s)
- Amro Zayed
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | |
Collapse
|
30
|
Temperature and neuronal circuit function: compensation, tuning and tolerance. Curr Opin Neurobiol 2012; 22:724-34. [DOI: 10.1016/j.conb.2012.01.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 01/24/2023]
|
31
|
PKC-2 phosphorylation of UNC-18 Ser322 in AFD neurons regulates temperature dependency of locomotion. J Neurosci 2012; 32:7042-51. [PMID: 22593072 DOI: 10.1523/jneurosci.4029-11.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diacylglycerol (DAG)/protein kinase C (PKC) signaling plays an integral role in the regulation of neuronal function. This is certainly true in Caenorhabditis elegans and in particular for thermosensory signaling and behavior. Downstream molecular targets for transduction of this signaling cascade remain, however, virtually uncharacterized. We investigated whether PKC phosphorylation of Munc18-1, an essential protein in vesicle trafficking and exocytosis, was the downstream effector for DAG regulation of thermosensory behavior. We demonstrate here that the C. elegans ortholog of Munc18-1, UNC-18, was phosphorylated in vitro at Ser322. Transgenic rescue of unc-18-null worms with Ser322 phosphomutants displayed altered thermosensitivity. C. elegans expresses three DAG-regulated PKCs, and blocking UNC-18 Ser322 phosphorylation was phenocopied only by deletion of calcium-activated PKC-2. Expression of nonphosphorylatable UNC-18 S322A, either pan-neuronally or specifically in AFD thermosensory neurons, converted wild-type worms to a pkc-2-null phenotype. These data demonstrate that an individual DAG-dependent thermosensory behavior of an organism is effected specifically by the downstream PKC-2 phosphorylation of UNC-18 on Ser322 in AFD neurons.
Collapse
|
32
|
|
33
|
Armstrong GAB, Xiao C, Krill JL, Seroude L, Dawson-Scully K, Robertson RM. Glial Hsp70 protects K+ homeostasis in the Drosophila brain during repetitive anoxic depolarization. PLoS One 2011; 6:e28994. [PMID: 22174942 PMCID: PMC3236231 DOI: 10.1371/journal.pone.0028994] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/17/2011] [Indexed: 01/04/2023] Open
Abstract
Neural tissue is particularly vulnerable to metabolic stress and loss of ion homeostasis. Repetitive stress generally leads to more permanent dysfunction but the mechanisms underlying this progression are poorly understood. We investigated the effects of energetic compromise in Drosophila by targeting the Na(+)/K(+)-ATPase. Acute ouabain treatment of intact flies resulted in subsequent repetitive comas that led to death and were associated with transient loss of K(+) homeostasis in the brain. Heat shock pre-conditioned flies were resistant to ouabain treatment. To control the timing of repeated loss of ion homeostasis we subjected flies to repetitive anoxia while recording extracellular [K(+)] in the brain. We show that targeted expression of the chaperone protein Hsp70 in glial cells delays a permanent loss of ion homeostasis associated with repetitive anoxic stress and suggest that this is a useful model for investigating molecular mechanisms of neuroprotection.
Collapse
|
34
|
KENT CLEMENTF, ISSA AMER, BUNTING ALEXANDRAC, ZAYED AMRO. Adaptive evolution of a key gene affecting queen and worker traits in the honey bee, Apis mellifera. Mol Ecol 2011; 20:5226-35. [DOI: 10.1111/j.1365-294x.2011.05299.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Chen A, Kramer EF, Purpura L, Krill JL, Zars T, Dawson-Scully K. The influence of natural variation at the foraging gene on thermotolerance in adult Drosophila in a narrow temperature range. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:1113-8. [PMID: 21861180 DOI: 10.1007/s00359-011-0672-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/08/2011] [Accepted: 07/30/2011] [Indexed: 11/26/2022]
Abstract
Poikilothermic organisms such as insects have mechanisms to protect neural function under high temperature stress. Natural variation at the foraging (for) locus of the fruit fly, Drosophila melanogaster, encoding a cGMP-dependent protein kinase (PKG), influences neural thermotolerance in Drosophila larvae. The current study re-examines thermotolerance of adult flies to account for inconsistencies in the documented role of for during hyperthermia. We found that adult for (R) (rover) flies with high PKG activity were incapacitated faster under hyperthermic conditions of 39°C compared to their lower PKG activity counterparts for (s) and for (s2) (sitters), but not at higher temperatures. This indicates that lowered PKG activity promotes tolerance to heat stress, and that the for gene influences thermotolerance for a narrow range of temperatures in adult flies.
Collapse
Affiliation(s)
- Adam Chen
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
We investigated the effects of chemical hypoxia on the central pattern generator controlling swimming in stage 42 Xenopus laevis larvae. We recorded motoneuron activity from ventral roots of immobilized tadpoles and evoked swim episodes by brief electrical stimulation of the tail skin. In the presence of the metabolic inhibitor, sodium azide (5 mM, NaN3), swim episode duration and cycle frequency decreased until swim motor patterns could not be evoked. On recovery, cycle frequency returned to preazide levels; however, episode duration remained short for at least an hour. In addition, recovery induced spontaneous, short bouts of swimming similar to the slow rhythm that is evoked by N-methyl-D-aspartic acid. We conclude that abiotic features of the environment can have long-term modulatory effects on circuit function in the CNS.
Collapse
|
37
|
Dawson-Scully K, Bukvic D, Chakaborty-Chatterjee M, Ferreira R, Milton SL, Sokolowski MB. Controlling anoxic tolerance in adult Drosophila via the cGMP-PKG pathway. ACTA ACUST UNITED AC 2010; 213:2410-6. [PMID: 20581270 DOI: 10.1242/jeb.041319] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study we identify a cGMP-dependent protein kinase (PKG) cascade as a biochemical pathway critical for controlling low-oxygen tolerance in the adult fruit fly, Drosophila melanogaster. Even though adult Drosophila can survive in 0% oxygen (anoxia) environments for hours, air with less than 2% oxygen rapidly induces locomotory failure resulting in an anoxic coma. We use natural genetic variation and an induced mutation in the foraging (for) gene, which encodes a Drosophila PKG, to demonstrate that the onset of anoxic coma is correlated with PKG activity. Flies that have lower PKG activity demonstrate a significant increase in time to the onset of anoxic coma. Further, in vivo pharmacological manipulations reveal that reducing either PKG or protein phosphatase 2A (PP2A) activity increases tolerance of behavior to acute hypoxic conditions. Alternatively, PKG activation and phosphodiesterase (PDE5/6) inhibition significantly reduce the time to the onset of anoxic coma. By manipulating these targets in paired combinations, we characterized a specific PKG cascade, with upstream and downstream components. Further, using genetic variants of PKG expression/activity subjected to chronic anoxia over 6 h, approximately 50% of animals with higher PKG activity survive, while only approximately 25% of those with lower PKG activity survive after a 24 h recovery. Therefore, in this report we describe the PKG pathway and the differential protection of function vs survival in a critically low oxygen environment.
Collapse
Affiliation(s)
- K Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Rodgers CI, Armstrong GAB, Robertson RM. Coma in response to environmental stress in the locust: a model for cortical spreading depression. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:980-990. [PMID: 20361971 DOI: 10.1016/j.jinsphys.2010.03.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/19/2010] [Accepted: 03/22/2010] [Indexed: 05/29/2023]
Abstract
Spreading depression (SD) is an interesting and important phenomenon due to its role in mammalian pathologies such as migraine, seizures, and stroke. Until recently investigations of the mechanisms involved in SD have mostly utilized mammalian cortical tissue, however we have discovered that SD-like events occur in the CNS of an invertebrate model, Locusta migratoria. Locusts enter comas in response to stress during which neural and muscular systems shut down until the stress is removed, and this is believed to be an adaptive strategy to survive extreme environmental conditions. During stress-induced comas SD-like events occur in the locust metathoracic ganglion (MTG) that closely resemble cortical SD (CSD) in many respects, including mechanism of induction, extracellular potassium ion changes, and propagation in areas equivalent to mammalian grey matter. In this review we describe the generation of comas and the associated SD-like events in the locust, provide a description of the similarities to CSD, and show how they can be manipulated both by stress preconditioning and pharmacologically. We also suggest that locust SD-like events are adaptive by conserving energy and preventing cellular damage, and we provide a model for the mechanism of SD onset and recovery in the locust nervous system.
Collapse
Affiliation(s)
- Corinne I Rodgers
- Department of Biology, Queen's University, Biosciences Complex, Kingston, Ontario, Canada.
| | | | | |
Collapse
|
39
|
Lucas C, Kornfein R, Chakaborty-Chatterjee M, Schonfeld J, Geva N, Sokolowski MB, Ayali A. The locust foraging gene. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:52-66. [PMID: 20422718 DOI: 10.1002/arch.20363] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Our knowledge of how genes act on the nervous system in response to the environment to generate behavioral plasticity is limited. A number of recent advancements in this area concern food-related behaviors and a specific gene family called foraging (for), which encodes a cGMP-dependent protein kinase (PKG). The desert locust (Schistocerca gregaria) is notorious for its destructive feeding and long-term migratory behavior. Locust phase polyphenism is an extreme example of environmentally induced behavioral plasticity. In response to changes in population density, locusts dramatically alter their behavior, from solitary and relatively sedentary behavior to active aggregation and swarming. Very little is known about the molecular and genetic basis of this striking behavioral phenomenon. Here we initiated studies into the locust for gene by identifying, cloning, and studying expression of the gene in the locust brain. We determined the phylogenetic relationships between the locust PKG and other known PKG proteins in insects. FOR expression was found to be confined to neurons of the anterior midline of the brain, the pars intercerebralis. Our results suggest that differences in PKG enzyme activity are correlated to well-established phase-related behavioral differences. These results lay the groundwork for functional studies of the locust for gene and its possible relations to locust phase polyphenism.
Collapse
Affiliation(s)
- C Lucas
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Deciphering the genetic and neurobiological underpinnings of social behavior is a difficult task. Simple model organisms such as C. elegans, Drosophila, and social insects display a wealth of social behaviors similar to those in more complex animals, including social dominance, group decision making, learning from experienced individuals, and foraging in groups. Although the study of social interactions is still in its infancy, the ability to assess the contributions of gene expression, neural circuitry, and the environment in response to social context in these simple model organisms is unsurpassed. Here, I take a comparative approach, discussing selected examples of social behavior across species and highlighting the common themes that emerge.
Collapse
|
41
|
Lucas C, Hughson BN, Sokolowski MB. Job switching in ants: Role of a kinase. Commun Integr Biol 2010; 3:6-8. [PMID: 20539773 PMCID: PMC2881231 DOI: 10.4161/cib.3.1.9723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 11/19/2022] Open
Abstract
Reproductive division of labor is a defining characteristic of eusociality in insect societies. The task of reproduction is performed by the fertile males and queens of the colony, while the non-fertile female worker caste performs all other tasks related to colony upkeep, foraging and nest defence. Division of labor, or polyethism, within the worker caste is organized such that specific tasks are performed by discrete groups of individuals. Ordinarily, workers of one group will not participate in the tasks of other groups making the groups of workers behaviorally distinct. In some eusocial species, this has led to the evolution of a remarkable diversity of subcaste morphologies within the worker caste, and a division of labor amongst the subcastes. This caste polyethism is best represented in many species of ants where a smaller-bodied minor subcaste typically performs foraging duties while larger individuals of the major subcaste are tasked with nest defence. Recent work suggests that polyethism in the worker caste is influenced by an evolutionarily conserved, yet diversely regulated, gene called foraging (for), which encodes a cGMP-dependent protein kinase (PKG). Additionally, flexibility in the activity of this enzyme allows for workers from one task group to assist the workers of other task groups in times of need during the colony's life.In a recent article, Lucas and Sokolowski1 report that PKG mediates behavioral flexibility in the minor and major worker subcastes of the ant Pheidole pallidula. By changing the task-specific stimulus (a mealworm to induce foraging or alien intruders to induce defensive behavior) or pharmacologically manipulating PKG activity, they are able to alter the behavior of both subcastes. They also show differences in the spatial localization of the FOR protein in minor and major brains. Furthermore, manipulation of ppfor activity levels in the brain alters the behavior of both P. pallidula subcastes. The foraging gene is thus emerging as a major player in regulating the flexibility of responses to environmental change.
Collapse
Affiliation(s)
- Christophe Lucas
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | - Bryon N Hughson
- Department of Biology; University of Toronto; Mississauga, ON Canada
| | | |
Collapse
|
42
|
Armstrong GAB, López-Guerrero JJ, Dawson-Scully K, Peña F, Robertson RM. Inhibition of protein kinase G activity protects neonatal mouse respiratory network from hyperthermic and hypoxic stress. Brain Res 2009; 1311:64-72. [PMID: 19945442 DOI: 10.1016/j.brainres.2009.11.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022]
Abstract
In spite of considerable research attention focused on clarifying the mechanisms by which the mammalian respiratory rhythm is generated, little attention has been given to examining how this neuronal circuit can be protected from heat stress. Hyperthermia has a profound effect on neuronal circuits including the circuit that generates breathing in mammals. As temperature of the brainstem increases, respiratory frequency concomitantly rises. If temperature continues to increase respiratory arrest (apnea) and death can occur. Previous research has implicated protein kinase G (PKG) activity in regulating neuronal thermosensitivity of neuronal circuits in invertebrates. Here we examine if pharmacological manipulation of PKG activity in a brainstem slice preparation could alter the thermosensitivity of the fictive neonatal mouse respiratory rhythm. We report a striking effect following alteration of PKG activity in the brainstem such that slices treated with the PKG inhibitor KT5823 recovered fictive respiratory rhythm generation significantly faster than control slices and slices treated with a PKG activator (8-Br-cGMP). Furthermore, slices treated with 8-Br-cGMP arrested fictive respiration at a significantly lower temperature than all other treatment groups. In a separate set of experiments we examined if altered PKG activity could regulate the response of slices to hypoxia by altering the protective switch to fictive gasping. Slices treated with 8-Br-cGMP did not switch to the fictive gasp-like pattern following exposure to hypoxia whereas slices treated with KT5823 did display fictive gasping. We propose that PKG activity inversely regulates the amount of stress the neonatal mammalian respiratory rhythm can endure.
Collapse
Affiliation(s)
- Gary A B Armstrong
- Department of Biology, Queen's University, Biosciences Complex, Kingston ON, Canada.
| | | | | | | | | |
Collapse
|
43
|
The nitric oxide/cGMP pathway tunes the thermosensitivity of swimming motor patterns in Xenopus laevis tadpoles. J Neurosci 2009; 29:13945-51. [PMID: 19890004 DOI: 10.1523/jneurosci.3841-09.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the role of the nitric oxide (NO)/cGMP pathway in setting thresholds for failure and recovery during hyperthermic stress of the swimming central pattern generator of immobilized Xenopus tadpoles (stage 42). We recorded swimming motor patterns induced by tail skin stimulation (TS) (1 ms current pulse) or by bath application of 50 microm NMDA. Swimming rhythm frequency increased in a linear manner with increasing temperature. In the presence of the NO donor S-nitroso-N-acetylpenicillamine (SNAP), recovery from hyperthermic failure was greatly slowed, often taking longer than the duration of the experiment. Pharmacological activation of the NO/cGMP pathway using SNAP or 8-bromo-cGMP (1) decreased the duration of TS-evoked swim episodes; (2) decreased the temperature threshold for hyperthermic circuit failure; (3) decreased the temperature at which the circuit recovered; and (4) increased the time taken to recover. Pharmacological inhibition of the NO/cGMP pathway using the NO scavenger CPTIO, the nitric oxide synthase (NOS) inhibitor L-NAME or the guanylyl cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) had the opposite effects. NMDA rhythms were more resistant to hyperthermic failure than TS-evoked swim episodes, but the effects of SNAP on the temperature sensitivity of swimming evoked by NMDA were similar to those on TS-evoked swimming, suggesting that drug effects occur on central pattern-generating networks rather than sensory pathways. We conclude that the NO/cGMP pathway is involved in setting the threshold temperatures for hyperthermic failure and subsequent recovery of fictive swimming in tadpoles, and we suggest that this is part of a variable response to prevent overexcitation during abiotic stress under different environmental conditions.
Collapse
|
44
|
Kodaira Y, Ohtsuki H, Yokoyama J, Kawata M. Size-dependent foraging gene expression and behavioral caste differentiation in Bombus ignitus. BMC Res Notes 2009; 2:184. [PMID: 19758422 PMCID: PMC2751771 DOI: 10.1186/1756-0500-2-184] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 09/16/2009] [Indexed: 11/10/2022] Open
Abstract
Background In eusocial hymenopteran insects, foraging genes, members of the cGMP-dependent protein kinase family, are considered to contribute to division of labor through behavioral caste differentiation. However, the relationship between foraging gene expression and behavioral caste in honeybees is opposite to that observed in ants and wasps. In the previously examined eusocial Hymenoptera, workers behave as foragers or nurses depending on age. We reasoned that examination of a different system of behavioral caste determination might provide new insights into the relationship between foraging genes and division of labor, and accordingly focused on bumblebees, which exhibit size-dependent behavioral caste differentiation. We characterized a foraging gene (Bifor) in bumblebees (Bombus ignitus) and examined the relationship between Bifor expression and size-dependent behavioral caste differentiation. Findings A putative open reading frame of the Bifor gene was 2004 bp in length. It encoded 668 aa residues and showed high identity to orthologous genes in other hymenopterans (85.3-99.0%). As in ants and wasps, Bifor expression levels were higher in nurses than in foragers. Bifor expression was negatively correlated with individual body size even within the same behavioral castes (regression coefficient = -0.376, P < 0.001, all individuals; -0.379, P = 0.018, within foragers). Conclusion These findings indicate that Bifor expression is size dependent and support the idea that Bifor expression levels are related to behavioral caste differentiation in B. ignitus. Thus, the relationship between foraging gene expression and behavioral caste differentiation found in ants and wasps was identified in a different system of labor determination.
Collapse
Affiliation(s)
- Yosuke Kodaira
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| | | | | | | |
Collapse
|
45
|
Kent CF, Daskalchuk T, Cook L, Sokolowski MB, Greenspan RJ. The Drosophila foraging gene mediates adult plasticity and gene-environment interactions in behaviour, metabolites, and gene expression in response to food deprivation. PLoS Genet 2009; 5:e1000609. [PMID: 19696884 PMCID: PMC2720453 DOI: 10.1371/journal.pgen.1000609] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/20/2009] [Indexed: 12/19/2022] Open
Abstract
Nutrition is known to interact with genotype in human metabolic syndromes, obesity, and diabetes, and also in Drosophila metabolism. Plasticity in metabolic responses, such as changes in body fat or blood sugar in response to changes in dietary alterations, may also be affected by genotype. Here we show that variants of the foraging (for) gene in Drosophila melanogaster affect the response to food deprivation in a large suite of adult phenotypes by measuring gene by environment interactions (GEI) in a suite of food-related traits. for affects body fat, carbohydrates, food-leaving behavior, metabolite, and gene expression levels in response to food deprivation. This results in broad patterns of metabolic, genomic, and behavioral gene by environment interactions (GEI), in part by interaction with the insulin signaling pathway. Our results show that a single gene that varies in nature can have far reaching effects on behavior and metabolism by acting through multiple other genes and pathways.
Collapse
Affiliation(s)
- Clement F. Kent
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Tim Daskalchuk
- Phenomenome Discoveries, Saskatoon, Saskatchewan, Canada
| | - Lisa Cook
- Phenomenome Discoveries, Saskatoon, Saskatchewan, Canada
| | - Marla B. Sokolowski
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
- * E-mail:
| | - Ralph J. Greenspan
- The Neurosciences Institute, San Diego, California, United States of America
| |
Collapse
|
46
|
Suppression of spreading depression-like events in locusts by inhibition of the NO/cGMP/PKG pathway. J Neurosci 2009; 29:8225-35. [PMID: 19553462 DOI: 10.1523/jneurosci.1652-09.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite considerable research attention focused on mechanisms underlying neural spreading depression (SD), because of its association with important human CNS pathologies, such as stroke and migraine, little attention has been given to explaining its occurrence and regulation in invertebrates. In the locust metathoracic ganglion (MTG), an SD-like event occurs during heat and anoxia stress, which results in cessation of neuronal output for the duration of the applied stress. SD-like events were characterized by an abrupt rise in extracellular potassium ion concentration ([K(+)](o)) from a baseline concentration of approximately 8 to >30 mm, which returned to near baseline concentrations after removal of the applied stress. After return to baseline [K(+)](o), neuronal output (ventilatory motor pattern activity) from the MTG recovered. Unlike mammalian neurons, which depolarize almost completely during SD, locust neurons only partially depolarized. SD-like events in the locust CNS were suppressed by pharmacological inhibition of the nitric oxide/cyclic guanosine monophosphate/protein kinase G (NO/cGMP/PKG) pathway and were exacerbated by its activation. Also, environmental stressors such as heat and anoxia increased production of nitric oxide in the locust CNS. Finally, for the intact animal, manipulation of the pathway affected the speed of recovery from suffocation by immersion under water. We propose that SD-like events in locusts provide an adaptive mechanism for surviving extreme environmental conditions. The highly conserved nature of the NO/cGMP/PKG signaling pathway suggests that it may be involved in modulating SD in other organisms, including mammals.
Collapse
|
47
|
Thermotolerance and place memory in adult Drosophila are independent of natural variation at the foraging locus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:777-82. [DOI: 10.1007/s00359-009-0455-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 11/27/2022]
|
48
|
Abstract
The importance of cGMP-dependent protein kinase (PKG) to the modulation of behavioural phenotypes has become increasingly clear in recent decades. The effects of PKG on behaviour have been studied in diverse taxa from perspectives as varied as ethology, evolution, genetics and neuropharmacology. The genetic variation of the Drosophila melanogaster gene, foraging (for), has provided a fertile model for examining natural variation in a single major gene influencing behaviour. Concurrent studies in other invertebrates and mammals suggest that PKG is an important signalling molecule with varied influences on behaviour and a large degree of pleiotropy and plasticity. Comparing these cross-taxa effects suggests that there are several potentially overlapping behavioural modalities in which PKG signalling acts to influence behaviours which include feeding, learning, stress and biological rhythms. More in-depth comparative analyses across taxa of the similarities and differences of the influence of PKG on behaviour may provide powerful mechanistic explications of the evolution of behaviour.
Collapse
|
49
|
Abstract
Some nematodes eavesdrop on pheromonal signals to sniff out their elderly beetle hosts. This turns out to be yet another behaviour regulated by cGMP/PKG signalling.
Collapse
Affiliation(s)
- Marla B Sokolowski
- Department of Biology, University of Toronto Mississauga, Mississauga Ontario, L5L 1C6, Canada.
| | | |
Collapse
|
50
|
Wang Z, Pan Y, Li W, Jiang H, Chatzimanolis L, Chang J, Gong Z, Liu L. Visual pattern memory requires foraging function in the central complex of Drosophila. Learn Mem 2008; 15:133-42. [PMID: 18310460 DOI: 10.1101/lm.873008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The role of the foraging (for) gene, which encodes a cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG), in food-search behavior in Drosophila has been intensively studied. However, its functions in other complex behaviors have not been well-characterized. Here, we show experimentally in Drosophila that the for gene is required in the operant visual learning paradigm. Visual pattern memory was normal in a natural variant rover (for(R)) but was impaired in another natural variant sitter (for(S)), which has a lower PKG level. Memory defects in for(S) flies could be rescued by either constitutive or adult-limited expression of for in the fan-shaped body. Interestingly, we showed that such rescue also occurred when for was expressed in the ellipsoid body. Additionally, expression of for in the fifth layer of the fan-shaped body restored sufficient memory for the pattern parameter "elevation" but not for "contour orientation," whereas expression of for in the ellipsoid body restored sufficient memory for both parameters. Our study defines a Drosophila model for further understanding the role of cGMP-PKG signaling in associative learning/memory and the neural circuit underlying this for-dependent visual pattern memory.
Collapse
Affiliation(s)
- Zhipeng Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|