1
|
Gillet A, Jones KE, Pierce SE. Repatterning of mammalian backbone regionalization in cetaceans. Nat Commun 2024; 15:7587. [PMID: 39217194 PMCID: PMC11365943 DOI: 10.1038/s41467-024-51963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Cetacean reinvasion of the aquatic realm is an iconic ecological transition that led to drastic modifications of the mammalian body plan, especially in the axial skeleton. Relative to the vertebral column of other mammals that is subdivided into numerous anatomical regions, regional boundaries of the cetacean backbone appear obscured. Whether the traditional mammalian regions are present in cetaceans but hard to detect due to anatomical homogenization or if regions have been entirely repatterned remains unresolved. Here we combine a segmented linear regression approach with spectral clustering to quantitatively investigate the number, position, and homology of vertebral regions across 62 species from all major cetacean clades. We propose the Nested Regions hypothesis under which the cetacean backbone is composed of six homologous modules subdivided into six to nine post-cervical regions, with the degree of regionalization dependent on vertebral count and ecology. Compared to terrestrial mammals, the cetacean backbone is less regionalized in the precaudal segment but more regionalized in the caudal segment, indicating repatterning of the vertebral column associated with the transition from limb-powered to axial-driven locomotion.
Collapse
Affiliation(s)
- Amandine Gillet
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK.
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Katrina E Jones
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK.
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Brown JG. Ticks, Hair Loss, and Non-Clinging Babies: A Novel Tick-Based Hypothesis for the Evolutionary Divergence of Humans and Chimpanzees. Life (Basel) 2021; 11:435. [PMID: 34066043 PMCID: PMC8150933 DOI: 10.3390/life11050435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Human straight-legged bipedalism represents one of the earliest events in the evolutionary split between humans (Homo spp.) and chimpanzees (Pan spp.), although its selective basis is a mystery. A carrying-related hypothesis has recently been proposed in which hair loss within the hominin lineage resulted in the inability of babies to cling to their mothers, requiring mothers to walk upright to carry their babies. However, a question remains for this model: what drove the hair loss that resulted in upright walking? Observers since Darwin have suggested that hair loss in humans may represent an evolutionary strategy for defence against ticks. The aim of this review is to propose and evaluate a novel tick-based evolutionary hypothesis wherein forest fragmentation in hominin paleoenvironments created conditions that were favourable for tick proliferation, selecting for hair loss in hominins and grooming behaviour in chimpanzees as divergent anti-tick strategies. It is argued that these divergent anti-tick strategies resulted in different methods for carrying babies, driving the locomotor divergence of humans and chimpanzees.
Collapse
|
3
|
Machnicki AL, Reno PL. Great apes and humans evolved from a long-backed ancestor. J Hum Evol 2020; 144:102791. [DOI: 10.1016/j.jhevol.2020.102791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
|
4
|
Meyer MR, Williams SA. Earliest axial fossils from the genus Australopithecus. J Hum Evol 2019; 132:189-214. [PMID: 31203847 DOI: 10.1016/j.jhevol.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 11/19/2022]
Abstract
Australopitheus anamensis fossils demonstrate that craniodentally and postcranially the taxon was more primitive than its evolutionary successor Australopithecus afarensis. Postcranial evidence suggests habitual bipedality combined with primitive upper limbs and an inferred significant arboreal adaptation. Here we report on A. anamensis fossils from the Assa Issie locality in Ethiopia's Middle Awash area dated to ∼4.2 Ma, constituting the oldest known Australopithecus axial remains. Because the spine is the interface between major body segments, these fossils can be informative on the adaptation, behavior and our evolutionary understanding of A. anamensis. The atlas, or first cervical vertebra (C1), is similar in size to Homo sapiens, with synapomorphies in the articular facets and transverse processes. Absence of a retroglenoid tubercle suggests that, like humans, A. anamensis lacked the atlantoclavicularis muscle, resulting in reduced capacity for climbing relative to the great apes. The retroflexed C2 odontoid process and long C6 spinous process are reciprocates of facial prognathism, a long clivus and retroflexed foramen magnum, rather than indications of locomotor or postural behaviors. The T1 is derived in shape and size as in Homo with an enlarged vertebral body epiphyseal surfaces for mitigating the high-magnitude compressive loads of full-time bipedality. The full costal facet is unlike the extant great ape demifacet pattern and represents the oldest evidence for the derived univertebral pattern in hominins. These fossils augment other lines of evidence in A. anamensis indicating habitual bipedality despite some plesiomorphic vertebral traits related to craniofacial morphology independent of locomotor or postural behaviors (i.e., a long clivus and a retroflexed foramen magnum). Yet in contrast to craniodental lines of evidence, some aspects of vertebral morphology in A. anamensis appear more derived than its descendant A. afarensis.
Collapse
Affiliation(s)
- Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, CA, 91737, USA.
| | - Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY, 10003, USA; New York Consortium in Evolutionary Primatology, New York, NY, 10024, USA
| |
Collapse
|
5
|
Williams SA, Spear JK, Petrullo L, Goldstein DM, Lee AB, Peterson AL, Miano DA, Kaczmarek EB, Shattuck MR. Increased variation in numbers of presacral vertebrae in suspensory mammals. Nat Ecol Evol 2019; 3:949-956. [DOI: 10.1038/s41559-019-0894-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/08/2019] [Indexed: 11/09/2022]
|
6
|
Meyer MR, Woodward C, Tims A, Bastir M. Neck function in early hominins and suspensory primates: Insights from the uncinate process. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:613-637. [PMID: 29492962 DOI: 10.1002/ajpa.23448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Uncinate processes are protuberances on the cranial surface of subaxial cervical vertebrae that assist in stabilizing and guiding spinal motion. Shallow uncinate processes reduce cervical stability but confer an increased range of motion in clinical studies. Here we assess uncinate processes among extant primates and model cervical kinematics in early fossil hominins. MATERIALS AND METHODS We compare six fossil hominin vertebrae with 48 Homo sapiens and 99 nonhuman primates across 20 genera. We quantify uncinate morphology via geometric morphometric methods to understand how uncinate process shape relates to allometry, taxonomy, and mode of locomotion. RESULTS Across primates, allometry explains roughly 50% of shape variation, as small, narrow vertebrae feature the relatively tallest, most pronounced uncinate processes, whereas larger, wider vertebrae typically feature reduced uncinates. Taxonomy only weakly explains the residual variation, however, the association between Uncinate Shape and mode of locomotion is robust, as bipeds and suspensory primates occupy opposite extremes of the morphological continuum and are distinguished from arboreal generalists. Like humans, Australopithecus afarensis and Homo erectus exhibit shallow uncinate processes, whereas A. sediba resembles more arboreal taxa, but not fully suspensory primates. DISCUSSION Suspensory primates exhibit the most pronounced uncinates, likely to maintain visual field stabilization. East African hominins exhibit reduced uncinate processes compared with African apes and A. sediba, likely signaling different degrees of neck motility and modes of locomotion. Although soft tissues constrain neck flexibility beyond limits suggested by osteology alone, this study may assist in modeling cervical kinematics and positional behaviors in extinct taxa.
Collapse
Affiliation(s)
- Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, California 91737
| | - Charles Woodward
- Department of Anthropology, University of California, Berkeley, California 94720
| | - Amy Tims
- Department of Wildlife, Fish, & Conservation Biology, University of California, Davis, California 95616
| | - Markus Bastir
- Paleoanthropology Group, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid 28006, Spain
| |
Collapse
|
7
|
Clark G, Henneberg M. Ardipithecus ramidus and the evolution of language and singing: An early origin for hominin vocal capability. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2017; 68:101-121. [PMID: 28363458 DOI: 10.1016/j.jchb.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/02/2017] [Indexed: 01/28/2023]
Abstract
In this paper we analyse the possibility that the early hominin Ardipithecus ramidus had vocal capabilities far exceeding those of any extant non-human primate. We argue that erect posture combined with changes in craniofacial morphology, such as reduced facial and jaw length, not only provide evidence for increased levels of pro-sociality, but also increased vocal ability. Reduced length of the face and jaw, combined with a flexed cranial base, suggests the larynx in this species was situated deeper in the neck than in chimpanzees, a trait which may have facilitated increased vocal ability. We also provide evidence that Ar. ramidus, by virtue of its erect posture, possessed a degree of cervical lordosis significantly greater than chimpanzees. This is indicative of increased mobility of the larynx within the neck and hence increased capacity to modulate vocalisations. In the paleoanthropological literature, these changes in early hominin skull morphology have to date been analysed in terms of a shift in mating and social behaviour, with little consideration given to vocally mediated sociality. Similarly, in the literature on language evolution there is a distinct lacuna regarding links between craniofacial correlates of social and mating systems and vocal ability. These are surprising oversights given that pro-sociality and vocal capability require identical alterations to the common ancestral skull and skeletal configuration. We therefore propose a model which integrates data on whole organism morphogenesis with evidence for a potential early emergence of hominin socio-vocal adaptations. Consequently, we suggest vocal capability may have evolved much earlier than has been traditionally proposed. Instead of emerging in the Homo genus, we suggest the palaeoecological context of late Miocene and early Pliocene forests and woodlands facilitated the evolution of hominin socio-vocal capability. We also propose that paedomorphic morphogenesis of the skull via the process of self-domestication enabled increased levels of pro-social behaviour, as well as increased capacity for socially synchronous vocalisation to evolve at the base of the hominin clade.
Collapse
Affiliation(s)
- Gary Clark
- Biological Anthropology and Comparative Anatomy Unit, Adelaide Medical School, The University of Adelaide, Adelaide 5005, Australia.
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Unit, Adelaide Medical School, The University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
8
|
Williams SA, Middleton ER, Villamil CI, Shattuck MR. Vertebral numbers and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 159:S19-36. [DOI: 10.1002/ajpa.22901] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Scott A. Williams
- Department of Anthropology; Center for the Study of Human Origins, New York University; New York NY 10003
- New York Consortium in Evolutionary Primatology; New York NY
| | - Emily R. Middleton
- Department of Anthropology; Center for the Study of Human Origins, New York University; New York NY 10003
- New York Consortium in Evolutionary Primatology; New York NY
| | - Catalina I. Villamil
- Department of Anthropology; Center for the Study of Human Origins, New York University; New York NY 10003
- New York Consortium in Evolutionary Primatology; New York NY
| | - Milena R. Shattuck
- Department of Anthropology; Center for the Study of Human Origins, New York University; New York NY 10003
- New York Consortium in Evolutionary Primatology; New York NY
| |
Collapse
|
9
|
Luo ZX, Meng QJ, Ji Q, Liu D, Zhang YG, Neander AI. Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science 2015; 347:760-4. [DOI: 10.1126/science.1260880] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Three new Jurassic euharamiyidan species reinforce early divergence of mammals. Nature 2014; 514:579-84. [DOI: 10.1038/nature13718] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/25/2014] [Indexed: 11/08/2022]
|
11
|
Xu X, Han F, Zhao Q. Homologies and homeotic transformation of the theropod 'semilunate' carpal. Sci Rep 2014; 4:6042. [PMID: 25116378 PMCID: PMC4131224 DOI: 10.1038/srep06042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/02/2014] [Indexed: 11/20/2022] Open
Abstract
The homology of the 'semilunate' carpal, an important structure linking non-avian and avian dinosaurs, has been controversial. Here we describe the morphology of some theropod wrists, demonstrating that the 'semilunate' carpal is not formed by the same carpal elements in all theropods possessing this feature and that the involvement of the lateralmost distal carpal in forming the 'semilunate' carpal of birds is an inheritance from their non-avian theropod ancestors. Optimization of relevant morphological features indicates that these features evolved in an incremental way and the 'semilunate' structure underwent a lateral shift in position during theropod evolution, possibly as a result of selection for foldable wings in birds and their close theropod relatives. We propose that homeotic transformation was involved in the evolution of the 'semilunate' carpal. In combination with developmental data on avian wing digits, this suggests that homeosis played a significant role in theropod hand evolution in general.
Collapse
Affiliation(s)
- Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, 142 Xiwai Street, Beijing 100044
| | - Fenglu Han
- Faculty of Earth Sciences, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, People's Republic of China
| | - Qi Zhao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, 142 Xiwai Street, Beijing 100044
| |
Collapse
|
12
|
Susanna I, Alba DM, Almécija S, Moyà-Solà S. The vertebral remains of the late Miocene great ape Hispanopithecus laietanus from Can Llobateres 2 (Vallès-Penedès Basin, NE Iberian Peninsula). J Hum Evol 2014; 73:15-34. [DOI: 10.1016/j.jhevol.2014.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/18/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
13
|
Chamero B, Buscalioni AD, Marugán-Lobón J, Sarris I. 3D geometry and quantitative variation of the cervico-thoracic region in Crocodylia. Anat Rec (Hoboken) 2014; 297:1278-91. [PMID: 24753482 DOI: 10.1002/ar.22926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/04/2014] [Indexed: 11/12/2022]
Abstract
This study aims to interpret the axial patterning of the crocodylian neck, and to find a potential taxonomic signal that corresponds to vertebral position. Morphological variation in the cervico-thoracic vertebrae is compared in fifteen different crocodylian species using 3D geometric morphometric methods. Multivariate analysis indicated that the pattern of intracolumnar variation was a gradual change in shape of the vertebral series (at the parapophyses, diapophyses, prezygapohyses, and postzygapohyses), in the cervical (C3 to C9) and dorsal (D1-D2) regions which was quite conservative among the crocodylians studied. In spite of this, we also found that intracolumnar shape variation allowed differentiation between two sub regions of the crocodylian neck. Growth is subtly correlated with vertebral shape variation, predicting changes in both the vertebral centrum and the neural spine. Interestingly, the allometric scaling for the pooled sample is equivalently shared by each vertebra studied. However, there were significant taxonomic differences, both in the average shape of the entire neck configuration (regional variation) and by shape variation at each vertebral position (positional variation) among the necks. The average neck vertebra of crocodylids is characterized by a relatively cranio-caudally short neural arch, whereby the spine is relatively longer and pointed orthogonal to the frontal plane. Conversely, the average vertebra in alligatorids has cranio-caudally longer neural spine and arch, with a relatively (dorso-ventrally) shorter spine. At each vertebral position there are significant differences between alligatorids and crocodylids. We discuss that the delayed timing of neurocentral fusion in Alligatoridae possibly explains the observed taxonomic differences.
Collapse
Affiliation(s)
- Beatriz Chamero
- Museo Paleontológico Egidio Feruglio, Depto. Paleontología de Vertebrados, Av. Fontana 140, Trelew, Patagonia, Argentina; Unidad de Paleontología. Dpto. de Biología, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Buchholtz EA. Crossing the frontier: a hypothesis for the origins of meristic constraint in mammalian axial patterning. ZOOLOGY 2013; 117:64-9. [PMID: 24290362 DOI: 10.1016/j.zool.2013.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/28/2013] [Indexed: 11/17/2022]
Abstract
Serially homologous systems with high internal differentiation frequently exhibit meristic constraints, although the developmental basis for constraint is unknown. Constraints in the counts of the cervical and lumbosacral vertebral series are unique to mammals, and appeared in the Triassic, early in their history. Concurrent adaptive modifications of the mammalian respiratory and locomotor systems involved a novel source of cells for muscularization of the diaphragm from cervical somites, and the loss of ribs from lumbar vertebrae. Each of these innovations increased the modularity of the somitic mesoderm, and altered somitic and lateral plate mesodermal interactions across the lateral somitic frontier. These developmental innovations are hypothesized here to constrain the anteroposterior transposition of the limbs along the column, and thus also cervical and thoracolumbar count. Meristic constraints are therefore regarded here as the nonadaptive, secondary consequences of adaptive respiratory and locomotor traits.
Collapse
Affiliation(s)
- Emily A Buchholtz
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA.
| |
Collapse
|
15
|
Abstract
It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation.
Collapse
Affiliation(s)
- Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044 China.
| | | |
Collapse
|
16
|
Buchholtz EA, Bailin HG, Laves SA, Yang JT, Chan MY, Drozd LE. Fixed cervical count and the origin of the mammalian diaphragm. Evol Dev 2012; 14:399-411. [PMID: 22947313 DOI: 10.1111/j.1525-142x.2012.00560.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Why is mammalian cervical count fixed across the historically long and ecologically broad mammalian radiation? Multiple lines of evidence, considered together, suggest a link between fixed cervical count and the muscularization of the diaphragm, a key innovation in mammalian history. We test this hypothesis by documenting the anteroposterior (AP) movement of the diaphragm, a lateral plate derivative, relative to that of the somitic thoracolumbar transition in unusually patterned mammals, by comparing the temporal occurrence of an osteological proxy for the diaphragm and fixed cervical counts in the fossil record, and by quantifying morphological differentiation within the mammalian cervical series. We then integrate these anatomical observations with details of diaphragm function and development to propose a sequence of innovations in mammalian evolution that could have led to fixed cervical count. We argue that the novel commitment of migratory muscle precursor cells (MMPs) of mid-cervical somites to a fate in the abaxial diaphragm defined these somites as a new and uniquely mammalian modular subunit. We further argue that the coordination of primaxial abaxial patterning constrained subsequent AP migration of the forelimb, thereby secondarily fixing cervical count.
Collapse
Affiliation(s)
- Emily A Buchholtz
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Williams SA. Placement of the diaphragmatic vertebra in catarrhines: Implications for the evolution of dorsostability in hominoids and bipedalism in hominins. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 148:111-22. [DOI: 10.1002/ajpa.22049] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 02/07/2012] [Indexed: 11/10/2022]
|
18
|
Haeusler M, Schiess R, Boeni T. New vertebral and rib material point to modern bauplan of the Nariokotome Homo erectus skeleton. J Hum Evol 2011; 61:575-82. [DOI: 10.1016/j.jhevol.2011.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/26/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
|
19
|
Lovejoy CO, McCollum MA. Spinopelvic pathways to bipedality: why no hominids ever relied on a bent-hip-bent-knee gait. Philos Trans R Soc Lond B Biol Sci 2010; 365:3289-99. [PMID: 20855303 PMCID: PMC2981964 DOI: 10.1098/rstb.2010.0112] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Until recently, the last common ancestor of African apes and humans was presumed to resemble living chimpanzees and bonobos. This was frequently extended to their locomotor pattern leading to the presumption that knuckle-walking was a likely ancestral pattern, requiring bipedality to have emerged as a modification of their bent-hip-bent-knee gait used during erect walking. Research on the development and anatomy of the vertebral column, coupled with new revelations from the fossil record (in particular, Ardipithecus ramidus), now demonstrate that these presumptions have been in error. Reassessment of the potential pathway to early hominid bipedality now reveals an entirely novel sequence of likely morphological events leading to the emergence of upright walking.
Collapse
Affiliation(s)
- C Owen Lovejoy
- Department of Anthropology, School of Biomedical Sciences, Kent State University, OH, USA.
| | | |
Collapse
|
20
|
Crompton RH, Sellers WI, Thorpe SKS. Arboreality, terrestriality and bipedalism. Philos Trans R Soc Lond B Biol Sci 2010; 365:3301-14. [PMID: 20855304 PMCID: PMC2981953 DOI: 10.1098/rstb.2010.0035] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The full publication of Ardipithecus ramidus has particular importance for the origins of hominin bipedality, and strengthens the growing case for an arboreal origin. Palaeontological techniques however inevitably concentrate on details of fragmentary postcranial bones and can benefit from a whole-animal perspective. This can be provided by field studies of locomotor behaviour, which provide a real-world perspective of adaptive context, against which conclusions drawn from palaeontology and comparative osteology may be assessed and honed. Increasingly sophisticated dynamic modelling techniques, validated against experimental data for living animals, offer a different perspective where evolutionary and virtual ablation experiments, impossible for living mammals, may be run in silico, and these can analyse not only the interactions and behaviour of rigid segments but increasingly the effects of compliance, which are of crucial importance in guiding the evolution of an arboreally derived lineage.
Collapse
Affiliation(s)
- Robin Huw Crompton
- Primate Evolution and Morphology Research Group, School of Biomedical Sciences, The University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, UK.
| | | | | |
Collapse
|
21
|
Young RL, Caputo V, Giovannotti M, Kohlsdorf T, Vargas AO, May GE, Wagner GP. Evolution of digit identity in the three-toed Italian skinkChalcides chalcides: a new case of digit identity frame shift. Evol Dev 2009; 11:647-58. [PMID: 19878286 DOI: 10.1111/j.1525-142x.2009.00372.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rebecca L Young
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Filler A. Magnetic resonance neurography and diffusion tensor imaging: origins, history, and clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5000-patient study group. Neurosurgery 2009; 65:A29-43. [PMID: 19927075 PMCID: PMC2924821 DOI: 10.1227/01.neu.0000351279.78110.00] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Methods were invented that made it possible to image peripheral nerves in the body and to image neural tracts in the brain. The history, physical basis, and dyadic tensor concept underlying the methods are reviewed. Over a 15-year period, these techniques-magnetic resonance neurography (MRN) and diffusion tensor imaging-were deployed in the clinical and research community in more than 2500 published research reports and applied to approximately 50,000 patients. Within this group, approximately 5000 patients having MRN were carefully tracked on a prospective basis. METHODS A uniform Neurography imaging methodology was applied in the study group, and all images were reviewed and registered by referral source, clinical indication, efficacy of imaging, and quality. Various classes of image findings were identified and subjected to a variety of small targeted prospective outcome studies. Those findings demonstrated to be clinically significant were then tracked in the larger clinical volume data set. RESULTS MRN demonstrates mechanical distortion of nerves, hyperintensity consistent with nerve irritation, nerve swelling, discontinuity, relations of nerves to masses, and image features revealing distortion of nerves at entrapment points. These findings are often clinically relevant and warrant full consideration in the diagnostic process. They result in specific pathological diagnoses that are comparable to electrodiagnostic testing in clinical efficacy. A review of clinical outcome studies with diffusion tensor imaging also shows convincing utility. CONCLUSION MRN and diffusion tensor imaging neural tract imaging have been validated as indispensable clinical diagnostic methods that provide reliable anatomic pathological information. There is no alternative diagnostic method in many situations. With the elapsing of 15 years, tens of thousands of imaging studies, and thousands of publications, these methods should no longer be considered experimental.
Collapse
Affiliation(s)
- Aaron Filler
- Institute for Nerve Medicine, Santa Monica, California 90405, USA.
| |
Collapse
|
23
|
Buchholtz EA, Stepien CC. Anatomical transformation in mammals: developmental origin of aberrant cervical anatomy in tree sloths. Evol Dev 2009; 11:69-79. [PMID: 19196334 DOI: 10.1111/j.1525-142x.2008.00303.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian cervical count has been fixed at seven for more than 200 million years. The rare exceptions to this evolutionary constraint have intrigued anatomists since the time of Cuvier, but the developmental processes that generate them are unknown. Here we evaluate competing hypotheses for the evolutionary origin of cervical variants in Bradypus and Choloepus, tree sloths that have broken the seven cervical vertebrae barrier independently and in opposite directions. Transitional and mediolaterally disjunct anatomy characterizes the cervicothoracic vertebral boundary in each genus, although polarities are reversed. The thoracolumbar, lumbosacral, and sacrocaudal boundaries are also disrupted, and are more extreme in individuals with more extreme cervical counts. Hypotheses of homologous, homeotic, meristic, or associational transformations of traditional vertebral column anatomy are not supported by these data. We identify global homeotic repatterning of abaxial relative to primaxial mesodermal derivatives as the origin of the anomalous cervical counts of tree sloths. This interpretation emphasizes the strong resistance of the "rule of seven" to evolutionary change, as morphological stasis has been maintained primaxially coincident with the generation of a functionally longer (Bradypus) or shorter (Choloepus) neck.
Collapse
Affiliation(s)
- Emily A Buchholtz
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA.
| | | |
Collapse
|
24
|
Vereecke EE, Aerts P. The mechanics of the gibbon foot and its potential for elastic energy storage during bipedalism. J Exp Biol 2008; 211:3661-70. [DOI: 10.1242/jeb.018754] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe mechanics of the modern human foot and its specialization for habitual bipedalism are well understood. The windlass mechanism gives it the required stability for propulsion generation, and flattening of the arch and stretching of the plantar aponeurosis leads to energy saving. What is less well understood is how an essentially flat and mobile foot, as found in protohominins and extant apes, functions during bipedalism. This study evaluates the hypothesis that an energy-saving mechanism, by stretch and recoil of plantar connective tissues, is present in the mobile gibbon foot and provides a two-dimensional analysis of the internal joint mechanics of the foot during spontaneous bipedalism of gibbons using a four-link segment foot model. Available force and pressure data are combined with detailed foot kinematics, recorded with a high-speed camera at 250 Hz, to calculate the external joint moments at the metatarsophalangeal (MP), tarsometatarsal (TM)and talocrural (TC) joints. In addition, instantaneous joint powers are estimated to obtain insight into the propulsion-generating capacities of the internal foot joints. It is found that, next to a wide range of motion at the TC joint, substantial motion is observed at the TM and MP joint, underlining the importance of using a multi-segment foot model in primate gait analyses. More importantly, however, this study shows that although a compliant foot is less mechanically effective for push-off than a `rigid' arched foot, it can contribute to the generation of propulsion in bipedal locomotion viastretch and recoil of the plantarflexor tendons and plantar ligaments.
Collapse
Affiliation(s)
- Evie E. Vereecke
- Department of Human Anatomy and Cell Biology, School of Biomedical Sciences,University of Liverpool, Liverpool L69 3GE, UK
- Laboratorium for Functional Morphology, University of Antwerp,Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Peter Aerts
- Laboratorium for Functional Morphology, University of Antwerp,Universiteitsplein 1, B-2610 Antwerp, Belgium
- Department of Movement and Sports Sciences, University of Ghent,Watersportlaan 2, B-9000 Gent, Belgium
| |
Collapse
|
25
|
Crompton RH, Vereecke EE, Thorpe SKS. Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. J Anat 2008; 212:501-43. [PMID: 18380868 PMCID: PMC2409101 DOI: 10.1111/j.1469-7580.2008.00870.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2008] [Indexed: 11/28/2022] Open
Abstract
Based on our knowledge of locomotor biomechanics and ecology we predict the locomotion and posture of the last common ancestors of (a) great and lesser apes and their close fossil relatives (hominoids); (b) chimpanzees, bonobos and modern humans (hominines); and (c) modern humans and their fossil relatives (hominins). We evaluate our propositions against the fossil record in the context of a broader review of evolution of the locomotor system from the earliest hominoids of modern aspect (crown hominoids) to early modern Homo sapiens. While some early East African stem hominoids were pronograde, it appears that the adaptations which best characterize the crown hominoids are orthogrady and an ability to abduct the arm above the shoulder - rather than, as is often thought, manual suspension sensu stricto. At 7-9 Ma (not much earlier than the likely 4-8 Ma divergence date for panins and hominins, see Bradley, 2008) there were crown hominoids in southern Europe which were adapted to moving in an orthograde posture, supported primarily on the hindlimb, in an arboreal, and possibly for Oreopithecus, a terrestrial context. By 7 Ma, Sahelanthropus provides evidence of a Central African hominin, panin or possibly gorilline adapted to orthogrady, and both orthogrady and habitually highly extended postures of the hip are evident in the arboreal East African protohominin Orrorin at 6 Ma. If the traditional idea that hominins passed through a terrestrial 'knuckle-walking' phase is correct, not only does it have to be explained how a quadrupedal gait typified by flexed postures of the hindlimb could have preadapted the body for the hominin acquisition of straight-legged erect bipedality, but we would have to accept a transition from stem-hominoid pronogrady to crown hominoid orthogrady, back again to pronogrady in the African apes and then back to orthogrady in hominins. Hand-assisted arboreal bipedality, which is part of a continuum of orthograde behaviours, is used by modern orangutans to forage among the small branches at the periphery of trees where the core hominoid dietary resource, ripe fruit, is most often to be found. Derivation of habitual terrestrial bipedality from arboreal hand-assisted bipedality requires fewer transitions, and is also kinematically and kinetically more parsimonious.
Collapse
Affiliation(s)
- R H Crompton
- School of Biomedical Sciences, The University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, UK.
| | | | | |
Collapse
|