1
|
Farrand ZM, Galbreath KE, Teeter KC. Evidence of Intraspecific Adaptive Variation in the American Pika (Ochotona princeps) on a Continental Scale Using a Target Enrichment and Mitochondrial Genome Skimming Approach. Mol Ecol 2024:e17557. [PMID: 39425616 DOI: 10.1111/mec.17557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Montane landscapes present an array of abiotic challenges that drive adaptive evolution amongst organisms. These adaptations can promote habitat specialisation, which may heighten the risk of extirpation from environmental change. For example, higher metabolic rates in an endothermic species may contribute to heightened cold tolerance, whilst simultaneously limiting heat tolerance. Here, using the climate-sensitive American pika (Ochotona princeps), we test for evidence of intraspecific adaptive variation amongst environmental gradients across the Intermountain West of North America. We leveraged results from previous studies on pika adaptation to generate a custom nuclear target enrichment design to sequence several hundred candidate genes related to cold, hypoxia and dietary detoxification. We also applied a 'genome skimming' approach to sequence mitochondrial DNA. Using genotype-environment association tests, we identified rare genomic variants associated with elevation and temperature variation amongst populations. Amongst mitochondrial genes, we identified intraspecific variation in selective signals and significant changes to the amino acid property equilibrium constant, which may relate to electron transport chain efficiency. These results illustrate a complex dynamic of adaptive variation amongst O. princeps where lineages and populations have adapted to unique regional conditions. Some of the clearest signals of selection were in a genetic lineage that includes pikas of the Great Basin region, which is also where recent localised extirpations have taken place and highlights the risk of losing adaptive alleles during environmental change.
Collapse
Affiliation(s)
- Zachery M Farrand
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biology, Northern Michigan University, Marquette, Michigan, USA
| | - Kurt E Galbreath
- Department of Biology, Northern Michigan University, Marquette, Michigan, USA
| | - Katherine C Teeter
- Department of Biology, Northern Michigan University, Marquette, Michigan, USA
| |
Collapse
|
2
|
Gu X, Li L, Li S, Shi W, Zhong X, Su Y, Wang T. Adaptive evolution and co-evolution of chloroplast genomes in Pteridaceae species occupying different habitats: overlapping residues are always highly mutated. BMC PLANT BIOLOGY 2023; 23:511. [PMID: 37880608 PMCID: PMC10598918 DOI: 10.1186/s12870-023-04523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND The evolution of protein residues depends on the mutation rates of their encoding nucleotides, but it may also be affected by co-evolution with other residues. Chloroplasts function as environmental sensors, transforming fluctuating environmental signals into different physiological responses. We reasoned that habitat diversity may affect their rate and mode of evolution, which might be evidenced in the chloroplast genome. The Pteridaceae family of ferns occupy an unusually broad range of ecological niches, which provides an ideal system for analysis. RESULTS We conducted adaptive evolution and intra-molecular co-evolution analyses of Pteridaceae chloroplast DNAs (cpDNAs). The results indicate that the residues undergoing adaptive evolution and co-evolution were mostly independent, with only a few residues being simultaneously involved in both processes, and these overlapping residues tend to exhibit high mutations. Additionally, our data showed that Pteridaceae chloroplast genes are under purifying selection. Regardless of whether we grouped species by lineage (which corresponded with ecological niches), we determined that positively selected residues mainly target photosynthetic genes. CONCLUSIONS Our work provides evidence for the adaptive evolution of Pteridaceae cpDNAs, especially photosynthetic genes, to different habitats and sheds light on the adaptive evolution and co-evolution of proteins.
Collapse
Affiliation(s)
- Xiaolin Gu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lingling Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Sicong Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Wanxin Shi
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaona Zhong
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Bakshi A, Rai U. In silico analyses of leptin and leptin receptor of spotted snakehead Channa punctata. PLoS One 2022; 17:e0270881. [PMID: 35797380 PMCID: PMC9262212 DOI: 10.1371/journal.pone.0270881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
The present study, in addition to molecular characterization of leptin (lepa) and its receptor (lepr) of spotted snakehead Channa punctata, is focussed on physicochemical, structural, evolutionary and selection pressure analyses which are poorly elucidated in teleosts in spite of that existence of these genes is well reported in several fish species. The putative full-length Lep and Lepr of C. punctata showed conserved structural and functional domains, especially the residues responsible for structural integrity and signal transduction. Conversely, residues predicted essential for Lep-Lepr interaction displayed divergence between teleosts and tetrapods. Impact of substitutions/deletions predicted using protein variation effect analyser tool highlighted species specificity in ligand-receptor interaction. Physicochemical properties of ligand and receptor predicted for the first time in vertebrates revealed high aliphatic and instability indices for both Lepa and Lepr, indicating thermostability of proteins but their instability under ex vivo conditions. Positive grand average of hydropathy score of Lepa suggests its hydrophobic nature conjecturing existence of leptin binding proteins in C. punctata. In addition to disulphide bonding, a novel posttranslational modification (S-126 phosphorylation) was predicted in Lepa of C. punctata. In Lepr, disulphide bond formation and N-linked glycosylation near WSXWS motif in ECD, and phosphorylation at tyrosine residues in ICD were predicted. Leptin and its receptor sequence of C. punctata cladded with its homolog from C. striata and C. argus of order Anabantiformes. Leptin system of Anabantiformes was phylogenetically closer to that of Pleuronectiformes, Scombriformes and Perciformes. Selection pressure analysis showed higher incidence of negative selection in teleostean leptin genes indicating limited adaptation in their structure and function. However, evidence of pervasive and episodic diversifying selection laid a foundation of co-evolution of Lepa and Lepr in teleosts.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
4
|
Wang Y, Wang H, Hu L, Chen L. Leptin Gene Protects Against Cold Stress in Antarctic Toothfish. Front Physiol 2021; 12:740806. [PMID: 34975517 PMCID: PMC8715755 DOI: 10.3389/fphys.2021.740806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Leptin is a cytokine-like peptide, predominantly biosynthesized in adipose tissue, which plays an important role in regulating food intake, energy balance and reproduction in mammals. However, how it may have been modified to enable life in the chronic cold is unclear. Here, we identified a leptin-a gene (lepa) in the cold-adapted and neutrally buoyant Antarctic toothfish Dissostichus mawsoni that encodes a polypeptide carrying four α-helices and two cysteine residues forming in-chain disulfide bonds, structures shared by most vertebrate leptins. Quantitative RT-PCR confirmed that mRNA levels of the leptin-a gene of D. mawsoni (DM-lepa) were highest in muscle, followed by kidney and liver; detection levels were low in the gill, brain, intestine, and ovary tissues. Compared with leptin-a genes of fishes living in warmer waters, DM-lepa underwent rapid evolution and was subjected to positive selection. Over-expression of DM-lepa in the zebrafish cell line ZFL resulted in signal accumulation in the cytoplasm and significantly increased cell proliferation both at the normal culture temperature and under cold treatment. DM-lepa over-expression also reduced apoptosis under low-temperature stress and activated the STAT3 signaling pathway, in turn upregulating the anti-apoptotic proteins bcl2l1, bcl2a, myca and mdm2 while downregulating the pro-apoptotic baxa, p53 and caspase-3. These results demonstrate that DM-lepa, through STAT3 signaling, plays a protective role in cold stress by preventing apoptotic damage. Our study reveals a new role of lepa in polar fish.
Collapse
Affiliation(s)
- Ying Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Huamin Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Linghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- *Correspondence: Liangbiao Chen,
| |
Collapse
|
5
|
Li Q, Tian S, Yan B, Liu CM, Lam TW, Li R, Luo R. Building a Chinese pan-genome of 486 individuals. Commun Biol 2021; 4:1016. [PMID: 34462542 PMCID: PMC8405635 DOI: 10.1038/s42003-021-02556-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Pan-genome sequence analysis of human population ancestry is critical for expanding and better defining human genome sequence diversity. However, the amount of genetic variation still missing from current human reference sequences is still unknown. Here, we used 486 deep-sequenced Han Chinese genomes to identify 276 Mbp of DNA sequences that, to our knowledge, are absent in the current human reference. We classified these sequences into individual-specific and common sequences, and propose that the common sequence size is uncapped with a growing population. The 46.646 Mbp common sequences obtained from the 486 individuals improved the accuracy of variant calling and mapping rate when added to the reference genome. We also analyzed the genomic positions of these common sequences and found that they came from genomic regions characterized by high mutation rate and low pathogenicity. Our study authenticates the Chinese pan-genome as representative of DNA sequences specific to the Han Chinese population missing from the GRCh38 reference genome and establishes the newly defined common sequences as candidates to supplement the current human reference.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing, China
| | - Bin Yan
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Chi Man Liu
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Tak-Wah Lam
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, China.
| | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Feijó A, Ge D, Wen Z, Xia L, Yang Q. Divergent adaptations in resource‐use traits explain how pikas thrive on the roof of the world. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| |
Collapse
|
7
|
Zhang J, Li S, Deng F, Baikeli B, Huang S, Wang B, Liu G. Higher Expression Levels of Aquaporin Family of Proteins in the Kidneys of Arid-Desert Living Lepus yarkandensis. Front Physiol 2019; 10:1172. [PMID: 31572217 PMCID: PMC6751383 DOI: 10.3389/fphys.2019.01172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Lepus yarkandensis specifically lives in arid climate with rare precipitation of Tarim Basin in western China. Aquaporins (AQPs) are a family of channel proteins that facilitate water transportation across cell membranes. Kidney AQPs play vital roles in renal tubule water permeability and maintenance of body water homeostasis. This study aimed to investigate whether kidney AQPs exhibit higher expression in arid-desert living animals. Immunohistochemistry results revealed localization of AQP1 to the capillary endothelial cells in glomerulus and epithelial cells in proximal tubule and descending thin limbs, AQP2 to the apical plasma membrane of principal cells in the cortical collecting duct (CCD), outer medullary collecting duct (OMCD), and IMCD cells in the initial inner medullary collecting duct (IMCD1) and middle IMCD (IMCD2), and AQP3 and AQP4 to the basolateral plasma membrane of principal cells and IMCD cells in CCD, OMCD, IMCD1, and IMCD2 in L. yarkandensis kidneys. Quantitative real-time PCR analysis showed higher mRNA levels of AQP1, AQP2, AQP3, and AQP4 in L. yarkandensis kidneys compared with Oryctolagus cuniculus. Similar results were obtained by western blotting. Our results suggested that higher expression levels of AQP1, AQP2, AQP3, and AQP4 in L. yarkandensis kidneys favored for drawing more water from the tubular fluid.
Collapse
Affiliation(s)
- Jianping Zhang
- College of Life Science, Tarim University, Alar, China.,Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
| | - Shuwei Li
- College of Life Science, Tarim University, Alar, China.,Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alar, China
| | - Fang Deng
- College of Life Science, Tarim University, Alar, China
| | | | - Shuguang Huang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Binyu Wang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guoquan Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Anhui Province Key Laboratory of Translational Cancer Research, Department of Biochemistry, College of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| |
Collapse
|
8
|
Lazzeroni ME, Burbrink FT, Simmons NB. Hibernation in bats (Mammalia: Chiroptera) did not evolve through positive selection of leptin. Ecol Evol 2018; 8:12576-12596. [PMID: 30619566 PMCID: PMC6308895 DOI: 10.1002/ece3.4674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 01/25/2023] Open
Abstract
Temperature regulation is an indispensable physiological activity critical for animal survival. However, relatively little is known about the origin of thermoregulatory regimes in a phylogenetic context, or the genetic mechanisms driving the evolution of these regimes. Using bats as a study system, we examined the evolution of three thermoregulatory regimes (hibernation, daily heterothermy, and homeothermy) in relation to the evolution of leptin, a protein implicated in regulation of torpor bouts in mammals, including bats. A threshold model was used to test for a correlation between lineages with positively selected lep, the gene encoding leptin, and the thermoregulatory regimes of those lineages. Although evidence for episodic positive selection of lep was found, positive selection was not correlated with lineages of heterothermic bats, a finding that contradicts results from previous studies. Evidence from our ancestral state reconstructions suggests that the most recent common ancestor of bats used daily heterothermy and that the presence of hibernation is highly unlikely at this node. Hibernation likely evolved independently at least four times in bats-once in the common ancestor of Vespertilionidae and Molossidae, once in the clade containing Rhinolophidae and Rhinopomatidae, and again independently in the lineages leading to Taphozous melanopogon and Mystacina tuberculata. Our reconstructions revealed that thermoregulatory regimes never transitioned directly from hibernation to homeothermy, or the reverse, in the evolutionary history of bats. This, in addition to recent evidence that heterothermy is best described along a continuum, suggests that thermoregulatory regimes in mammals are best represented as an ordered continuous trait (homeothermy ← → daily torpor ← → hibernation) rather than as the three discrete regimes that evolve in an unordered fashion. These results have important implications for methodological approaches in future physiological and evolutionary research.
Collapse
Affiliation(s)
| | - Frank T. Burbrink
- Division of Vertebrate Zoology, Department of HerpetologyAmerican Museum of Natural HistoryNew YorkNew York
| | - Nancy B. Simmons
- Division of Vertebrate Zoology, Department of MammalogyAmerican Museum of Natural HistoryNew YorkNew York
| |
Collapse
|
9
|
Solari KA, Hadly EA. Evolution for extreme living: variation in mitochondrial cytochrome c oxidase genes correlated with elevation in pikas (genus Ochotona). Integr Zool 2018; 13:517-535. [PMID: 29851233 DOI: 10.1111/1749-4877.12332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The genus Ochotona (pikas) is a clade of cold-tolerant lagomorphs that includes many high-elevation species. Pikas offer a unique opportunity to study adaptations and potential limitations of an ecologically important mammal to high-elevation hypoxia. We analyzed the evolution of 3 mitochondrial genes encoding the catalytic core of cytochrome c oxidase (COX) in 10 pika species occupying elevations from sea level to 5000 m. COX is an enzyme highly reliant on oxygen and essential for cell function. One amino acid property, the equilibrium constant (ionization of COOH), was found to be under selection in the overall protein complex. We observed a strong relationship between the net value change in this property and the elevation each species occupies, with higher-elevation species having potentially more efficient proteins. We also found evidence of selection in low-elevation species for potentially less efficient COX, perhaps trading efficiency for heat production in the absence of hypoxia. Our results suggest that different pika species may have evolved elevation-specific COX proteins, specialization that may indicate limitations in their ability to shift their elevational ranges in response to future climate change.
Collapse
Affiliation(s)
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, Stanford, California, USA.,Woods Institute for the Environment, Stanford University, Stanford, California, USA.,Program for Conservation Genomics, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Evolutionary Genetics of Hypoxia and Cold Tolerance in Mammals. J Mol Evol 2018; 86:618-634. [PMID: 30327830 DOI: 10.1007/s00239-018-9870-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/03/2018] [Indexed: 01/30/2023]
Abstract
Low oxygen and fluctuant ambient temperature pose serious challenges to mammalian survival. Physiological adaptations in mammals to hypoxia and low temperatures have been intensively investigated, yet their underlying molecular mechanisms need further exploration. Independent invasions of high-altitude plateaus, subterranean burrows and marine environments by different mammals provide opportunities to conduct such analyses. Here, we focused on six genes in the hypoxia inducible factor (HIF) pathway and two non-shivering thermogenesis (NST)-related genes [PPAR co-activator 1 (PGC-1) and uncoupling protein 1 (UCP1)] in representative species of pikas and other mammals to understand whether these loci were targeted by natural selection during independent invasions to conditions characterized by hypoxia and temperature fluctuations by high-altitude, subterranean and marine mammals. Our analyses revealed pervasive positive selection signals in the HIF pathway genes of mammals occupying high-altitude, subterranean and aquatic ecosystems; however, the mechanisms underlying their independent adaptations to hypoxic environments varied by taxa, since different genes were positively selected in each taxon and expression levels of individual genes varied among species. Additionally, parallel amino acid substitutions were also detected in hypoxia-tolerant mammals, indicating that convergent evolution may play a role in their independent adaptations to hypoxic environments. However, divergent evolutionary histories of NST-related genes were noted, since significant evidence of positive selection was observed in PGC-1 and UCP1 in high-altitude species and subterranean rodents; however, UCP1 may have already lost its function in diving cetaceans, which may be related to the thick blubber layer of adipose and connective tissue in these mammals.
Collapse
|
11
|
Wang Y, Lü J, Chen D, Zhang J, Qi K, Cheng R, Zhang H, Zhang S. Genome-wide identification, evolution, and expression analysis of the KT/HAK/KUP family in pear. Genome 2018; 61:755-765. [PMID: 30130425 DOI: 10.1139/gen-2017-0254] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The K+ transporter/high-affinity K+/K+ uptake (KT/HAK/KUP) family, as one of the largest K+ transporter families in higher plants, plays an essential role in plant growth, mineral element absorption, salt stress tolerance, and other physiological processes. However, little is known about this family in pear (Pyrus). Here, we identified 20 K+ transporter genes in pear (P. bretschneideri) using genome-wide analysis. Their gene structure, chromosomal distribution, conserved motifs, phylogenetics, duplication events, and expression patterns were also examined. The results of phylogenetic analysis showed that PbrKT/HAK/KUP genes were clustered into three major groups (Groups I-III). Among the 20 PbrKT/HAK/KUP genes, 18 were mapped to nine chromosomes and two to scaffolds. Four WGD/segmental gene pairs were identified, indicating that WGD/segmental duplication may have contributed to the expansion of the KT/HAK/KUP family in pear. Among the four pairs of WGD/segmentally duplicated genes, both members of three pairs had been subjected to purifying selection, whereas the fourth pair had been subjected to positive selection. Furthermore, phenotypic experiments showed that the growth of pear seedlings was affected by potassium deficiency treatment. Expression patterns of 20 PbrKT/HAK/KUP genes in roots were further assayed with qRT-PCR. PbrHAK1 and PbrHAK12/16 were significantly expressed in response to K+ deficiency, suggesting that these genes are crucial for K+ uptake in pear, especially under the condition of K+ starvation. Our results provide a foundation for further study on the function of KT/HAK/KUP genes in pear.
Collapse
Affiliation(s)
- Yingzhen Wang
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Jiahong Lü
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Dan Chen
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Jun Zhang
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Kaijie Qi
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Rui Cheng
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Huping Zhang
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
12
|
Li H, Qu J, Li T, Wirth S, Zhang Y, Zhao X, Li X. Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas. Appl Microbiol Biotechnol 2018; 102:6739-6751. [PMID: 29862448 DOI: 10.1007/s00253-018-9097-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
The gut microbiota in mammals plays a key role in host metabolism and adaptation. However, relatively little is known regarding to how the animals adapts to extreme environments through regulating gut microbial diversity and function. Here, we investigated the diet, gut microbiota, short-chain fatty acid (SCFA) profiles, and cellulolytic activity from two common pika (Ochotona spp.) species in China, including Plateau pika (Ochotona curzoniae) from the Qinghai-Tibet Plateau and Daurian pika (Ochotona daurica) from the Inner Mongolia Grassland. Despite a partial diet overlap, Plateau pikas harbored lower diet diversity than Daurian pikas. Some bacteria (e.g., Prevotella and Ruminococcus) associated with fiber degradation were enriched in Plateau pikas. They harbored higher gut microbial diversity, total SCFA concentration, and cellulolytic activity than Daurian pikas. Interestingly, cellulolytic activity was positively correlated with the gut microbial diversity and SCFAs. Gut microbial communities and SCFA profiles were segregated structurally between host species. PICRUSt metagenome predictions demonstrated that microbial genes involved in carbohydrate metabolism and energy metabolism were overrepresented in the gut microbiota of Plateau pikas. Our results demonstrate that Plateau pikas harbor a stronger fermenting ability for the plant-based diet than Daurian pikas via gut microbial fermentation. The enhanced ability for utilization of plant-based diets in Plateau pikas may be partly a kind of microbiota adaptation for more energy requirements in cold and hypoxic high-altitude environments.
Collapse
Affiliation(s)
- Huan Li
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, People's Republic of China
| | - Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Stephan Wirth
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Biogeochemistry, Eberswalder Str. 84, 15374, Muncheberg, Germany
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, People's Republic of China.
| | - Xinquan Zhao
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Waterhouse MD, Erb LP, Beever EA, Russello MA. Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal. Mol Ecol 2018; 27:2512-2528. [DOI: 10.1111/mec.14701] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/29/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Matthew D. Waterhouse
- Department of Biology; University of British Columbia; Kelowna British Columbia Canada
| | - Liesl P. Erb
- Departments of Biology and Environmental Studies; Warren Wilson College; Asheville North Carolina
| | - Erik A. Beever
- U.S. Geological Survey; Northern Rocky Mountain Science Center; Bozeman Montana
- Department of Ecology; Montana State University; Bozeman Montana
| | - Michael A. Russello
- Department of Biology; University of British Columbia; Kelowna British Columbia Canada
| |
Collapse
|
14
|
Li H, Li T, Berasategui A, Rui J, Zhang X, Li C, Xiao Z, Li X. Gut region influences the diversity and interactions of bacterial communities in pikas (Ochotona curzoniae and Ochotona daurica). FEMS Microbiol Ecol 2018; 93:4587903. [PMID: 29106508 DOI: 10.1093/femsec/fix149] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 11/01/2017] [Indexed: 12/28/2022] Open
Abstract
The mammalian microbial communities in the gastrointestinal tract (GIT) play important roles in host nutrition and health. However, we still lack an understanding of how these communities are organized across GIT in natural environments. Here, using 16S rRNA gene sequencing, we analyzed the bacterial community diversity, network interactions and ecosystem stability across five gut regions (mouth, stomach, small intestine, cecum and colon) emanating from two common pika species in China, including Plateau pikas (Ochotona curzoniae) inhabiting high-altitude regions, as well as Daurian pikas (O. daurica) occupying low-altitude areas. The relative abundances of dominant Bacteroidetes and Firmicutes exhibited an increasing trend from mouth to colon. Cecum and colon harbored higher bacterial diversity compared with other anatomical regions. Gut region significantly influenced the structure of bacterial communities in the GIT. Network analysis indicated that topological features showed marked variations among gut regions. Interestingly, the ecosystem stability of bacterial communities increased gradually from mouth to colon. Our results suggest that gut region influences the diversity, structure and network interactions of bacterial communities in pikas. For hindgut-fermenting herbivorous mammals, relatively higher bacterial diversity and ecosystem stability in the cecum may provide a favorable condition for the fermentation of indigestible plant polysaccharides.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China
| | - Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Aileen Berasategui
- Biochemistry Department, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Junpeng Rui
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China
| | - Xiao Zhang
- College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China
| | - Chaonan Li
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China
| | - Zhishu Xiao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Chaoyang, District, Beijing 100101, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, CAS; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Sichuan 610041, PR China
| |
Collapse
|
15
|
Tian HF, Hu QM, Meng Y, Xiao HB. Molecular cloning, characterization and evolutionary analysis of leptin gene in Chinese giant salamander, Andrias davidianus. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractLeptin is an important hormone possessing diverse physiological roles in mammals and teleosts. However, it has been characterized only in a few amphibian species, and its evolutions are still under debate. Here, the full length of the leptin (Adlep) cDNA of Chinese giant salamander (Andrias davidianus), an early diverging amphibian species, is characterized and according to the results of the primary sequence analysis, tertiary structure reconstruction and phylogenetic analysis is confirmed to be an ortholog of mammalian leptin. An intron was identified between the coding exons of A. davidianus leptin, which indicated that the leptin is present in the salamander genome and contains a conserved gene structure in vertebrates. Adlep is widely distributed but expression levels vary among different tissues, with highest expression levels in the muscle. Additionally, the leptin receptor and other genes were mapped to three known leptin signaling pathways, suggesting that the leptin signaling pathways are present in A. davidianus. Phylogenetic topology of leptins are consistent with the generally accepted evolutionary relationships of vertebrates, and multiple leptin members found in teleosts seem to be obtained through a Cluopeocephala-specific gene duplication event. Our results will lay a foundation for further investigations into the physiological roles of leptin in A. davidianus.
Collapse
Affiliation(s)
- Hai-feng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan430223, P. R. China
| | - Qiao-mu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan430223, P. R. China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan430223, P. R. China
| | - Han-bing Xiao
- No. 8, 1st Wudayuan Road, Donghu Hi-Tech Development Zone, Wuhan430223, China
| |
Collapse
|
16
|
Rankin AM, Galbreath KE, Teeter KC. Signatures of adaptive molecular evolution in American pikas (Ochotona princeps). J Mammal 2017. [DOI: 10.1093/jmammal/gyx059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
17
|
Li H, Li T, Tu B, Kou Y, Li X. Host species shapes the co-occurrence patterns rather than diversity of stomach bacterial communities in pikas. Appl Microbiol Biotechnol 2017; 101:5519-5529. [DOI: 10.1007/s00253-017-8254-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 01/25/2023]
|
18
|
Ball HC, Londraville RL, Prokop JW, George JC, Suydam RS, Vinyard C, Thewissen JGM, Duff RJ. Beyond thermoregulation: metabolic function of cetacean blubber in migrating bowhead and beluga whales. J Comp Physiol B 2017; 187:235-252. [PMID: 27573204 PMCID: PMC5535305 DOI: 10.1007/s00360-016-1029-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/22/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
The processes of lipid deposition and utilization, via the gene leptin (Lep), are poorly understood in taxa with varying degrees of adipose storage. This study examines how these systems may have adapted in marine aquatic environments inhabited by cetaceans. Bowhead (Balaena mysticetus) and beluga whales (Delphinapterus leucas) are ideal study animals-they possess large subcutaneous adipose stores (blubber) and undergo bi-annual migrations concurrent with variations in food availability. To answer long-standing questions regarding how (or if) energy and lipid utilization adapted to aquatic stressors, we quantified variations in gene transcripts critical to lipid metabolism related to season, age, and blubber depth. We predicted leptin tertiary structure conservation and assessed inter-specific variations in Lep transcript numbers between bowheads and other mammals. Our study is the first to identify seasonal and age-related variations in Lep and lipolysis in these cetaceans. While Lep transcripts and protein oscillate with season in adult bowheads reminiscent of hibernating mammals, transcript levels reach up to 10 times higher in bowheads than any other mammal. Data from immature bowheads are consistent with the hypothesis that short baleen inhibits efficient feeding. Lipolysis transcripts also indicate young Fall bowheads and those sampled during Spring months limit energy utilization. These novel data from rarely examined species expand the existing knowledge and offer unique insight into how the regulation of Lep and lipolysis has adapted to permit seasonal deposition and maintain vital blubber stores.
Collapse
Affiliation(s)
- H C Ball
- Department of Biology, The University of Akron, 305 Buchtel Ave, Akron, OH, 44325, USA.
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA.
| | - R L Londraville
- Department of Biology, The University of Akron, 305 Buchtel Ave, Akron, OH, 44325, USA
| | - J W Prokop
- Department of Biology, The University of Akron, 305 Buchtel Ave, Akron, OH, 44325, USA
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - John C George
- North Slope Borough Department of Wildlife Management, P.O. Box 69, Barrow, AK, 99723, USA
| | - R S Suydam
- North Slope Borough Department of Wildlife Management, P.O. Box 69, Barrow, AK, 99723, USA
| | - C Vinyard
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - J G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, USA
| | - R J Duff
- Department of Biology, The University of Akron, 305 Buchtel Ave, Akron, OH, 44325, USA
| |
Collapse
|
19
|
Li H, Li T, Yao M, Li J, Zhang S, Wirth S, Cao W, Lin Q, Li X. Pika Gut May Select for Rare but Diverse Environmental Bacteria. Front Microbiol 2016; 7:1269. [PMID: 27582734 PMCID: PMC4987353 DOI: 10.3389/fmicb.2016.01269] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/02/2016] [Indexed: 02/01/2023] Open
Abstract
The composition of the mammalian gut bacterial communities can be influenced by the introduction of environmental bacteria in their respective habitats. However, there are no extensive studies examining the interactions between environmental bacteriome and gut bacteriome in wild mammals. Here, we explored the relationship between the gut bacterial communities of pika (Ochotona spp.) and the related environmental bacteria across host species and altitudinal sites using 16S rRNA gene sequencing. Plateau pikas (O. curzoniae) and Daurian pikas (O. daurica) were sampled at five different sites, and plant and soil samples were collected at each site as well. Our data indicated that Plateau pikas and Daurian pikas had distinct bacterial communities. The pika, plant and soil bacterial communities were also distinct. Very little overlap occurred in the pika core bacteria and the most abundant environmental bacteria. The shared OTUs between pikas and environments were present in the environment at relatively low abundance, whereas they were affiliated with diverse bacterial taxa. These results suggested that the pika gut may mainly select for low-abundance but diverse environmental bacteria in a host species-specific manner.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesSichuan, China; University of Chinese Academy of SciencesBeijing, China
| | - Tongtong Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Minjie Yao
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Shiheng Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Stephan Wirth
- Leibniz-Center for Agricultural Landscape Research (ZALF), Institute of Landscape Biogeochemistry Müncheberg, Germany
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijing, China; Soil and Fertilizer Institute, Qinghai Academy of Agriculture and Forestry Sciences, Qinghai UniversityXining, China
| | - Qiang Lin
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| | - Xiangzhen Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Sichuan, China
| |
Collapse
|
20
|
Effect of Hypoxia on Ldh-c Expression in Somatic Cells of Plateau Pika. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080773. [PMID: 27490559 PMCID: PMC4997459 DOI: 10.3390/ijerph13080773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
Abstract
Sperm specific lactate dehydrogenases (LDH-C4) is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, Ldh-c was originally thought to be expressed only in testes and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia-tolerant mammal living 3000–5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testes and sperm, but also in the somatic tissues of plateau pika. To reveal the effect of hypoxia on pika Ldh-c expression, we investigated the mRNA and protein level of Ldh-c as well as the biochemical index of anaerobic glycolysis in pika somatic tissues at the altitudes of 2200 m, 3200 m and 3900 m. Our results showed that mRNA and protein expression levels of Ldh-c in the tissues of pika’s heart, liver, brain and skeletal muscle were increased significantly from 2200 m to 3200 m, but had no difference from 3200 m to 3900 m; the activities of LDH and the contents of lactate showed no difference from 2200 m to 3200 m, but were increased significantly from 3200 m to 3900 m. Hypoxia up-regulated and maintained the expression levels of Ldh-c in the pika somatic cells. Under the hypoxia condition, plateau pikas increased anaerobic glycolysis in somatic cells by LDH-C4, and that may have reduced their dependence on oxygen and enhanced their adaptation to the hypoxic environment.
Collapse
|
21
|
Wang Y, Wei L, Wei D, Li X, Xu L, Wei L. Enzymatic Kinetic Properties of the Lactate Dehydrogenase Isoenzyme C₄ of the Plateau Pika (Ochotona curzoniae). Int J Mol Sci 2016; 17:E39. [PMID: 26751442 PMCID: PMC4730284 DOI: 10.3390/ijms17010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/18/2015] [Accepted: 12/21/2015] [Indexed: 01/03/2023] Open
Abstract
Testis-specific lactate dehydrogenase (LDH-C₄) is one of the lactate dehydrogenase (LDH) isozymes that catalyze the terminal reaction of pyruvate to lactate in the glycolytic pathway. LDH-C₄ in mammals was previously thought to be expressed only in spermatozoa and testis and not in other tissues. Plateau pika (Ochotona curzoniae) belongs to the genus Ochotona of the Ochotonidea family. It is a hypoxia-tolerant species living in remote mountain areas at altitudes of 3000-5000 m above sea level on the Qinghai-Tibet Plateau. Surprisingly, Ldh-c is expressed not only in its testis and sperm, but also in somatic tissues of plateau pika. To shed light on the function of LDH-C₄ in somatic cells, Ldh-a, Ldh-b, and Ldh-c of plateau pika were subcloned into bacterial expression vectors. The pure enzymes of Lactate Dehydrogenase A₄ (LDH-A₄), Lactate Dehydrogenase B₄ (LDH-B₄), and LDH-C₄ were prepared by a series of expression and purification processes, and the three enzymes were identified by the method of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and native polyacrylamide gel electrophoresis (PAGE). The enzymatic kinetics properties of these enzymes were studied by Lineweaver-Burk double-reciprocal plots. The results showed the Michaelis constant (Km) of LDH-C₄ for pyruvate and lactate was 0.052 and 4.934 mmol/L, respectively, with an approximate 90 times higher affinity of LDH-C₄ for pyruvate than for lactate. At relatively high concentrations of lactate, the inhibition constant (Ki) of the LDH isoenzymes varied: LDH-A₄ (Ki = 26.900 mmol/L), LDH-B₄ (Ki = 23.800 mmol/L), and LDH-C₄ (Ki = 65.500 mmol/L). These data suggest that inhibition of lactate by LDH-A₄ and LDH-B₄ were stronger than LDH-C₄. In light of the enzymatic kinetics properties, we suggest that the plateau pika can reduce reliance on oxygen supply and enhance its adaptation to the hypoxic environments due to increased anaerobic glycolysis by LDH-C₄.
Collapse
Affiliation(s)
- Yang Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China.
| | - Lian Wei
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China.
| | - Dengbang Wei
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China.
| | - Xiao Li
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China.
| | - Lina Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China.
| | - Linna Wei
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China.
| |
Collapse
|
22
|
Divergence of the bZIP Gene Family in Strawberry, Peach, and Apple Suggests Multiple Modes of Gene Evolution after Duplication. Int J Genomics 2015; 2015:536943. [PMID: 26770968 PMCID: PMC4685131 DOI: 10.1155/2015/536943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/01/2023] Open
Abstract
The basic leucine zipper (bZIP) transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple), Prunus persica (peach), and Fragaria vesca (strawberry), respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry.
Collapse
|
23
|
Schweizer RM, vonHoldt BM, Harrigan R, Knowles JC, Musiani M, Coltman D, Novembre J, Wayne RK. Genetic subdivision and candidate genes under selection in North American grey wolves. Mol Ecol 2015; 25:380-402. [PMID: 26333947 DOI: 10.1111/mec.13364] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/05/2015] [Accepted: 08/25/2015] [Indexed: 12/12/2022]
Abstract
Previous genetic studies of the highly mobile grey wolf (Canis lupus) found population structure that coincides with habitat and phenotype differences. We hypothesized that these ecologically distinct populations (ecotypes) should exhibit signatures of selection in genes related to morphology, coat colour and metabolism. To test these predictions, we quantified population structure related to habitat using a genotyping array to assess variation in 42 036 single-nucleotide polymorphisms (SNPs) in 111 North American grey wolves. Using these SNP data and individual-level measurements of 12 environmental variables, we identified six ecotypes: West Forest, Boreal Forest, Arctic, High Arctic, British Columbia and Atlantic Forest. Next, we explored signals of selection across these wolf ecotypes through the use of three complementary methods to detect selection: FST /haplotype homozygosity bivariate percentilae, bayescan, and environmentally correlated directional selection with bayenv. Across all methods, we found consistent signals of selection on genes related to morphology, coat coloration, metabolism, as predicted, as well as vision and hearing. In several high-ranking candidate genes, including LEPR, TYR and SLC14A2, we found variation in allele frequencies that follow environmental changes in temperature and precipitation, a result that is consistent with local adaptation rather than genetic drift. Our findings show that local adaptation can occur despite gene flow in a highly mobile species and can be detected through a moderately dense genomic scan. These patterns of local adaptation revealed by SNP genotyping likely reflect high fidelity to natal habitats of dispersing wolves, strong ecological divergence among habitats, and moderate levels of linkage in the wolf genome.
Collapse
Affiliation(s)
- Rena M Schweizer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Bridgett M vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, NJ, 08544-2016, USA
| | - Ryan Harrigan
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, 619 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - James C Knowles
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Marco Musiani
- Faculties of Environmental Design and Veterinary Medicine (Joint Appointment), EVDS, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - David Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - John Novembre
- Department of Human Genetics, University of Chicago, 920 E. 58th Street, Chicago, IL, 60637, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| |
Collapse
|
24
|
Gu P, Liu W, Yao YF, Ni QY, Zhang MW, Li DY, Xu HL. Evidence of adaptive evolution of alpine pheasants to high-altitude environment from mitogenomic perspective. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:455-62. [PMID: 24708132 DOI: 10.3109/19401736.2014.900667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adaptive evolutions to high-altitude adaptation have been intensively studied in mammals. However, considering the additional vertebrate groups, new perception regarding selection challenged by high-altitude stress on mitochondrial genome can be gained. To test this hypothesis, we compiled and analyzed the mitochondrial genomes of 5 alpine pheasants and 12 low-altitude species in Phasianidae. The results that evolutionary rates of ATP6 and ND6 showing significant fluctuation among branches when involved with five alpine pheasants revealed both genes might have implications with adapting to highland environment. The radical physico-chemical property changes identified by the modified MM01 model, including composition (C) and equilibrium constant (ionization of COOH) (Pk') in ATP6 and beta-structure tendencies (Pβ), Pk', and long-range non-bonded energy (El) in ND6, suggested that minor overall adjustments in size, protein conformation and relative orientation of reaction interfaces have been optimized to provide the ideal environments for electron transfer, proton translocation and generation of adenosine triphosphate (ATP). Additionally, three unique substitution sites were identified under selection in ND6, which could be potentially important adaptive changes contributing to cellular energy production. Our findings suggested that adaptive evolution may occur in alpine pheasants, which are an important complement to the knowledge of genetic mechanisms against the high-altitude environment in non-mammal animals.
Collapse
Affiliation(s)
- Peng Gu
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and.,b Forestry College, Sichuan Agricultural University , Ya'an , China
| | - Wei Liu
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and.,b Forestry College, Sichuan Agricultural University , Ya'an , China
| | - Yong-fang Yao
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and
| | - Qing-yong Ni
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and
| | - Ming-wang Zhang
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and
| | - Di-yan Li
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and
| | - Huai-liang Xu
- a College of Animal Science and Technology, Sichuan Agricultural University , Ya'an , China and
| |
Collapse
|
25
|
Testis-Specific Lactate Dehydrogenase (LDH-C4) in Skeletal Muscle Enhances a Pika's Sprint-Running Capacity in Hypoxic Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:9218-36. [PMID: 26262630 PMCID: PMC4555275 DOI: 10.3390/ijerph120809218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 11/17/2022]
Abstract
LDH-C4 is a lactate dehydrogenase that catalyzes the conversion of pyruvate to lactate. In mammals, ldh-c was originally thought to be expressed only in testis and spermatozoa. Plateau pika (Ochotona curzoniae), which belongs to the genus Ochotona of the Ochotonidea family, is a hypoxia tolerant mammal living 3000-5000 m above sea level on the Qinghai-Tibet Plateau, an environment which is strongly hypoxic. Ldh-c is expressed not only in testis and sperm but also in somatic tissues of plateau pika. In this study, the effects of N-propyl oxamate and N-isopropyl oxamate on LDH isozyme kinetics were compared to screens for a selective inhibitor of LDH-C4. To reveal the role and physiological mechanism of LDH-C4 in skeletal muscle of plateau pika, we investigated the effect of N-isopropyl oxamate on the pika exercise tolerance as well as the physiological mechanism. Our results show that Ki of N-propyl oxamate and N-isopropyl oxamate for LDH-A4, LDH-B4, and LDH-C4 were 0.094 mmol/L and 0.462 mmol/L, 0.119 mmol/L and 0.248 mmol/L, and 0.015 mmol/L and 0.013 mmol/L, respectively. N-isopropyl oxamate is a powerful selective inhibitor of plateau pika LDH-C4. In our exercise tolerance experiment, groups treated with inhibitors had significantly lower swimming times than the uninhibited control group. The inhibition rates of LDH, LD, and ATP were 37.12%, 66.27%, and 32.42%, respectively. Our results suggested that ldh-c is expressed in the skeletal muscle of plateau pika, and at least 32.42% of ATP in the skeletal muscle is catalyzed by LDH-C4 by anaerobic glycolysis. This suggests that pika has reduced dependence on oxygen and enhanced adaptation to hypoxic environment due to increased anaerobic glycolysis by LDH-C4 in skeletal muscle. LDH-C4 in plateau pika plays the crucial role in anaerobic glycolysis and generates ATP rapidly since this is the role of LDH-A4 in most species on plain land, which provide evidence that the native humans and animals in Qinghai-Tibet plateau can adapt to the hypoxia environment.
Collapse
|
26
|
Intermittent cold exposure results in visceral adipose tissue "browning" in the plateau pika (Ochotona curzoniae). Comp Biochem Physiol A Mol Integr Physiol 2015; 184:171-8. [PMID: 25662677 DOI: 10.1016/j.cbpa.2015.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/13/2015] [Accepted: 01/25/2015] [Indexed: 01/30/2023]
Abstract
The plateau pika has developed tolerance to cold and hypoxia in order to adapt to living in the extreme environment of the Qinghai-Tibetan Plateau. One mammalian mechanism for cold adaptation is thermogenesis by brown adipose tissue (BAT), but the degree to which pika exploits this mechanism or how it may be modified by the additional stresses of high altitude is not known. Intermittent Cold Exposure (ICE) is an approachable method to study cold adaptation in rodents. To investigate the role of adipose tissue in the adaptation of pika to cold temperatures, we have studied pika during ICE. We find that pika kept in warm temperatures has little classical brown fat, but "browning" of white adipose tissues is observed rapidly upon cold exposure. This is demonstrated by the increased expression of several markers of brown fat differentiation including uncoupling protein 1 (UCP-1). Surprisingly, this occurs mainly in visceral rather than epididymal adipose tissue. In addition, ICE increases the expression of several general adipose differentiation markers at both the mRNA and protein levels. These substantial changes in the distribution of fat are accomplished without changes in weight or blood levels of glucose and triglycerides, suggesting that the adaptable changes are coordinated and self-compensated. Together, our results demonstrate that ICE promotes recruitment of BAT in pika, and unlike small mammals in at lower altitudes, pika can activate visceral WAT to adapt to cold stress without major changes overall energy balance.
Collapse
|
27
|
Li H, Guo S, Ren Y, Wang D, Yu H, Li W, Zhao X, Chang Z. VEGF189 expression is highly related to adaptation of the plateau pika (Ochotona curzoniae) inhabiting high altitudes. High Alt Med Biol 2014; 14:395-404. [PMID: 24377347 DOI: 10.1089/ham.2013.1013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The plateau pika (Ochotona curzonia) has adapted to high-altitude hypoxia during evolution. Higher microvessel density in specific tissues and a blunted hypoxic pulmonary vasoconstriction response are the critical components of this adaptation. VEGF, vascular endothelial growth factor, has proved to be a key regulator of angiogenesis in response to tissue hypoxia and to play an important role in vascular vasodilation. However, the role of VEGF in adaptation to high-altitude hypoxia in the plateau pika remains unknown. In this study, we cloned cDNAs for VEGF165 and VEGF189 and examined their expression in pikas inhabiting altitudes of 3200 and 4750 m. Phylogenetic analysis reveals that pika VEGF165 and VEGF189 are evolutionarily conserved. Real-time PCR analysis demonstrates that VEGF165 and VEGF189 display tissue and altitude-specific expression patterns. Interestingly, we found that the levels of VEGF189 mRNA are significantly higher than those of VEGF165 in the brain and muscle tissues of the pika, which is different from what was previously observed in sea-level mammals. VEGF189 mRNA levels in brain, muscle, and lung of the pika increased with increased habitat altitude, whereas VEGF165 shows less change. Our study suggests an important role for VEGF189 in adaptation to hypoxia by the plateau pika in the high-altitude environment.
Collapse
Affiliation(s)
- Hongge Li
- 1 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology , The Chinese Academy of Sciences, Xining, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang J, Zhang H, Zhao C, Chen L, Sha W, Liu G. The complete mitochondrial genome sequence of the Tibetan red fox (Vulpes vulpes montana). MITOCHONDRIAL DNA 2014; 26:739-741. [PMID: 24456141 DOI: 10.3109/19401736.2013.845766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, the complete mitochondrial genome of the Tibetan red fox (Vulpes Vulpes montana) was sequenced for the first time using blood samples obtained from a wild female red fox captured from Lhasa in Tibet, China. Qinghai--Tibet Plateau is the highest plateau in the world with an average elevation above 3500 m. Sequence analysis showed it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region (CR). The variable tandem repeats in CR is the main reason of the length variability of mitochondrial genome among canide animals.
Collapse
Affiliation(s)
- Jin Zhang
- a College of Life Science, Qufu Normal University , Qufu , China
| | - Honghai Zhang
- a College of Life Science, Qufu Normal University , Qufu , China
| | - Chao Zhao
- a College of Life Science, Qufu Normal University , Qufu , China
| | - Lei Chen
- a College of Life Science, Qufu Normal University , Qufu , China
| | - Weilai Sha
- a College of Life Science, Qufu Normal University , Qufu , China
| | - Guangshuai Liu
- a College of Life Science, Qufu Normal University , Qufu , China
| |
Collapse
|
29
|
Zhao C, Zhang H, Zhang J, Chen L, Sha W, Yang X, Liu G. The complete mitochondrial genome sequence of the Tibetan wolf (Canis lupus laniger). Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:7-8. [PMID: 24438245 DOI: 10.3109/19401736.2013.865181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the complete mitochondrial genome of the Tibetan wolf (Canis lupus laniger) was sequenced using blood samples obtained from a wild female Tibetan wolf captured from Lhasa in Tibet, China. Qinghai-Tibet Plateau, with an average elevation above 3500 m, is the highest plateau in the world. Sequence analysis showed that its structure is in accordance with other Canidae species, but GTG is used as the start codon in ND4L gene which is different from many canide animals.
Collapse
Affiliation(s)
- Chao Zhao
- a College of Life Science, Qufu Normal University , Qufu , China
| | - Honghai Zhang
- a College of Life Science, Qufu Normal University , Qufu , China
| | - Jin Zhang
- a College of Life Science, Qufu Normal University , Qufu , China
| | - Lei Chen
- a College of Life Science, Qufu Normal University , Qufu , China
| | - Weilai Sha
- a College of Life Science, Qufu Normal University , Qufu , China
| | - Xiufeng Yang
- a College of Life Science, Qufu Normal University , Qufu , China
| | - Guangshuai Liu
- a College of Life Science, Qufu Normal University , Qufu , China
| |
Collapse
|
30
|
Natural selection and adaptive evolution of leptin. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Koch E, Hue-Beauvais C, Galio L, Solomon G, Gertler A, Révillon F, Lhotellier V, Aujean E, Devinoy E, Charlier M. Leptin gene in rabbit: cloning and expression in mammary epithelial cells during pregnancy and lactation. Physiol Genomics 2013; 45:645-52. [PMID: 23715260 DOI: 10.1152/physiolgenomics.00020.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leptin is known as a cytokine mostly produced by fat cells and implicated in regulation of energy metabolism and food intake but has also been shown to be involved in many physiological mechanisms such as tissue metabolism and cell differentiation and proliferation. In particular, leptin influences the development of mammary gland. Although leptin expression in mammary gland has been studied in several species, no data are available in the rabbit. Leptin transcripts in this species have been described as being encoded by only two exons rather than three as in other species. Our focus was to clone and sequence the rabbit leptin cDNA and to prepare the recombinant biologically active protein for validation of the proper sequence and then to describe leptin expression in rabbit mammary gland during different stages of pregnancy and lactation. The leptin sequence obtained was compared with those of other species, and genome alignment demonstrated that the rabbit leptin gene is also encoded by three exons. Additionally, we analyzed the expression of leptin during pregnancy and lactation. Leptin mRNA was weakly expressed throughout pregnancy, whereas mRNA levels were higher during lactation, with a significant increase between days 3 and 16. Leptin transcripts and protein were localized in luminal epithelial cells, thus indicating that leptin synthesis occurs in this compartment. Therefore, mammary synthesized leptin may constitute a major regulator of mammary gland development by acting locally as an autocrine and/or paracrine factor. Furthermore, our results support the possible physiological role of leptin in newborns through consumption of milk.
Collapse
Affiliation(s)
- Emmanuelle Koch
- INRA, UR1196, Génomique et Physiologie de la Lactation, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yu F, Li S, Kilpatrick WC, McGuire PM, He K, Wei W. Biogeographical Study of Plateau PikasOchotona curzoniae(Lagomorpha, Ochotonidae). Zoolog Sci 2012; 29:518-26. [DOI: 10.2108/zsj.29.518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Cai Y, Li H, Hao L, Li G, Xie P, Chen J. Identification of cda gene in bighead carp and its expression in response to microcystin-LR. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 79:206-213. [PMID: 22264741 DOI: 10.1016/j.ecoenv.2012.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/28/2011] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
Microcystin-LR (MCLR) is a widespread cyanotoxin, which can influence genes transcription and cause nucleic acid damage in different organisms. To identify MCLR induced transcriptionally changed hepatic genes in bighead carp by subtractive suppression hybridization, we obtained the cDNA fragment of cda. Then we cloned its full-length cDNA, which encodes a cytidine deaminase (CDA). 3D structure prediction showed that the 3D structure and amino acid residues related to function sites of bighead carp CDA were highly conserved. Bighead carp CDA shared high identities with other CDA sequences, and evolved closely to non-mammalian CDAs. Bighead carp expressed cda in all tested tissues under normal situation, and changed its expression profile in a time inversely dependent and dose dependent manner to MCLR, so as to protect itself from MCLR induced toxic damage. These indicated that cda might be involved in anti-MCLR response, especially in the regulation of cytidine and dexocytidine metabolism pathway.
Collapse
Affiliation(s)
- Yan Cai
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Huiying Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Le Hao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Guangyu Li
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
34
|
Phocid seal leptin: tertiary structure and hydrophobic receptor binding site preservation during distinct leptin gene evolution. PLoS One 2012; 7:e35395. [PMID: 22536379 PMCID: PMC3334926 DOI: 10.1371/journal.pone.0035395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 03/16/2012] [Indexed: 01/09/2023] Open
Abstract
The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids) have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR) binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional surfactant requirement is met by the leptin pulmonary surfactant production pathway which normally appears only to function in the mammalian foetus.
Collapse
|
35
|
Shen B, Han X, Zhang J, Rossiter SJ, Zhang S. Adaptive evolution in the glucose transporter 4 gene Slc2a4 in Old World fruit bats (family: Pteropodidae). PLoS One 2012; 7:e33197. [PMID: 22493665 PMCID: PMC3320886 DOI: 10.1371/journal.pone.0033197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/06/2012] [Indexed: 11/19/2022] Open
Abstract
Frugivorous and nectarivorous bats are able to ingest large quantities of sugar in a short time span while avoiding the potentially adverse side-effects of elevated blood glucose. The glucose transporter 4 protein (GLUT4) encoded by the Slc2a4 gene plays a critical role in transmembrane skeletal muscle glucose uptake and thus glucose homeostasis. To test whether the Slc2a4 gene has undergone adaptive evolution in bats with carbohydrate-rich diets in relation to their insect-eating sister taxa, we sequenced the coding region of the Slc2a4 gene in a number of bat species, including four Old World fruit bats (Pteropodidae) and three New World fruit bats (Phyllostomidae). Our molecular evolutionary analyses revealed evidence that Slc2a4 has undergone a change in selection pressure in Old World fruit bats with 11 amino acid substitutions detected on the ancestral branch, whereas, no positive selection was detected in the New World fruit bats. We noted that in the former group, amino acid replacements were biased towards either Serine or Isoleucine, and, of the 11 changes, six were specific to Old World fruit bats (A133S, A164S, V377F, V386I, V441I and G459S). Our study presents preliminary evidence that the Slc2a4 gene has undergone adaptive changes in Old World fruit bats in relation to their ability to meet the demands of a high sugar diet.
Collapse
Affiliation(s)
- Bin Shen
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Xiuqun Han
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Junpeng Zhang
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
36
|
Selection pressure drives the co-evolution of several lipid metabolism genes in mammals. CHINESE SCIENCE BULLETIN-CHINESE 2011. [DOI: 10.1007/s11434-011-4862-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Yuan L, Zhao X, Lin B, Rossiter SJ, He L, Zuo X, He G, Jones G, Geiser F, Zhang S. Adaptive evolution of Leptin in heterothermic bats. PLoS One 2011; 6:e27189. [PMID: 22110614 PMCID: PMC3217946 DOI: 10.1371/journal.pone.0027189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022] Open
Abstract
Heterothermy (hibernation and daily torpor) is a key strategy that animals use to survive in harsh conditions and is widely employed by bats, which are found in diverse habitats and climates. Bats comprise more than 20% of all mammals and although heterothermy occurs in divergent lineages of bats, suggesting it might be an ancestral condition, its evolutionary history is complicated by complex phylogeographic patterns. Here, we use Leptin, which regulates lipid metabolism and is crucial for thermogenesis of hibernators, as molecular marker and combine physiological, molecular and biochemical analyses to explore the possible evolutionary history of heterothermy in bat. The two tropical fruit bats examined here were homeothermic; in contrast, the two tropical insectivorous bats were clearly heterothermic. Molecular evolutionary analyses of the Leptin gene revealed positive selection in the ancestors of all bats, which was maintained or further enhanced the lineages comprising mostly heterothermic species. In contrast, we found evidence of relaxed selection in homeothermic species. Biochemical assays of bat Leptin on the activity on adipocyte degradation revealed that Leptin in heterothermic bats was more lipolytic than in homeothermic bats. This shows that evolutionary sequence changes in this protein are indeed functional and support the interpretation of our physiological results and the molecular evolutionary analyses. Our combined data strongly support the hypothesis that heterothermy is the ancestral state of bats and that this involved adaptive changes in Leptin. Subsequent loss of heterothermy in some tropical lineages of bats likely was associated with range and dietary shifts.
Collapse
Affiliation(s)
- Lihong Yuan
- South China Institute of Endangered Animals, Guangzhou, China
- Key Laboratory of Marine Bio-resources Sustainable Utilization, Key Laboratory of Applied Marine Biology of Guangdong Province, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xudong Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Benfu Lin
- South China Institute of Endangered Animals, Guangzhou, China
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Lingjiang He
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Xueguo Zuo
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Guimei He
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Fritz Geiser
- Center for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
38
|
Evidence for positive selection on the leptin gene in Cetacea and Pinnipedia. PLoS One 2011; 6:e26579. [PMID: 22046310 PMCID: PMC3203152 DOI: 10.1371/journal.pone.0026579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 09/29/2011] [Indexed: 01/21/2023] Open
Abstract
The leptin gene has received intensive attention and scientific investigation for its importance in energy homeostasis and reproductive regulation in mammals. Furthermore, study of the leptin gene is of crucial importance for public health, particularly for its role in obesity, as well as for other numerous physiological roles that it plays in mammals. In the present work, we report the identification of novel leptin genes in 4 species of Cetacea, and a comparison with 55 publicly available leptin sequences from mammalian genome assemblies and previous studies. Our study provides evidence for positive selection in the suborder Odontoceti (toothed whales) of the Cetacea and the family Phocidae (earless seals) of the Pinnipedia. We also detected positive selection in several leptin gene residues in these two lineages. To test whether leptin and its receptor evolved in a coordinated manner, we analyzed 24 leptin receptor gene (LPR) sequences from available mammalian genome assemblies and other published data. Unlike the case of leptin, our analyses did not find evidence of positive selection for LPR across the Cetacea and Pinnipedia lineages. In line with this, positively selected sites identified in the leptin genes of these two lineages were located outside of leptin receptor binding sites, which at least partially explains why co-evolution of leptin and its receptor was not observed in the present study. Our study provides interesting insights into current understanding of the evolution of mammalian leptin genes in response to selective pressures from life in an aquatic environment, and leads to a hypothesis that new tissue specificity or novel physiologic functions of leptin genes may have arisen in both odontocetes and phocids. Additional data from other species encompassing varying life histories and functional tests of the adaptive role of the amino acid changes identified in this study will help determine the factors that promote the adaptive evolution of the leptin genes in marine mammals.
Collapse
|
39
|
Reicher S, Ramos-Nieves JM, Hileman SM, Boisclair YR, Gootwine E, Gertler A. Nonsynonymous natural genetic polymorphisms in the bovine leptin gene affect biochemical and biological characteristics of the mature hormone. J Anim Sci 2011; 90:410-8. [PMID: 21926317 DOI: 10.2527/jas.2011-4378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leptin (LEP) is a cytokine-like hormone proven to be involved in diverse biological processes. In livestock, it regulates feed intake, BW homeostasis, and energy balance, among other traits. Natural nonsynonymous genetic polymorphisms in the ovine leptin (oLEP) alter the biochemical and physiological characteristics of its gene products. Here we studied in vitro and in vivo the biochemical and physiological characteristics of recombinant hormones representing the oLEP and bovine leptin (bLEP) reference sequences of wild-type (WT) leptins (GenBank accession No. U84247 and U50365, respectively), oLEP and bLEP recombinant muteins carrying the R4C mutation, and oLEP recombinant hormones carrying the A59V and Q62R mutations, which were detected in bLEP. All proteins were purified to homogeneity as monomers and formed 1:1 molar ratio complexes with the chicken leptin-binding domain (LBD). Surface plasmon resonance experiments revealed that all protein variants exhibit reduced (P < 0.05) affinity to chicken (ch) and human (h) LBD compared with the WT oLEP and bLEP recombinant proteins. The ovine and bovine R4C muteins exhibited significantly (P < 0.05) greater induction of cell proliferation in a Baf/3 cell line bioassay, despite lower affinity toward both hLBD and chLBD. Intra-third cerebral ventricle infusion of oLEP and its 3 muteins in sheep resulted in reduced feed intake. However, the 3 tested muteins had a decreased (P < 0.05) inhibitory effect than the WT LEP. It was concluded that natural genetic polymorphisms in the bLEP are associated with variation in the biochemical and physiological properties of the protein.
Collapse
Affiliation(s)
- S Reicher
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
40
|
Reicher S, Gertler A, Seroussi E, Shpilman M, Gootwine E. Biochemical and in vitro biological significance of natural sequence variation in the ovine leptin gene. Gen Comp Endocrinol 2011; 173:63-71. [PMID: 21600211 DOI: 10.1016/j.ygcen.2011.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 04/24/2011] [Accepted: 04/30/2011] [Indexed: 12/23/2022]
Abstract
The hormone leptin is involved in diverse biological processes, including regulation of food intake, body-weight homeostasis and energy balance. Sequence variation in the bovine leptin gene has been found to be associated with variations in carcass fat content and average daily gain, as well as in milk yield, milk somatic cell count and several traits governing reproduction. We sequenced genomic DNA and cDNA samples of individuals from three divergent sheep breeds and revealed synonymous as well as novel non-synonymous allelic variation at the third exon of the ovine leptin gene (oLEP) as compared to the sequence published at Accession No. U84247 (reference sequence). In addition, two alternatively spliced oLEP transcripts were found in the abdominal fat tissue. The biochemical and the in vitro biological significance of the sequence variation in the oLEP was examined by generating recombinant oLEP-protein variants namely: p.Q28del, p.N78S, p.R84Q, p.P99Q, p.V123L and p.R138Q, carrying the corresponding sequence variation. Surface plasmon resonance experiments revealed, in most cases, reduced affinity of the oLEP protein variants examined, to human leptin-binding domain (hLBD), relative to the reference variant, being 0.75, 0.60, 0.60, 0.89, 0.92 and 1.03, respectively. In competitive binding assays between biotinylated oLEP and the recombinant leptin protein variants, p.N78S and p.R84Q variants exhibited the lowest affinity to hLBD (0.18 and 0.41, respectively) as compared to the reference hormone. We then tested the protein variants' ability to induce proliferation in Baf-3 cells stably expressing the long form of the human leptin receptor: significant differences in proliferative activity were only found for p.N78S (1.8-fold higher) and p.R138Q (4.2-fold lower) relative to the reference oLEP variant.
Collapse
Affiliation(s)
- Shay Reicher
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
41
|
Gene duplication and adaptive evolution of the CHS-like genes within the genus Rheum (Polygonaceae). BIOCHEM SYST ECOL 2011. [DOI: 10.1016/j.bse.2011.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Yang J, Bromage TG, Zhao Q, Xu BH, Gao WL, Tian HF, Tang HJ, Liu DW, Zhao XQ. Functional evolution of leptin of Ochotona curzoniae in adaptive thermogenesis driven by cold environmental stress. PLoS One 2011; 6:e19833. [PMID: 21698227 PMCID: PMC3116822 DOI: 10.1371/journal.pone.0019833] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/18/2011] [Indexed: 12/20/2022] Open
Abstract
Background Environmental stress can accelerate the directional selection and evolutionary rate of specific stress-response proteins to bring about new or altered functions, enhancing an organism's fitness to challenging environments. Plateau pika (Ochotona curzoniae), an endemic and keystone species on Qinghai-Tibetan Plateau, is a high hypoxia and low temperature tolerant mammal with high resting metabolic rate and non-shivering thermogenesis to cope in this harsh plateau environment. Leptin is a key hormone related to how these animals regulate energy homeostasis. Previous molecular evolutionary analysis helped to generate the hypothesis that adaptive evolution of plateau pika leptin may be driven by cold stress. Methodology/Principal Findings To test the hypothesis, recombinant pika leptin was first purified. The thermogenic characteristics of C57BL/6J mice injected with pika leptin under warm (23±1°C) and cold (5±1°C) acclimation is investigated. Expression levels of genes regulating adaptive thermogenesis in brown adipose tissue and the hypothalamus are compared between pika leptin and human leptin treatment, suggesting that pika leptin has adaptively and functionally evolved. Our results show that pika leptin regulates energy homeostasis via reduced food intake and increased energy expenditure under both warm and cold conditions. Compared with human leptin, pika leptin demonstrates a superior induced capacity for adaptive thermogenesis, which is reflected in a more enhanced β-oxidation, mitochondrial biogenesis and heat production. Moreover, leptin treatment combined with cold stimulation has a significant synergistic effect on adaptive thermogenesis, more so than is observed with a single cold exposure or single leptin treatment. Conclusions/Significance These findings support the hypothesis that cold stress has driven the functional evolution of plateau pika leptin as an ecological adaptation to the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Timothy G. Bromage
- Department of Biomaterials and Biomimetics, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York, United States of America
| | - Qian Zhao
- Graduate School of the Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bao Hong Xu
- Microbiology Department, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, People's Republic of China
| | - Wei Li Gao
- Microbiology Department, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, People's Republic of China
| | - Hui Fang Tian
- Microbiology Department, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, People's Republic of China
| | - Hui Jun Tang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Dian Wu Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
- * E-mail: (DWL); (XQZ)
| | - Xin Quan Zhao
- Key Laboratory of Qinghai-Tibetan Plateau Biological Evolution and Adaptation, Northwest Plateau Institute of Biology, The Chinese Academy of Sciences, Xining, Qinghai, People's Republic of China
- * E-mail: (DWL); (XQZ)
| |
Collapse
|
43
|
Copeland DL, Duff RJ, Liu Q, Prokop J, Londraville RL. Leptin in teleost fishes: an argument for comparative study. Front Physiol 2011; 2:26. [PMID: 21716655 PMCID: PMC3117194 DOI: 10.3389/fphys.2011.00026] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/27/2011] [Indexed: 12/13/2022] Open
Abstract
All organisms face tradeoffs with regard to how limited energy resources should be invested. When is it most favorable to grow, to reproduce, how much lipid should be allocated to storage in preparation for a period of limited resources (e.g., winter), instead of being used for growth or maturation? These are a few of the high consequence fitness "decisions" that represent the balance between energy acquisition and allocation. Indeed, for animals to make favorable decisions about when to grow, eat, or reproduce, they must integrate signals among the systems responsible for energy acquisition, storage, and demand. We make the argument that leptin signaling is a likely candidate for an integrating system. Great progress has been made understanding the leptin system in mammals, however our understanding in fishes has been hampered by difficulty in cloning fish orthologs of mammalian proteins and (we assert), underutilization of the comparative approach.
Collapse
|
44
|
Yu L, Wang X, Ting N, Zhang Y. Mitogenomic analysis of Chinese snub-nosed monkeys: Evidence of positive selection in NADH dehydrogenase genes in high-altitude adaptation. Mitochondrion 2011; 11:497-503. [PMID: 21292038 DOI: 10.1016/j.mito.2011.01.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/14/2011] [Accepted: 01/24/2011] [Indexed: 11/26/2022]
Abstract
Chinese snub-nosed monkeys belong to the genus Rhinopithecus and are limited in distribution to six isolated mountainous areas in the temperate regions of Central and Southwest China. Compared to the other members of the subfamily Colobinae (or leaf-eating monkeys), these endangered primates are unique in being adapted to a high altitude environment and display a remarkable ability to tolerate low temperatures and hypoxia. They thus offer an interesting organismal model of adaptation to extreme environmental stress. Mitochondria generate energy by oxidative phosphorylation (OXPHOS) and play important roles in oxygen usage and energy metabolism. We analyzed the mitochondrial genomes of two Chinese snub-nosed monkey species and eight other colobines in the first attempt to understand the genetic basis of high altitude adaptation in non-human primates. We found significant evidence of positive selection in one Chinese snub-nosed monkey, Rhinopithecus roxellana, which is suggestive of adaptive change related to high altitude and cold weather stress. In addition, our study identified two potentially important adaptive amino acid residues (533 and 3307) in the NADH2 and NADH6 genes, respectively. Surprisingly, no evidence for positive selection was found in Rhinopithecus bieti (the other Chinese snub-nosed monkey analyzed). This finding is intriguing, especially considering that R. bieti inhabits a higher altitudinal distribution than R. roxellana. We hypothesize that a different adaptive genetic basis to high altitude survival exists in R. bieti from those seen in other mammals, and that positive selection and functionally associated mutations in this species may be detected in nuclear genes related to energy and oxygen metabolism. More information on the structure, function, and evolution of mitochondrial and nuclear genomes in Chinese snub-nosed monkeys is required to reveal the molecular mechanisms that underlie adaptations to high altitude survival in non-human primates.
Collapse
Affiliation(s)
- Li Yu
- Laboratory for Conservation and Utilization of Bio-resource & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, PR, China.
| | | | | | | |
Collapse
|
45
|
Denver RJ, Bonett RM, Boorse GC. Evolution of leptin structure and function. Neuroendocrinology 2011; 94:21-38. [PMID: 21677426 DOI: 10.1159/000328435] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/11/2011] [Indexed: 12/15/2022]
Abstract
Leptin, the protein product of the obese(ob or Lep) gene, is a hormone synthesized by adipocytes that signals available energy reserves to the brain, and thereby influences development, growth, metabolism and reproduction. In mammals, leptin functions as an adiposity signal: circulating leptin fluctuates in proportion to fat mass, and it acts on the hypothalamus to suppress food intake. Orthologs of mammalian Lep genes were recently isolated from several fish and two amphibian species, and here we report the identification of two Lep genes in a reptile, the lizard Anolis carolinensis. While vertebrate leptins show large divergence in their primary amino acid sequence, they form similar tertiary structures, and may have similar potencies when tested in vitro on heterologous leptin receptors (LepRs). Leptin binds to LepRs on the plasma membrane, activating several intracellular signaling pathways. Vertebrate LepRs signal via the Janus kinase (Jak) and signal transducer and activator of transcription (STAT) pathway. Three tyrosine residues located within the LepR cytoplasmic domain are phosphorylated by Jak2 and are required for activation of SH2-containing tyrosine phosphatase-2, STAT5 and STAT3 signaling. These tyrosines are conserved from fishes to mammals, demonstrating their critical role in signaling by the LepR. Leptin is anorexigenic in representatives of all vertebrate classes, suggesting that its role in energy balance is ancient and has been evolutionarily conserved. In addition to its integral role as a regulator of appetite and energy balance, leptin exerts pleiotropic actions in development, physiology and behavior.
Collapse
Affiliation(s)
- Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, USA. rdenver @ umich.edu
| | | | | |
Collapse
|
46
|
Molecular evolution of stress-response gene Leptin in high-altitude Chinese snub-nosed monkeys (Rhinopithecus genus). CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-010-4221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Jiang H, Ren F, Sun J, He L, Li W, Xie Y, Wang Q. Molecular cloning and gene expression analysis of the leptin receptor in the Chinese mitten crab Eriocheir sinensis. PLoS One 2010; 5:e11175. [PMID: 20567508 PMCID: PMC2887359 DOI: 10.1371/journal.pone.0011175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/26/2010] [Indexed: 11/22/2022] Open
Abstract
Background Leptin is an adipocyte-derived hormone with multiple functions that regulates energy homeostasis and reproductive functions. Increased knowledge of leptin receptor function will enhance our understanding of the physiological roles of leptin in animals. Methodology/Principal Findings In the present study, a full-length leptin receptor (lepr) cDNA, consisting of 1,353 nucleotides, was cloned from Chinese mitten crab (Eriocheir sinensis) using rapid amplification of cDNA ends (RACE) following the identification of a single expressed sequence tag (EST) clone in a cDNA library. The lepr cDNA consisted of a 22-nucleotide 5′-untranslated region (5′ UTR), a 402-nucleotide open reading frame (ORF) and a 929-nucleotide 3′ UTR. Multiple sequence alignments revealed that Chinese mitten crab lepr shared a conserved vacuolar protein sorting 55 (Vps55) domain with other species. Chinese mitten crab lepr expression was determined in various tissues and at three different reproductive stages using quantitative real-time RT-PCR. Lepr expression was highest in the intestine, thoracic ganglia, gonad, and accessory gonad, moderate in hepatopancreas and cranial ganglia, and low in muscle, gill, heart, haemocytes, and stomach. Furthermore, lepr expression was significantly higher in the intestine, gonad and thoracic ganglia in immature crabs relative to precocious and mature crabs. In contrast, lepr expression was significantly lower in the hepatopancreas of immature crabs relative to mature crabs. Conclusions/Significance We are the first to identify the lepr gene and to determine its gene expression patterns in various tissues and at three different reproductive stages in Chinese mitten crab. Taken together, our results suggest that lepr may be involved in the nutritional regulation of metabolism and reproduction in Chinese mitten crabs.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Biology, East China Normal University, Shanghai, China
| | - Fei Ren
- Department of Biology, East China Normal University, Shanghai, China
| | - Jiangling Sun
- Department of Biology, East China Normal University, Shanghai, China
| | - Lin He
- Department of Biology, East China Normal University, Shanghai, China
| | - Weiwei Li
- Department of Biology, East China Normal University, Shanghai, China
| | - Yannan Xie
- Department of Biology, East China Normal University, Shanghai, China
| | - Qun Wang
- Department of Biology, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
48
|
Cox J, Schubert AM, Travisano M, Putonti C. Adaptive evolution and inherent tolerance to extreme thermal environments. BMC Evol Biol 2010; 10:75. [PMID: 20226044 PMCID: PMC2850354 DOI: 10.1186/1471-2148-10-75] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 03/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND When introduced to novel environments, the ability for a species to survive and rapidly proliferate corresponds with its adaptive potential. Of the many factors that can yield an environment inhospitable to foreign species, phenotypic response to variation in the thermal climate has been observed within a wide variety of species. Experimental evolution studies using bacteriophage model systems have been able to elucidate mutations, which may correspond with the ability of phage to survive modest increases/decreases in the temperature of their environment. RESULTS Phage PhiX174 was subjected to both elevated (50 degrees C) and extreme (70 degrees C+) temperatures for anywhere from a few hours to days. While no decline in the phage's fitness was detected when it was exposed to 50 degrees C for a few hours, more extreme temperatures significantly impaired the phage; isolates that survived these heat treatments included the acquisition of several mutations within structural genes. As was expected, long-term treatment of elevated and extreme temperatures, ranging from 50-75 degrees C, reduced the survival rate even more. Isolates which survived the initial treatment at 70 degrees C for 24 or 48 hours exhibited a significantly greater tolerance to subsequent heat treatments. CONCLUSIONS Using the model organism PhiX174, we have been able to study adaptive evolution on the molecular level under extreme thermal changes in the environment, which to-date had yet to be thoroughly examined. Under both acute and extended thermal selection, we were able to observe mutations that occurred in response to excessive external pressures independent of concurrently evolving hosts. Even though its host cannot tolerate extreme temperatures such as the ones tested here, this study confirms that PhiX174 is capable of survival.
Collapse
Affiliation(s)
- Jennifer Cox
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
49
|
Hürner H, Krystufek B, Sarà M, Ribas A, Ruch T, Sommer R, Ivashkina V, Michaux JR. Mitochondrial phylogeography of the edible dormouse (Glis glis) in the western Palearctic region. J Mammal 2010. [DOI: 10.1644/08-mamm-a-392r1.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion 2008; 8:352-7. [PMID: 18722554 DOI: 10.1016/j.mito.2008.07.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/16/2008] [Accepted: 07/21/2008] [Indexed: 11/20/2022]
Abstract
Pikas originated in Asia and are small lagomorphs native to cold climates. The plateau pika, Ochotona curzoniae is a keystone species on the Qinghai-Tibet Plateau and an ideal animal model for hypoxic adaptation studies. Altered mitochondrial function, especially cytochrome c oxidase activity, is an important factor in modulation of energy generation and expenditure during cold and hypoxia adaptation. In this study, we determined the complete nucleotide sequence of the O. curzoniae mitochondrial genome. The plateau pika mitochondrial DNA is 17,131bp long and encodes the complete set of 37 proteins typical for vertebrates. Phylogenetic analysis based on concatenated heavy-strand encoded protein-coding genes revealed that pikas are closer to rabbit and hare than to rat. This suggests that rabbit or hare would be a good control animal for pikas in cold and hypoxia adaptation studies. Fifteen novel mitochondrial DNA-encoded amino acid changes were identified in the pikas, including three in the subunits of cytochrome c oxidase. These amino acid substitutions potentially function in modulation of mitochondrial complexes and electron transport efficiency during cold and hypoxia adaptation.
Collapse
|