1
|
Choi BY, Yang EM, Jung HW, Shin MK, Jo J, Cha HY, Park HS, Kang HC, Ye YM. Anti-heat shock protein 10 IgG in chronic spontaneous urticaria: Relation with miRNA-101-5p and platelet-activating factor. Allergy 2023; 78:3166-3177. [PMID: 37415527 DOI: 10.1111/all.15810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Anti-heat shock protein (HSP) autoantibodies are detected in autoimmune diseases. We sought to ascertain whether anti-HSP10 IgG is present in patients with CSU and to elucidate the role of HSP10 in CSU pathogenesis. METHOD Using a human proteome microarray, six potential autoantibodies had higher expression in 10 CSU samples compared with 10 normal controls (NCs). Among them, HSP10 IgG autoantibody was quantified by immune dot-blot assay in sera from 86 CSU patients and 44 NCs. The serum levels of HSP10 and microRNA-101-5p were measured in CSU patients and NCs. The effects of HSP10 and miR-101-5p on mast cell degranulation in response to IgE, compound 48/80, and platelet-activating factor (PAF) were investigated. RESULTS CSU patients had higher IgG positivity to HSP10 (40.7% vs. 11.4%, p = .001), lower serum HSP10 levels (5.8 ± 3.6 vs. 12.2 ± 6.6 pg/mL, p < .001) than in NCs, and their urticaria severity was associated with anti-HSP10 IgG positivity, while HSP10 levels were related to urticaria control status. MiR-101-5p was increased in CSU patients. PAF enhanced IL4 production in PBMCs from CSU patients. IL-4 upregulated miR-101-5p and reduced HSP10 expression in keratinocytes. Transfection of miR-101-5p reduced HSP10 expression in keratinocytes. MiR-101-5p promoted PAF-induced mast cell degranulation, while HSP10 specifically prevented it. CONCLUSION A new autoantibody, anti-HSP10 IgG was detected in CSU patients, which showed a significant correlation with UAS7 scores. A decreased serum HSP10 level was associated with upregulation of miR-101-5p due to increased IL-4 and PAF in CSU patients. Modulation of miR-101-5p and HSP10 may be a novel therapeutic approach for CSU.
Collapse
Affiliation(s)
- Bo Youn Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Won Jung
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Min-Kyoung Shin
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea
| | - Junghyun Jo
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, South Korea
| | - Hyun-Young Cha
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Ho-Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
2
|
Prasad AR, Bhattacharya TK, Chatterjee RN, Divya D, Bhanja SK, Shanmugam M, Sagar NG. Silencing acetyl-CoA carboxylase A and sterol regulatory element-binding protein 1 genes through RNAi reduce serum and egg cholesterol in chicken. Sci Rep 2022; 12:1191. [PMID: 35075178 PMCID: PMC8786841 DOI: 10.1038/s41598-022-05204-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
Cholesterol is synthesized in chicken through de novo lipid biosynthetic pathway where two most important genes viz. SREBP1 and ACACA play immense role. To minimize cholesterol synthesis, RNAi approach was adopted and accordingly, we developed transgenic chicken possessing ACACA and SREBP1 shRNA constructs, which showed lower level of ACACA and SREBP1 in serum. The serum total cholesterol, triglycerides, HDL and LDL cholesterol was significantly lower by 23.8, 35.6, 26.6 and 20.9%, respectively in SREBP1 transgenic birds compared to the control. The egg total cholesterol and LDL cholesterol content was numerically lower in both ACACA and SREBP1 transgenic birds by 14.3 and 13.2%, and 10.4 and 13.7%, respectively compared to the control. It is concluded that the protocol was perfected to develop transgenic chicken through RNAi for knocking down the expression of ACACA and SREBP1 proteins, which minimized the cholesterol and triglycerides contents in serum and eggs.
Collapse
Affiliation(s)
| | - T K Bhattacharya
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India.
| | - R N Chatterjee
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - D Divya
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - S K Bhanja
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - M Shanmugam
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| | - N G Sagar
- ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, India
| |
Collapse
|
3
|
Wenzel TJ, Kwong E, Bajwa E, Klegeris A. Resolution-Associated Molecular Patterns (RAMPs) as Endogenous Regulators of Glia Functions in Neuroinflammatory Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:483-494. [DOI: 10.2174/1871527319666200702143719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
Glial cells, including microglia and astrocytes, facilitate the survival and health of all cells
within the Central Nervous System (CNS) by secreting a range of growth factors and contributing to
tissue and synaptic remodeling. Microglia and astrocytes can also secrete cytotoxins in response to
specific stimuli, such as exogenous Pathogen-Associated Molecular Patterns (PAMPs), or endogenous
Damage-Associated Molecular Patterns (DAMPs). Excessive cytotoxic secretions can induce the death
of neurons and contribute to the progression of neurodegenerative disorders, such as Alzheimer’s disease
(AD). The transition between various activation states of glia, which include beneficial and detrimental
modes, is regulated by endogenous molecules that include DAMPs, cytokines, neurotransmitters,
and bioactive lipids, as well as a diverse group of mediators sometimes collectively referred to as
Resolution-Associated Molecular Patterns (RAMPs). RAMPs are released by damaged or dying CNS
cells into the extracellular space where they can induce signals in autocrine and paracrine fashions by
interacting with glial cell receptors. While the complete range of their effects on glia has not been described
yet, it is believed that their overall function is to inhibit adverse CNS inflammatory responses,
facilitate tissue remodeling and cellular debris removal. This article summarizes the available evidence
implicating the following RAMPs in CNS physiological processes and neurodegenerative diseases:
cardiolipin (CL), prothymosin α (ProTα), binding immunoglobulin protein (BiP), heat shock protein
(HSP) 10, HSP 27, and αB-crystallin. Studies on the molecular mechanisms engaged by RAMPs could
identify novel glial targets for development of therapeutic agents that effectively slow down neuroinflammatory
disorders including AD.
Collapse
Affiliation(s)
- Tyler J. Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Evan Kwong
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Ekta Bajwa
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia, V1V 1V7, Canada
| |
Collapse
|
4
|
Park JC, Kim DH, Lee Y, Lee MC, Kim TK, Yim JH, Lee JS. Genome-wide identification and structural analysis of heat shock protein gene families in the marine rotifer Brachionus spp.: Potential application in molecular ecotoxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100749. [PMID: 33065474 DOI: 10.1016/j.cbd.2020.100749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 01/07/2023]
Abstract
Heat shock proteins (Hsp) are class of conserved and ubiquitous stress proteins present in all living organisms from primitive to higher level. Various studies have demonstrated multiple cellular functions of Hsp in living organisms as an important biomarker in response to abiotic and biotic stressors including temperature, salinity, pH, hypoxia, environmental pollutants, and pathogens. However, full understanding on the mechanism and pathway involved in the induction of Hsp still remains challenging, especially in aquatic invertebrates. In this study, the entire Hsp family and subfamily members in the marine rotifers Brachionus spp., one of the cosmopolitan ecotoxicological model organisms, have been genome-widely identified. In Brachionus spp. Hsp family was comprised of Hsp10, small hsp (sHsp), Hsp40, Hsp60, Hsp70/105, and Hsp90, with highest number of genes found within Hsp40 DnaJ homolog subfamily C members. Also, the differences in the orientation of the conserved motifs within Hsp family may have induced differences in transcriptional gene modulation in response to thermal stress in Brachionus koreanus. Overall, Hsp family-specific domains were highly conserved in all three Brachionus spp., relative to Homo sapiens and across other animal taxa and these findings will be helpful for future ecotoxicological studies focusing on Hsps.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Tai Kyoung Kim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Joung Han Yim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
5
|
Eickholz P, Schröder M, Asendorf A, Schacher B, Oremek GM, Kaiser F, Wohlfeil M, Nibali L. Effect of nonsurgical periodontal therapy on haematological parameters in grades B and C periodontitis: an exploratory analysis. Clin Oral Investig 2020; 24:4291-4299. [PMID: 32385656 PMCID: PMC7666670 DOI: 10.1007/s00784-020-03292-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Aim Assessment of the effect of nonsurgical periodontal therapy on haematological parameters in patients with grades B (BP) and C periodontitis (CP). Methods Eight BP and 46 CP patients received full-mouth periodontal debridement within 48 h, if positive for Aggregatibacter actinomycetemcomitans with adjunctive systemic antibiotics (4 BP, 17 CP). Clinical data were collected prior and 12 weeks after periodontal therapy. Blood was sampled prior to and 1 day as well as 6 and 12 weeks after the first SD visit. Erythrocyte count, haemoglobin value, haematocrit (HCT), mean erythrocyte volume (MCV), mean corpuscular haemoglobin (MCH), MCH concentration (MCHC), platelets (PLT) and heat shock protein 27 (Hsp27) were assessed. Results Both groups showed significant clinical improvement (p < 0.05). Using univariate analysis, MCV was noticeably lower in CP than BP at all examinations, HCT only at baseline. For CP, MCHC was noticeably higher 12 weeks after SD than at baseline and 1 day (p ≤ 0.005) and Hsp27 increased noticeably at 1 day (p < 0.05). Repeated measures analysis of variance revealed African origin to be associated with lower MCV and female sex with lower MCHC. Conclusion Based on multivariate analysis, periodontal diagnosis (BP/CP) was not associated with haematological parameters measured in this study or serum Hsp27. In CP, nonsurgical periodontal therapy improved MCHC 12 weeks after SD. Also in CP Hsp27 was increased 1 day after SD.
Collapse
Affiliation(s)
- Peter Eickholz
- Department of Periodontology, Center for Dentistry and Oral Medicine (Carolinum), Johann Wolfgang Goethe-University Frankfurt/Main, Theodor-Stern-Kai 7 (Haus 29), 60596, Frankfurt am Main, Germany.
| | - Mario Schröder
- Department of Periodontology, Center for Dentistry and Oral Medicine (Carolinum), Johann Wolfgang Goethe-University Frankfurt/Main, Theodor-Stern-Kai 7 (Haus 29), 60596, Frankfurt am Main, Germany
| | - Anne Asendorf
- Department of Periodontology, Center for Dentistry and Oral Medicine (Carolinum), Johann Wolfgang Goethe-University Frankfurt/Main, Theodor-Stern-Kai 7 (Haus 29), 60596, Frankfurt am Main, Germany
| | - Beate Schacher
- Department of Periodontology, Center for Dentistry and Oral Medicine (Carolinum), Johann Wolfgang Goethe-University Frankfurt/Main, Theodor-Stern-Kai 7 (Haus 29), 60596, Frankfurt am Main, Germany
| | - Gerhard M Oremek
- Department of Laboratory Medicine, Centre for Internal Medicine, Hospital of the Johann Wolfgang Goethe-University Frankfurt/Main, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Frank Kaiser
- Centre for Host-Microbiome Interactions, Kings College London, Guy's Hospital, Great Maze Pond, SE1 9RT, London, UK
| | - Martin Wohlfeil
- Department of Periodontology, Center for Dentistry and Oral Medicine (Carolinum), Johann Wolfgang Goethe-University Frankfurt/Main, Theodor-Stern-Kai 7 (Haus 29), 60596, Frankfurt am Main, Germany
| | - Luigi Nibali
- Centre for Host-Microbiome Interactions, Kings College London, Guy's Hospital, Great Maze Pond, SE1 9RT, London, UK
| |
Collapse
|
6
|
Mandacaru SC, Queiroz RML, Alborghetti MR, de Oliveira LS, de Lima CMR, Bastos IMD, Santana JM, Roepstorff P, Ricart CAO, Charneau S. Exoproteome profiling of Trypanosoma cruzi during amastigogenesis early stages. PLoS One 2019; 14:e0225386. [PMID: 31756194 PMCID: PMC6874342 DOI: 10.1371/journal.pone.0225386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi, affecting around 8 million people worldwide. After host cell invasion, the infective trypomastigote form remains 2–4 hours inside acidic phagolysosomes to differentiate into replicative amastigote form. In vitro acidic-pH-induced axenic amastigogenesis was used here to study this step of the parasite life cycle. After three hours of trypomastigote incubation in amastigogenesis promoting acidic medium (pH 5.0) or control physiological pH (7.4) medium samples were subjected to three rounds of centrifugation followed by ultrafiltration of the supernatants. The resulting exoproteome samples were trypsin digested and analysed by nano flow liquid chromatography coupled to tandem mass spectrometry. Computational protein identification searches yielded 271 and 483 protein groups in the exoproteome at pH 7.4 and pH 5.0, respectively, with 180 common proteins between both conditions. The total amount and diversity of proteins released by parasites almost doubled upon acidic incubation compared to control. Overall, 76.5% of proteins were predicted to be secreted by classical or non-classical pathways and 35.1% of these proteins have predicted transmembrane domains. Classical secretory pathway analysis showed an increased number of mucins and mucin-associated surface proteins after acidic incubation. However, the number of released trans-sialidases and surface GP63 peptidases was higher at pH 7.4. Trans-sialidases and mucins are anchored to the membrane and exhibit an enzyme-substrate relationship. In general, mucins are glycoproteins with immunomodulatory functions in Chagas disease, present mainly in the epimastigote and trypomastigote surfaces and could be enzymatically cleaved and released in the phagolysosome during amastigogenesis. Moreover, evidence for flagella discard during amastigogenesis are addressed. This study provides the first comparative analysis of the exoproteome during amastigogenesis, and the presented data evidence the dynamism of its profile in response to acidic pH-induced differentiation.
Collapse
Affiliation(s)
- Samuel C. Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rayner M. L. Queiroz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marcos R. Alborghetti
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Lucas S. de Oliveira
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Consuelo M. R. de Lima
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela M. D. Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Jaime M. Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Carlos André O. Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- * E-mail:
| |
Collapse
|
7
|
Kaiser F, Donos N, Henderson B, Alagarswamy R, Pelekos G, Boniface D, Nibali L. Association between circulating levels of heat-shock protein 27 and aggressive periodontitis. Cell Stress Chaperones 2018; 23:847-856. [PMID: 29766408 PMCID: PMC6111086 DOI: 10.1007/s12192-018-0891-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 01/23/2023] Open
Abstract
Heat-shock protein (Hsp) 27 is a major intracellular molecular chaperone and controller of intracellular responses to inflammatory signals. In the extracellular space, recombinant Hsp27 has been described to exert anti-inflammatory activities. The aim of this study was to assess the association between circulating levels of Hsp27 and different types of periodontitis. Pro- and anti-inflammatory cytokines and the stress proteins Hsp27 and Hsp60 with proposed anti- and pro-inflammatory properties, respectively, were measured by two-site ELISA in the serum of patients with aggressive periodontitis (AgP, n = 30), chronic periodontitis (CP, n = 29) and periodontally healthy controls (H, n = 28). Furthermore, Hsp27 and Hsp60 levels were also measured longitudinally in 12 AgP patients at 6 time points up to 3 months after treatment. AgP patients had lower levels of Hsp27 compared to CP patients and healthy subjects (adjusted one-way ANOVA, p < 0.001, followed by post hoc Tukey HSD comparisons), while no differences in levels of Hsp60 or cytokines between the three groups were detected. In CP patients and H subjects, the systemic Hsp27 levels correlated with Hsp60 (r = 0.43, p < 0.001; r = 0.59, p < 0.001, respectively) and with pro-inflammatory cytokines TNF-α (r = 0.48, p < 0.001; r = 0.55, p < 0.001, respectively) and IL-6 (r = 0.44, p < 0.01). However, no such correlations were detected in AgP cases. No consistent temporal patterns of changes of Hsp27 concentration were detected across AgP patients following periodontal treatment. This study provides the first evidence that Hsp27 may be differentially expressed and regulated in AgP patients as compared with CP patients and healthy individuals.
Collapse
Affiliation(s)
- Frank Kaiser
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, UK
| | - Nikos Donos
- Centre for Immunobiology and Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University London, Turner Street E1 2AD, London, UK
| | - Brian Henderson
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, UK
| | - Rajesh Alagarswamy
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, UK
| | - George Pelekos
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - David Boniface
- Biostatistics Unit, Eastman Dental Institute, University College London, London, UK
| | - Luigi Nibali
- Centre for Immunobiology and Regenerative Medicine and Centre for Oral Clinical Research, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University London, Turner Street E1 2AD, London, UK.
| |
Collapse
|
8
|
Tsai CH, Chen YT, Chang YH, Hsueh C, Liu CY, Chang YS, Chen CL, Yu JS. Systematic verification of bladder cancer-associated tissue protein biomarker candidates in clinical urine specimens. Oncotarget 2018; 9:30731-30747. [PMID: 30112103 PMCID: PMC6089400 DOI: 10.18632/oncotarget.24578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 02/20/2018] [Indexed: 12/29/2022] Open
Abstract
Bladder cancer biomarkers currently approved by the Food and Drug Administration are insufficiently reliable for use in non-invasive clinical diagnosis. Verification/validation of numerous biomarker candidates for BC detection is a crucial bottleneck for novel biomarker development. A multiplexed liquid chromatography multiple-reaction-monitoring mass spectrometry assay of 122 proteins, including 118 up-regulated tissue proteins, two known bladder cancer biomarkers and two housekeeping gene products, was successfully established for protein quantification in clinical urine specimens. Quantification of 122 proteins was performed on a large cohort of urine specimens representing a variety of conditions, including 142 hernia, 126 bladder cancer, 67 hematuria, and 59 urinary tract infection samples. ANXA3 (annexin A3) and HSPE1 (heat shock protein family E member 1), which showed the highest detection frequency in bladder cancer samples, were selected for further validation. Western blotting showed that urinary ANXA3 and HSPE1 protein levels were higher in bladder cancer samples than in hernia samples, and enzyme-linked immunosorbent assays confirmed a higher urinary concentration of HSPE1 in bladder cancer than in hernia, hematuria and urinary tract infection. Immunohistochemical analyses showed significantly elevated levels of HSPE1 in tumor cells compared with non-cancerous bladder epithelial cells, suggesting that HSPE1 could be a useful tumor tissue marker for the specific detection of bladder cancer. Collectively, our findings provide valuable information for future validation of potential biomarkers for bladder cancer diagnosis.
Collapse
Affiliation(s)
- Cheng-Han Tsai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Ying-Hsu Chang
- Division of Urology, Department of Surgery, LinKou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuen Hsueh
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pathology, Chang Gung Memorial Hospital, Linkou, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chung-Yi Liu
- Division of Urology, Department of Surgery, LinKou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan.,Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
9
|
Pockley AG, Henderson B. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0522. [PMID: 29203707 DOI: 10.1098/rstb.2016.0522] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 12/11/2022] Open
Abstract
Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory 'danger signals' for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- A Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Brian Henderson
- Division of Microbial Diseases, UCL Eastman Dental Institute, London WC1X 8LD, UK
| |
Collapse
|
10
|
Skeletal muscle Heat shock protein 60 increases after endurance training and induces peroxisome proliferator-activated receptor gamma coactivator 1 α1 expression. Sci Rep 2016; 6:19781. [PMID: 26812922 PMCID: PMC4728392 DOI: 10.1038/srep19781] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/17/2015] [Indexed: 11/26/2022] Open
Abstract
Heat shock protein 60 (Hsp60) is a chaperone localizing in skeletal muscle mitochondria, whose role is poorly understood. In the present study, the levels of Hsp60 in fibres of the entire posterior group of hindlimb muscles (gastrocnemius, soleus, and plantaris) were evaluated in mice after completing a 6-week endurance training program. The correlation between Hsp60 levels and the expression of four isoforms of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) were investigated only in soleus. Short-term overexpression of hsp60, achieved by in vitro plasmid transfection, was then performed to determine whether this chaperone could have a role in the activation of the expression levels of PGC1α isoforms. The levels of Hsp60 protein were fibre-type specific in the posterior muscles and endurance training increased its content in type I muscle fibers. Concomitantly with the increased levels of Hsp60 released in the blood stream of trained mice, mitochondrial copy number and the expression of three isoforms of PGC1α increased. Overexpressing hsp60 in cultured myoblasts induced only the expression of PGC1 1α, suggesting a correlation between Hsp60 overexpression and PGC1 1 α activation.
Collapse
|
11
|
Abstract
Although heat-shock (cell stress) proteins are commonly considered as being intracellular molecular chaperones that undertake a number of cytoprotective and cellular housekeeping functions, there is now a wealth of evidence to indicate that these proteins can be released by cells via active processes. Many molecular chaperones are secreted, or exist as cell surface proteins which can act as powerful signalling agonists and also as receptors for selected ligands. Levels of heat-shock (cell stress) proteins in biological fluids are now being associated with a plethora of clinical conditions, and these proteins therefore have potential utility as biomarkers of disease and/or response to therapeutic intervention. The present article summarizes current knowledge relating to extracellular cell stress proteins as biomarkers of human disease.
Collapse
|
12
|
Iqbal J, Li W, Hasan M, Liu K, Awan U, Saeed Y, Zhang Y, Muhammad Khan A, Shah A, Qing H, Deng Y. Differential expression of specific cellular defense proteins in rat hypothalamus under simulated microgravity induced conditions: comparative proteomics. Proteomics 2014; 14:1424-33. [PMID: 24648329 DOI: 10.1002/pmic.201400019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/16/2014] [Accepted: 03/10/2014] [Indexed: 12/14/2022]
Abstract
Microgravity severely halts the structural and functional cerebral capacity of astronauts especially affecting their brains due to the stress produced by cephalic fluid shift. We employed a rat tail suspension model to substantiate simulated microgravity (SM) in brain. In this study, comparative mass spectrometry was applied in order to demonstrate the differential expression of 17 specific cellular defense proteins. Gamma-enolase, peptidyl-prolyl cis-trans isomerase A, glial fibrillary acidic protein, heat shock protein HSP 90-alpha, 10 kDa heat shock protein, mitochondrial, heat shock cognate 71 kDa protein, superoxide dismutase 1 and dihydropyrimidinase-related protein 2 were found to be upregulated by HPLC/ESI-TOF. Furthermore, five differentially expressed proteins including 60 kDa heat shock protein, mitochondrial, heat shock protein HSP 90-beta, peroxiredoxin-2, stress-induced-phosphoprotein, and UCHL-1 were found to be upregulated by HPLC/ESI-Q-TOF MS. In addition, downregulated proteins include cytochrome C, superoxide dismutase 2, somatic, and excitatory amino acid transporter 1 and protein DJ-1. Validity of MS results was successfully performed by Western blot analysis of DJ-1 protein. This study will not only help to understand the neurochemical responses produced under microgravity but also will give future direction to cure the proteomic losses and their after effects in astronauts.
Collapse
Affiliation(s)
- Javed Iqbal
- School of Life Sciences, Beijing Institute of Technology, Beijing, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Heat Shock Proteins: Intestinal Gatekeepers that Are Influenced by Dietary Components and the Gut Microbiota. Pathogens 2014; 3:187-210. [PMID: 25437614 PMCID: PMC4235725 DOI: 10.3390/pathogens3010187] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/06/2014] [Accepted: 02/18/2014] [Indexed: 02/07/2023] Open
Abstract
Trillions of microorganisms that inhabit the intestinal tract form a diverse and intricate ecosystem with a deeply embedded symbiotic relationship with their hosts. As more detailed information on gut microbiota complexity and functional diversity accumulates, we are learning more about how diet-microbiota interactions can influence the immune system within and outside the gut and host health in general. Heat shock proteins are a set of highly conserved proteins that are present in all types of cells, from microbes to mammals. These proteins carry out crucial intracellular housekeeping functions and unexpected extracellular immuno-regulatory features in order to maintain the mucosal barrier integrity and gut homeostasis. It is becoming evident that the enteric microbiota is one of the major determinants of heat shock protein production in intestinal epithelial cells. This review will focus on the interactions between diet, gut microbiota and their role for regulating heat shock protein production and, furthermore, how these interactions influence the immune system and the integrity of the mucosal barrier.
Collapse
|
14
|
Ecological adaption analysis of the cotton aphid (Aphis gossypii) in different phenotypes by transcriptome comparison. PLoS One 2013; 8:e83180. [PMID: 24376660 PMCID: PMC3871566 DOI: 10.1371/journal.pone.0083180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023] Open
Abstract
Background The cotton aphid, Aphis gossypii Glover, is a destructive insect pest worldwide; it directly or indirectly damages (virus transmission) 300 species of host plants. Knowledge of their ecologically adaptive mechanisms at the molecular level may provide an essential and urgent method to effectively control this pest. However, no transcriptome information is available for the cotton aphid and sequence data are scarce. Therefore, we obtained transcriptome data. Results To facilitate such a study, two cotton aphid transcriptomes at different growth stages of cotton, seedling and summer, were sequenced. A total of 161,396 and 66,668 contigs were obtained and assembled into 83,671 and 42,438 transcripts, respectively. After combining the raw date for both transcriptomes, the sequences were reassembled into 66,695 transcripts, and 52,160 were annotated based on BLASTX analyses. Comparison of the transcriptomes revealed that summer presented less challenges for the cotton aphids than the seedling stage of cotton. In total, 58 putative heat shock protein genes and 66 candidate cytochrome p450 genes were identified with BLASTX. Conclusions Our results form a basis for exploring the molecular mechanisms of ecological adaption in the cotton aphid. Our study also provides a baseline for the exploration of abiotic stress responses. In addition, it provides large-scale sequence information for further studies on this species.
Collapse
|
15
|
Rizzo M, Cappello F, Marfil R, Nibali L, Marino Gammazza A, Rappa F, Bonaventura G, Galindo-Moreno P, O'Valle F, Zummo G, Conway de Macario E, Macario AJL, Mesa F. Heat-shock protein 60 kDa and atherogenic dyslipidemia in patients with untreated mild periodontitis: a pilot study. Cell Stress Chaperones 2012; 17:399-407. [PMID: 22215516 PMCID: PMC3312963 DOI: 10.1007/s12192-011-0315-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 12/21/2022] Open
Abstract
Identification of predictors of cardiovascular risk can help in the prevention of pathologic episodes and the management of patients at all stages of illness. Here, we investigated the relationships between serum levels of Hsp60 and dyslipidemia in patients with periodontitis by performing a cross-sectional study of 22 patients with mild periodontitis without any prior treatment for it (i.e., drug naïve) and 22 healthy controls, matched for age and body mass index (BMI). All subjects were evaluated for periodontal status, gingival inflammation, and oral hygiene. Levels of circulating Hsp60, C-reactive protein (CRP), and plasma lipids were measured, and small, dense low-density lipoproteins (LDL) were indirectly assessed by determining the triglycerides/high-density lipoproteins (HDL) cholesterol ratio. We also assessed by immunohistochemistry Hsp60 levels in oral mucosa of patients and controls. No difference was found in CRP levels or plasma lipids between the two groups, but subjects with periodontitis showed, in comparison to controls, higher levels of small, dense LDL (p = 0.0355) and circulating Hsp60 concentrations (p < 0.0001). However, levels of mucosal Hsp60 did not change significantly between groups. Correlation analysis revealed that circulating Hsp60 inversely correlated with HDL-cholesterol (r = -0.589, p = 0.0039), and positively with triglycerides (r = +0.877, p < 0.0001), and small, dense LDL (r = +0.925, p < 0.0001). Serum Hsp60 significantly correlated with the degree of periodontal disease (r = +0.403, p = 0.0434). In brief, untreated patients with mild periodontitis had increased small, dense LDL and serum Hsp60 concentrations, in comparison to age- and BMI-matched controls and both parameters showed a strong positive correlation. Our data indicate that atherogenic dyslipidemia and elevated circulating Hsp60 tend to be linked and associated to periodontal pathology. Thus, the road is open to investigate the potential value of elevated levels of circulating Hsp60 as predictor of risk for cardiovascular disease when associated to dyslipidemia in periodontitis patients.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shields AM, Panayi GS, Corrigall VM. Resolution-associated molecular patterns (RAMP): RAMParts defending immunological homeostasis? Clin Exp Immunol 2011; 165:292-300. [PMID: 21671907 DOI: 10.1111/j.1365-2249.2011.04433.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The resolution of inflammation is central to the maintenance of good health and immune homeostasis. Recently, several intracellular stress proteins have been described as having extracellular properties that are anti-inflammatory or favour the resolution of inflammation. We propose that these molecules should be defined as resolution-associated molecular patterns (RAMPs). RAMPs are released at times of cellular stress and help to counterbalance the inflammatory effects of pathogen-associated (PAMPs) and damage-associated (DAMPs) molecular patterns. We propose that heat shock protein 10 (HSP10), αB-crystallin (αBC), HSP27 and binding immunoglobulin protein (BiP) should be considered founding members of the RAMP family. A greater understanding of RAMP biology may herald the development of novel immunotherapies.
Collapse
Affiliation(s)
- A M Shields
- Academic Department of Rheumatology, King's College London School of Medicine at Guy's, King's and St Thomas' Hospitals, London, UK
| | | | | |
Collapse
|
17
|
Masi S, Salpea KD, Li K, Parkar M, Nibali L, Donos N, Patel K, Taddei S, Deanfield JE, D'Aiuto F, Humphries SE. Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis. Free Radic Biol Med 2011; 50:730-5. [PMID: 21195167 DOI: 10.1016/j.freeradbiomed.2010.12.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/09/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022]
Abstract
The aim of this study was to determine leukocyte telomere length (LTL) in individuals with periodontitis and controls, exploring its relationship with systemic inflammation and oxidative stress. Five hundred sixty-three participants were recruited for this case-control study: 356 subjects with and 207 subjects without periodontitis. LTL was measured by a qPCR technique from leukocytes' DNA. Global measures of oxidative stress (reactive oxygen metabolites) and biological antioxidant potential in plasma were performed together with high-sensitivity assays for C-reactive protein (CRP). Leukocyte counts and lipid profiles were performed using standard biochemistry. Cases had higher levels of CRP (2.1±3.7mg/L vs 1.3±5.4mg/L, P<0.001) and reactive oxygen metabolites (378.1±121.1 U Carr vs 277.4±108.6 U Carr, P<0.001) compared to controls. Overall, cases had shorter LTL with respect to controls (1.23±0.42 vs 1.12±0.31T/S ratio, P=0.006), independent of age, gender, ethnicity, and smoking habit. When divided by subgroup of periodontal diagnosis (chronic, n=285; aggressive, n=71), only chronic cases displayed shorter LTL (P=0.01). LTL was negatively correlated with age (P=0.001; R=-0.2), oxidative stress (P=0.008; R=-0.2), and severity of periodontitis (P=0.003; R=-0.2) in both the whole population and the subgroups (cases and controls). We conclude that shorter telomere lengths are associated with a diagnosis of periodontitis and their measures correlate with the oxidative stress and severity of disease.
Collapse
Affiliation(s)
- Stefano Masi
- Vascular Physiology Unit, Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jia H, Halilou AI, Hu L, Cai W, Liu J, Huang B. Heat shock protein 10 (Hsp10) in immune-related diseases: one coin, two sides. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 2:47-57. [PMID: 21969171 PMCID: PMC3180030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/22/2010] [Indexed: 05/31/2023]
Abstract
Heat shock protein 10 (Hsp10) in eukaryotes, originally identified as a mitochondrial chaperone, now is also known to be present in cytosol, cell surface, extracellular space and peripheral blood. Functionally besides participating in mitochondrial protein folding in association with Hsp60, Hsp10 appears to be related to pregnancy, cancer and autoimmune inhibition. Hsp10 can be released to peripheral blood at very early time point of pregnancy and given another name called early pregnancy factor (EPF), which seems to play a critical role in developing a pregnant niche. In malignant disorders, Hsp10 is usually abnormally expressed in the cytosol of malignant cells and further released to extracellular space, resulting in tumor-promoting effect from various aspects. Furthermore, distinct from other heat shock protein members, whose soluble form is recognized as danger signal by immune cells and triggers immune responses, Hsp10 after release, however, is designed to be an inhibitory signal by limiting immune response. This review discusses how Hsp10 participates in various physiological and pathological processes from basic protein molecule folding to pregnancy, cancer and autoimmune diseases, and emphasizes how important the location is for the function exertion of a molecule.
Collapse
Affiliation(s)
- Haibo Jia
- Department of Biology Science, College of Life Science and Technology
| | - Amadou I. Halilou
- Department of Biochemistry & Molecular Biology, Tongji Medical College; Huazhong University of Science & TechnologyWuhan 430030, The People's Republic of China
| | - Liang Hu
- Department of Biochemistry & Molecular Biology, Tongji Medical College; Huazhong University of Science & TechnologyWuhan 430030, The People's Republic of China
| | - Wenqian Cai
- Department of Biochemistry & Molecular Biology, Tongji Medical College; Huazhong University of Science & TechnologyWuhan 430030, The People's Republic of China
| | - Jing Liu
- Department of Biochemistry & Molecular Biology, Tongji Medical College; Huazhong University of Science & TechnologyWuhan 430030, The People's Republic of China
| | - Bo Huang
- Department of Biochemistry & Molecular Biology, Tongji Medical College; Huazhong University of Science & TechnologyWuhan 430030, The People's Republic of China
| |
Collapse
|
19
|
Henderson B, Pockley AG. Molecular chaperones and protein-folding catalysts as intercellular signaling regulators in immunity and inflammation. J Leukoc Biol 2010; 88:445-62. [PMID: 20445014 DOI: 10.1189/jlb.1209779] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review critically examines the hypothesis that molecular chaperones and protein-folding catalysts from prokaryotes and eukaryotes can be secreted by cells and function as intercellular signals, principally but not exclusively, for leukocytes. A growing number of molecular chaperones have been reported to function as ligands for selected receptors and/or receptors for specific ligands. Molecular chaperones initially appeared to act primarily as stimulatory signals for leukocytes and thus, were seen as proinflammatory mediators. However, evidence is now emerging that molecular chaperones can have anti-inflammatory actions or, depending on the protein and concentration, anti- and proinflammatory functions. Recasting the original hypothesis, we propose that molecular chaperones and protein-folding catalysts are "moonlighting" proteins that function as homeostatic immune regulators but may also under certain circumstances, contribute to tissue pathology. One of the key issues in the field of molecular chaperone biology relates to the role of microbial contaminants in their signaling activity; this too will be evaluated critically. The most fascinating aspect of molecular chaperones probably relates to evidence for their therapeutic potential in human disease, and ongoing studies are evaluating this potential in a range of clinical settings.
Collapse
Affiliation(s)
- Brian Henderson
- Department of Microbial Diseases, UCL-Eastman Dental Institute, University College London, 256 Gray's Inn Rd., London, WC1X 8LD, UK.
| | | |
Collapse
|
20
|
Henderson B. Integrating the cell stress response: a new view of molecular chaperones as immunological and physiological homeostatic regulators. Cell Biochem Funct 2010; 28:1-14. [DOI: 10.1002/cbf.1609] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Knowlton AA, Srivatsa U. Heat-shock protein 60 and cardiovascular disease: a paradoxical role. Future Cardiol 2009; 4:151-61. [PMID: 19804293 DOI: 10.2217/14796678.4.2.151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heat-shock proteins (HSPs) are members of a highly conserved group of proteins that are induced in response to stress and injury. These proteins have protective properties, and can protect the heart from injury. HSP60 is found in the mitochondria and cytosol, and has essential intracellular functions including folding key proteins after their import into the mitochondria. In the cytosol, HSP60 binds to proapoptotic proteins, sequestering them. HSPs are highly conserved and, thus, are similar to bacterial proteins. Many individuals have antibodies to HSP60, possibly from prior infections. HSP60 can be found in the plasma membrane and in the serum in disease states. Serum HSP60 may be a marker for coronary artery disease. Once extracellular, HSP60 can cause cell injury. Thus, this protein has dichotomous functions for which the role in disease remains to be fully elucidated.
Collapse
Affiliation(s)
- Anne A Knowlton
- University of California, Molecular & Cellular Cardiology, Davis One Shields Avenue, Davis, CA 95616, USA, and Department of Veterans Affairs, Northern california Health Care System, Mather, CA, USA.
| | | |
Collapse
|
22
|
Corrao S, Campanella C, Anzalone R, Farina F, Zummo G, Conway de Macario E, Macario AJL, Cappello F, La Rocca G. Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sci 2009; 86:145-52. [PMID: 19913561 DOI: 10.1016/j.lfs.2009.11.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/29/2009] [Accepted: 11/05/2009] [Indexed: 02/02/2023]
Abstract
This article is about Hsp10 and its intracellular and extracellular forms focusing on the relationship of the latter with Early Pregnancy Factor and on their roles in cancer and immunity. Cellular physiology and survival are finely regulated and depend on the correct functioning of the entire set of proteins. Misfolded or unfolded proteins can cause deleterious effects and even cell death. The chaperonins Hsp10 and Hsp60 act together inside the mitochondria to assist protein folding. Recent studies demonstrated that these proteins have other roles inside and outside the cell, either together or independently of each other. For example, Hsp10 was found increased in the cytosol of different tumors (although in other tumors it was found decreased). Moreover, Hsp10 localizes extracellularly during pregnancy and is often indicated as Early Pregnancy Factor (EPF), which is released during the first stages of gestation and is involved in the establishment of pregnancy. Various reports show that extracellular Hsp10 and EPF modulate certain aspects of the immune response with anti-inflammatory effects in patients with autoimmune conditions improving clinically after treatment with recombinant Hsp10. Moreover, Hsp10 and EPF are involved in embryonic development, acting as a growth factor, and in cell proliferation/differentiation mechanisms. Therefore, it becomes evident that Hsp10 is not only a co-chaperonin, but an active player in its own right in various cellular functions. In this article, we present an overview of various aspects of Hsp10 and EPF as they participate in physiological and pathological processes such as the antitumor response and autoimmune diseases.
Collapse
Affiliation(s)
- Simona Corrao
- Dipartimento di Medicina Sperimentale, Università degli Studi di Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Buhlin K, Hultin M, Norderyd O, Persson L, Pockley AG, Rabe P, Klinge B, Gustafsson A. Risk factors for atherosclerosis in cases with severe periodontitis. J Clin Periodontol 2009; 36:541-9. [DOI: 10.1111/j.1600-051x.2009.01430.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Henderson B, Henderson S. Unfolding the relationship between secreted molecular chaperones and macrophage activation states. Cell Stress Chaperones 2009; 14:329-41. [PMID: 18958583 PMCID: PMC2728268 DOI: 10.1007/s12192-008-0087-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 02/07/2023] Open
Abstract
Over the last 20 years, it has emerged that many molecular chaperones and protein-folding catalysts are secreted from cells and function, somewhat in the manner of cytokines, as pleiotropic signals for a variety of cells, with much attention being focused on the macrophage. During the last decade, it has become clear that macrophages respond to bacterial, protozoal, parasitic and host signals to generate phenotypically distinct states of activation. These activation states have been termed 'classical' and 'alternative' and represent not a simple bifurcation in response to external signals but a range of cellular phenotypes. From an examination of the literature, the hypothesis is propounded that mammalian molecular chaperones are able to induce a wide variety of alternative macrophage activation states, and this may be a system for relating cellular or tissue stress to appropriate macrophage responses to restore homeostatic equilibrium.
Collapse
Affiliation(s)
- Brian Henderson
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, UK.
| | | |
Collapse
|
25
|
Serum antibodies to Porphyromonas gingivalis chaperone HtpG predict health in periodontitis susceptible patients. PLoS One 2008; 3:e1984. [PMID: 18431474 PMCID: PMC2291562 DOI: 10.1371/journal.pone.0001984] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 02/28/2008] [Indexed: 12/30/2022] Open
Abstract
Background Chaperones are ubiquitous conserved proteins critical in stabilization of new proteins, repair/removal of defective proteins and immunodominant antigens in innate and adaptive immunity. Periodontal disease is a chronic inflammatory infection associated with infection by Porphyromonas gingivalis that culminates in the destruction of the supporting structures of the teeth. We previously reported studies of serum antibodies reactive with the human chaperone Hsp90 in gingivitis, a reversible form of gingival disease confined to the oral soft tissues. In those studies, antibodies were at their highest levels in subjects with the best oral health. We hypothesized that antibodies to the HSP90 homologue of P. gingivalis (HtpG) might be associated with protection/resistance against destructive periodontitis. Methodology/Principal Findings ELISA assays using cloned HtpG and peptide antigens confirmed gingivitis subjects colonized with P. gingivalis had higher serum levels of anti-HtpG and, concomitantly, lower levels of attachment loss. Additionally, serum antibody levels to P. gingivalis HtpG protein were higher in healthy subjects compared to patients with either chronic or aggressive periodontitis. We found a negative association between tooth attachment loss and anti-P. gingivalis HtpG (p = 0.043) but not anti-Fusobacterium nucleatum (an oral opportunistic commensal) HtpG levels. Furthermore, response to periodontal therapy was more successful in subjects having higher levels of anti-P. gingivalis HtpG before treatment (p = 0.018). There was no similar relationship to anti-F. nucleatum HtpG levels. Similar results were obtained when these experiments were repeated with a synthetic peptide of a region of P. gingivalis HtpG. Conclusions/Significance Our results suggest: 1) anti-P. gingivalis HtpG antibodies are protective and therefore predict health periodontitis-susceptable patients; 2) may augment the host defence to periodontitis and 3) a unique peptide of P. gingivalis HtpG offers significant potential as an effective diagnostic target and vaccine candidate. These results are compatible with a novel immune control mechanism unrelated to direct binding of bacteria.
Collapse
|