1
|
Chavhan Y, Dey S, Lind PA. Bacteria evolve macroscopic multicellularity by the genetic assimilation of phenotypically plastic cell clustering. Nat Commun 2023; 14:3555. [PMID: 37322016 PMCID: PMC10272148 DOI: 10.1038/s41467-023-39320-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
The evolutionary transition from unicellularity to multicellularity was a key innovation in the history of life. Experimental evolution is an important tool to study the formation of undifferentiated cellular clusters, the likely first step of this transition. Although multicellularity first evolved in bacteria, previous experimental evolution research has primarily used eukaryotes. Moreover, it focuses on mutationally driven (and not environmentally induced) phenotypes. Here we show that both Gram-negative and Gram-positive bacteria exhibit phenotypically plastic (i.e., environmentally induced) cell clustering. Under high salinity, they form elongated clusters of ~ 2 cm. However, under habitual salinity, the clusters disintegrate and grow planktonically. We used experimental evolution with Escherichia coli to show that such clustering can be assimilated genetically: the evolved bacteria inherently grow as macroscopic multicellular clusters, even without environmental induction. Highly parallel mutations in genes linked to cell wall assembly formed the genomic basis of assimilated multicellularity. While the wildtype also showed cell shape plasticity across high versus low salinity, it was either assimilated or reversed after evolution. Interestingly, a single mutation could genetically assimilate multicellularity by modulating plasticity at multiple levels of organization. Taken together, we show that phenotypic plasticity can prime bacteria for evolving undifferentiated macroscopic multicellularity.
Collapse
Affiliation(s)
- Yashraj Chavhan
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | - Sutirth Dey
- Indian Institute of Science Education and Research (IISER) Pune, Pune, India
| | - Peter A Lind
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
2
|
Servajean R, Bitbol AF. Impact of population size on early adaptation in rugged fitness landscapes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220045. [PMID: 37004726 PMCID: PMC10067268 DOI: 10.1098/rstb.2022.0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/12/2023] [Indexed: 04/04/2023] Open
Abstract
Owing to stochastic fluctuations arising from finite population size, known as genetic drift, the ability of a population to explore a rugged fitness landscape depends on its size. In the weak mutation regime, while the mean steady-state fitness increases with population size, we find that the height of the first fitness peak encountered when starting from a random genotype displays various behaviours versus population size, even among small and simple rugged landscapes. We show that the accessibility of the different fitness peaks is key to determining whether this height overall increases or decreases with population size. Furthermore, there is often a finite population size that maximizes the height of the first fitness peak encountered when starting from a random genotype. This holds across various classes of model rugged landscapes with sparse peaks, and in some experimental and experimentally inspired ones. Thus, early adaptation in rugged fitness landscapes can be more efficient and predictable for relatively small population sizes than in the large-size limit. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Richard Servajean
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Standley M, Blay V, Beleva Guthrie V, Kim J, Lyman A, Moya A, Karchin R, Camps M. Experimental and In Silico Analysis of TEM β-Lactamase Adaptive Evolution. ACS Infect Dis 2022; 8:2451-2463. [PMID: 36377311 PMCID: PMC9745794 DOI: 10.1021/acsinfecdis.2c00216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple mutations often have non-additive (epistatic) phenotypic effects. Epistasis is of fundamental biological relevance but is not well understood mechanistically. Adaptive evolution, i.e., the evolution of new biochemical activities, is rich in epistatic interactions. To better understand the principles underlying epistasis during genetic adaptation, we studied the evolution of TEM-1 β-lactamase variants exhibiting cefotaxime resistance. We report the collection of a library of 487 observed evolutionary trajectories for TEM-1 and determine the epistasis status based on cefotaxime resistance phenotype for 206 combinations of 2-3 TEM-1 mutations involving 17 positions under adaptive selective pressure. Gain-of-function (GOF) mutations are gatekeepers for adaptation. To see if GOF phenotypes can be inferred based solely on sequence data, we calculated the enrichment of GOF mutations in the different categories of epistatic pairs. Our results suggest that this is possible because GOF mutations are particularly enriched in sign and reciprocal sign epistasis, which leave a major imprint on the sequence space accessible to evolution. We also used FoldX to explore the relationship between thermodynamic stability and epistasis. We found that mutations in observed evolutionary trajectories tend to destabilize the folded structure of the protein, albeit their cumulative effects are consistently below the protein's free energy of folding. The destabilizing effect is stronger for epistatic pairs, suggesting that modest or local alterations in folding stability can modulate catalysis. Finally, we report a significant relationship between epistasis and the degree to which two protein positions are structurally and dynamically coupled, even in the absence of ligand.
Collapse
Affiliation(s)
- Melissa Standley
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Vincent Blay
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States,Institute
for Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), 46980Valencia, Spain,
| | - Violeta Beleva Guthrie
- Department
of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Jay Kim
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Audrey Lyman
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States
| | - Andrés Moya
- Institute
for Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), 46980Valencia, Spain,Foundation
for the Promotion of Sanitary and Biomedical Research of Valencia
Region (FISABIO), 46021Valencia, Spain,CIBER
in Epidemiology and Public Health (CIBEResp), 28029Madrid, Spain
| | - Rachel Karchin
- Department
of Biomedical Engineering and Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland21218, United States
| | - Manel Camps
- Department
of Microbiology and Environmental Toxicology, University of California, Santa
Cruz, California95064, United States,
| |
Collapse
|
4
|
Coenye T, Bové M, Bjarnsholt T. Biofilm antimicrobial susceptibility through an experimental evolutionary lens. NPJ Biofilms Microbiomes 2022; 8:82. [PMID: 36257971 PMCID: PMC9579162 DOI: 10.1038/s41522-022-00346-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022] Open
Abstract
Experimental evolution experiments in which bacterial populations are repeatedly exposed to an antimicrobial treatment, and examination of the genotype and phenotype of the resulting evolved bacteria, can help shed light on mechanisms behind reduced susceptibility. In this review we present an overview of why it is important to include biofilms in experimental evolution, which approaches are available to study experimental evolution in biofilms and what experimental evolution has taught us about tolerance and resistance in biofilms. Finally, we present an emerging consensus view on biofilm antimicrobial susceptibility supported by data obtained during experimental evolution studies.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
- Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.
| | - Mona Bové
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Smith CE, Smith ANH, Cooper TF, Moore FBG. Fitness of evolving bacterial populations is contingent on deep and shallow history but only shallow history creates predictable patterns. Proc Biol Sci 2022; 289:20221292. [PMID: 36100026 PMCID: PMC9470251 DOI: 10.1098/rspb.2022.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-term evolution experiments have tested the importance of genetic and environmental factors in influencing evolutionary outcomes. Differences in phylogenetic history, recent adaptation to distinct environments and chance events, all influence the fitness of a population. However, the interplay of these factors on a population's evolutionary potential remains relatively unexplored. We tracked the outcome of 2000 generations of evolution of four natural isolates of Escherichia coli bacteria that were engineered to also create differences in shallow history by adding previously identified mutations selected in a separate long-term experiment. Replicate populations started from each progenitor evolved in four environments. We found that deep and shallow phylogenetic histories both contributed significantly to differences in evolved fitness, though by different amounts in different selection environments. With one exception, chance effects were not significant. Whereas the effect of deep history did not follow any detectable pattern, effects of shallow history followed a pattern of diminishing returns whereby fitter ancestors had smaller fitness increases. These results are consistent with adaptive evolution being contingent on the interaction of several evolutionary forces but demonstrate that the nature of these interactions is not fixed and may not be predictable even when the role of chance is small.
Collapse
Affiliation(s)
- Chelsea E Smith
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Adam N H Smith
- School of Mathematical and Computational Sciences, Massey University, Auckland 0634, New Zealand
| | - Tim F Cooper
- School of Natural Sciences, Massey University, Auckland 0634, New Zealand
| | - Francisco B-G Moore
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.,Department of Biology, University of Akron, Akron, OH 44325, USA
| |
Collapse
|
6
|
Bisschop K, Blankers T, Mariën J, Wortel MT, Egas M, Groot AT, Visser ME, Ellers J. Population bottleneck has only marginal effect on fitness evolution and its repeatability in dioecious Caenorhabditis elegans. Evolution 2022; 76:1896-1904. [PMID: 35795889 PMCID: PMC9545033 DOI: 10.1111/evo.14556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 01/22/2023]
Abstract
The predictability of evolution is expected to depend on the relative contribution of deterministic and stochastic processes. This ratio is modulated by effective population size. Smaller effective populations harbor less genetic diversity and stochastic processes are generally expected to play a larger role, leading to less repeatable evolutionary trajectories. Empirical insight into the relationship between effective population size and repeatability is limited and focused mostly on asexual organisms. Here, we tested whether fitness evolution was less repeatable after a population bottleneck in obligately outcrossing populations of Caenorhabditis elegans. Replicated populations founded by 500, 50, or five individuals (no/moderate/strong bottleneck) were exposed to a novel environment with a different bacterial prey. As a proxy for fitness, population size was measured after one week of growth before and after 15 weeks of evolution. Surprisingly, we found no significant differences among treatments in their fitness evolution. Even though the strong bottleneck reduced the relative contribution of selection to fitness variation, this did not translate to a significant reduction in the repeatability of fitness evolution. Thus, although a bottleneck reduced the contribution of deterministic processes, we conclude that the predictability of evolution may not universally depend on effective population size, especially in sexual organisms.
Collapse
Affiliation(s)
- Karen Bisschop
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdam1090 GEThe Netherlands,Origins CenterGroningenThe Netherlands,Terrestrial Ecology UnitGhent UniversityGhent9000Belgium,Laboratory of Aquatic BiologyKU Leuven KulakKortrijk8500Belgium
| | - Thomas Blankers
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdam1090 GEThe Netherlands,Origins CenterGroningenThe Netherlands
| | - Janine Mariën
- Animal EcologyVU AmsterdamAmsterdam1081 HVThe Netherlands
| | - Meike T. Wortel
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdam1090 GEThe Netherlands
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdam1090 GEThe Netherlands
| | - Astrid T. Groot
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdam1090 GEThe Netherlands
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningen6700 ABThe Netherlands
| | | |
Collapse
|
7
|
Population size mediates the contribution of high-rate and large-benefit mutations to parallel evolution. Nat Ecol Evol 2022; 6:439-447. [PMID: 35241808 DOI: 10.1038/s41559-022-01669-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Mutations with large fitness benefits and mutations occurring at high rates may both cause parallel evolution, but their contribution is predicted to depend on population size. Moreover, high-rate and large-benefit mutations may have different long-term adaptive consequences. We show that small and 100-fold larger bacterial populations evolve resistance to a β-lactam antibiotic by using similar numbers, but different types of mutations. Small populations frequently substitute similar high-rate structural variants and loss-of-function point mutations, including the deletion of a low-activity β-lactamase, and evolve modest resistance levels. Large populations more often use low-rate, large-benefit point mutations affecting the same targets, including mutations activating the β-lactamase and other gain-of-function mutations, leading to much higher resistance levels. Our results demonstrate the separation by clonal interference of mutation classes with divergent adaptive consequences, causing a shift from high-rate to large-benefit mutations with increases in population size.
Collapse
|
8
|
Tokutomi N, Nakai K, Sugano S. Extreme value theory as a framework for understanding mutation frequency distribution in cancer genomes. PLoS One 2021; 16:e0243595. [PMID: 34424899 PMCID: PMC8382180 DOI: 10.1371/journal.pone.0243595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 08/10/2021] [Indexed: 12/31/2022] Open
Abstract
Currently, the population dynamics of preclonal cancer cells before clonal expansion of tumors has not been sufficiently addressed thus far. By focusing on preclonal cancer cell population as a Darwinian evolutionary system, we formulated and analyzed the observed mutation frequency among tumors (MFaT) as a proxy for the hypothesized sequence read frequency and beneficial fitness effect of a cancer driver mutation. Analogous to intestinal crypts, we assumed that sample donor patients are separate culture tanks where proliferating cells follow certain population dynamics described by extreme value theory (EVT). To validate this, we analyzed three large-scale cancer genome datasets, each harboring > 10000 tumor samples and in total involving > 177898 observed mutation sites. We clarified the necessary premises for the application of EVT in the strong selection and weak mutation (SSWM) regime in relation to cancer genome sequences at scale. We also confirmed that the stochastic distribution of MFaT is likely of the Fréchet type, which challenges the well-known Gumbel hypothesis of beneficial fitness effects. Based on statistical data analysis, we demonstrated the potential of EVT as a population genetics framework to understand and explain the stochastic behavior of driver-mutation frequency in cancer genomes as well as its applicability in real cancer genome sequence data.
Collapse
Affiliation(s)
- Natsuki Tokutomi
- Department of Computational Biology and Medical Science, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Chiba, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Science, Graduate School of Frontier Science, University of Tokyo, Kashiwa, Chiba, Japan
- Human Genome Center, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Sumio Sugano
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyou-ku, Tokyo, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba, Chiba, Japan
| |
Collapse
|
9
|
Zhou D, Zhang Q. Compensatory adaptation and diversification subsequent to evolutionary rescue in a model adaptive radiation. Ecol Evol 2021; 11:9689-9696. [PMID: 34306654 PMCID: PMC8293784 DOI: 10.1002/ece3.7792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022] Open
Abstract
Biological populations may survive lethal environmental stress through evolutionary rescue. The rescued populations typically suffer a reduction in growth performance and harbor very low genetic diversity compared with their parental populations. The present study addresses how population size and within-population diversity may recover through compensatory evolution, using the experimental adaptive radiation of bacterium Pseudomonas fluorescens. We exposed bacterial populations to an antibiotic treatment and then imposed a one-individual-size population bottleneck on those surviving the antibiotic stress. During the subsequent compensatory evolution, population size increased and leveled off very rapidly. The increase of diversity was of slower paces and persisted longer. In the very early stage of compensatory evolution, populations of large sizes had a greater chance to diversify; however, this productivity-diversification relationship was not observed in later stages. Population size and diversity from the end of the compensatory evolution was not contingent on initial population growth performance. We discussed the possibility that our results be explained by the emergence of a "holey" fitness landscape under the antibiotic stress.
Collapse
Affiliation(s)
- Dong‐Hao Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Quan‐Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
10
|
Windels EM, Fox R, Yerramsetty K, Krouse K, Wenseleers T, Swinnen J, Matthay P, Verstraete L, Wilmaerts D, Van den Bergh B, Michiels J. Population Bottlenecks Strongly Affect the Evolutionary Dynamics of Antibiotic Persistence. Mol Biol Evol 2021; 38:3345-3357. [PMID: 33871643 PMCID: PMC8321523 DOI: 10.1093/molbev/msab107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacterial persistence is a potential cause of antibiotic therapy failure. Antibiotic-tolerant persisters originate from phenotypic differentiation within a susceptible population, occurring with a frequency that can be altered by mutations. Recent studies have proven that persistence is a highly evolvable trait and, consequently, an important evolutionary strategy of bacterial populations to adapt to high-dose antibiotic therapy. Yet, the factors that govern the evolutionary dynamics of persistence are currently poorly understood. Theoretical studies predict far-reaching effects of bottlenecking on the evolutionary adaption of bacterial populations, but these effects have never been investigated in the context of persistence. Bottlenecking events are frequently encountered by infecting pathogens during host-to-host transmission and antibiotic treatment. In this study, we used a combination of experimental evolution and barcoded knockout libraries to examine how population bottlenecking affects the evolutionary dynamics of persistence. In accordance with existing hypotheses, small bottlenecks were found to restrict the adaptive potential of populations and result in more heterogeneous evolutionary outcomes. Evolutionary trajectories followed in small-bottlenecking regimes additionally suggest that the fitness landscape associated with persistence has a rugged topography, with distinct trajectories toward increased persistence that are accessible to evolving populations. Furthermore, sequencing data of evolved populations and knockout libraries after selection reveal various genes that are potentially involved in persistence, including previously known as well as novel targets. Together, our results do not only provide experimental evidence for evolutionary theories, but also contribute to a better understanding of the environmental and genetic factors that guide bacterial adaptation to antibiotic treatment.
Collapse
Affiliation(s)
- Etthel M Windels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.,Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Janne Swinnen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Paul Matthay
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.,Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Laure Verstraete
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.,Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Dorien Wilmaerts
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.,Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.,Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium.,Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Freitas O, Wahl LM, Campos PRA. Robustness and predictability of evolution in bottlenecked populations. Phys Rev E 2021; 103:042415. [PMID: 34005989 DOI: 10.1103/physreve.103.042415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/02/2021] [Indexed: 01/02/2023]
Abstract
Deterministic and stochastic evolutionary processes drive adaptation in natural populations. The strength of each component process is determined by the population size: deterministic components prevail in very large populations, while stochastic components are the driving mechanisms in small ones. Many natural populations, however, experience intermittent periods of growth, moving through states in which either stochastic or deterministic processes prevail. This growth is often countered by population bottlenecks, which abound in both natural and laboratory populations. Here we investigate how population bottlenecks shape the process of adaptation. We demonstrate that adaptive trajectories in populations experiencing regular bottlenecks can be naturally scaled in time units of generations; with this scaling the time courses of adaptation, fitness variance, and genetic diversity all become relatively insensitive to the timing of population bottlenecks, provided the bottleneck size exceeds a few thousand individuals. We also include analyses at the genotype level to investigate the impact of population bottlenecks on the predictability and distribution of evolutionary pathways. Irrespective of the timing of population bottlenecks, we find that predictability increases with population size. We also find that predictability of the adaptive pathways increases in increasingly rugged fitness landscapes. Overall, our work reveals that both the adaptation rate and the predictability of evolutionary trajectories are relatively robust to population bottlenecks.
Collapse
Affiliation(s)
- Osmar Freitas
- Evolutionary Dynamics Lab, Physics Department, Federal University of Pernambuco, Recife-PE, 50670-901, Brazil
| | - Lindi M Wahl
- Applied Mathematics, Western University, London, Ontario N6A 5B7, Canada
| | - Paulo R A Campos
- Evolutionary Dynamics Lab, Physics Department, Federal University of Pernambuco, Recife-PE, 50670-901, Brazil
| |
Collapse
|
12
|
Uncovering patterns of the evolution of genomic sequence entropy and complexity. Mol Genet Genomics 2020; 296:289-298. [PMID: 33252723 DOI: 10.1007/s00438-020-01729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 09/22/2020] [Indexed: 10/22/2022]
Abstract
The lack of consensus concerning the biological meaning of entropy and complexity of genomes and the different ways to assess these data hamper conclusions concerning what are the causes of genomic entropy variation among species. This study aims to evaluate the entropy and complexity of genomic sequences of several species without using homologies to assess relationships among these variables and non-molecular data (e.g., the number of individuals) to seek a trigger of interspecific genomic entropy variation. The results indicate a relationship among genomic entropy, genome size, genomic complexity, and the number of individuals: species with a small number of individuals harbors large genome, and hence, low entropy but a higher complexity. We defined that the complexity of a genome relies on the entropy of each DNA segment within genome. Then, the entropy and complexity of a genome reflects its organization solely. Exons of vertebrates harbor smaller entropies than non-exon regions (likely by the repeats that accumulated from duplications), whereas other taxonomic groups do not present this pattern. Our findings suggest that small initial population might have defined current genomic entropy and complexity: actual genomes are less complex than ancestral ones. Besides, our data disagree with the relationship between phenotype and genomic entropies previously established. Finally, by establishing the relationship between genomic entropy/complexity with the number of individuals and genome size, under an evolutive perspective, ideas concerning the genomic variability may emerge.
Collapse
|
13
|
Santiago-Alarcon D, Tapia-McClung H, Lerma-Hernández S, Venegas-Andraca SE. Quantum aspects of evolution: a contribution towards evolutionary explorations of genotype networks via quantum walks. J R Soc Interface 2020; 17:20200567. [PMID: 33171071 PMCID: PMC7729038 DOI: 10.1098/rsif.2020.0567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Quantum biology seeks to explain biological phenomena via quantum mechanisms, such as enzyme reaction rates via tunnelling and photosynthesis energy efficiency via coherent superposition of states. However, less effort has been devoted to study the role of quantum mechanisms in biological evolution. In this paper, we used transcription factor networks with two and four different phenotypes, and used classical random walks (CRW) and quantum walks (QW) to compare network search behaviour and efficiency at finding novel phenotypes between CRW and QW. In the network with two phenotypes, at temporal scales comparable to decoherence time TD, QW are as efficient as CRW at finding new phenotypes. In the case of the network with four phenotypes, the QW had a higher probability of mutating to a novel phenotype than the CRW, regardless of the number of mutational steps (i.e. 1, 2 or 3) away from the new phenotype. Before quantum decoherence, the QW probabilities become higher turning the QW effectively more efficient than CRW at finding novel phenotypes under different starting conditions. Thus, our results warrant further exploration of the QW under more realistic network scenarios (i.e. larger genotype networks) in both closed and open systems (e.g. by considering Lindblad terms).
Collapse
Affiliation(s)
- Diego Santiago-Alarcon
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C. Carr. Antigua a Coatepec 351, Col. El Haya, C.P. 91070, Xalapa, Veracruz, Mexico
| | - Horacio Tapia-McClung
- Centro de Investigación en Inteligencia Artificial, Universidad Veracruzana, Sebastián Camacho 5, Centro, Xalapa-Enríquez, Veracruz, Mexico
| | - Sergio Lerma-Hernández
- Facultad de Física, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Xalapa, Veracruz 91000, Mexico
| | - Salvador E. Venegas-Andraca
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Avenue Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
14
|
Abstract
The genomes of bacteria contain fewer genes and substantially less noncoding DNA than those of eukaryotes, and as a result, they have much less raw material to invent new traits. Yet, bacteria are vastly more taxonomically diverse, numerically abundant, and globally successful in colonizing new habitats compared to eukaryotes. Although bacterial genomes are generally considered to be optimized for efficient growth and rapid adaptation, nonadaptive processes have played a major role in shaping the size, contents, and compact organization of bacterial genomes and have allowed the establishment of deleterious traits that serve as the raw materials for genetic innovation.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Marian L Schmidt
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| |
Collapse
|
15
|
Bright Ross JG, Newman C, Buesching CD, Macdonald DW. What lies beneath? Population dynamics conceal pace-of-life and sex ratio variation, with implications for resilience to environmental change. GLOBAL CHANGE BIOLOGY 2020; 26:3307-3324. [PMID: 32243650 DOI: 10.1111/gcb.15106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
Life-history and pace-of-life syndrome theory predict that populations are comprised of individuals exhibiting different reproductive schedules and associated behavioural and physiological traits, optimized to prevailing social and environmental factors. Changing weather and social conditions provide in situ cues altering this life-history optimality; nevertheless, few studies have considered how tactical, sex-specific plasticity over an individual's lifespan varies in wild populations and influences population resilience. We examined the drivers of individual life-history schedules using 31 years of trapping data and 28 years of pedigree for the European badger (Meles meles L.), a long-lived, iteroparous, polygynandrous mammal that exhibits heterochrony in the timing of endocrinological puberty in male cubs. Our top model for the effects of environmental (social and weather) conditions during a badger's first year on pace-of-life explained <10% of variance in the ratio of fertility to age at first reproduction (F/α) and lifetime reproductive success. Conversely, sex ratio (SR) and sex-specific density explained 52.8% (males) and 91.0% (females) of variance in adult F/α ratios relative to the long-term population median F/α. Weather primarily affected the sexes at different life-history stages, with energy constraints limiting the onset of male reproduction but playing a large role in female strategic energy allocation, particularly in relation to ongoing mean temperature increases. Furthermore, the effects of social factors on age of first reproduction and year-to-year reproductive success covaried differently with sex, likely due to sex-specific responses to potential mate availability. For females, low same-sex densities favoured early primiparity; for males, instead, up to 10% of yearlings successfully mated at high same-sex densities. We observed substantial SR dynamism relating to differential mortality of life-history strategists within the population, and propose that shifting ratios of 'fast' and 'slow' life-history strategists contribute substantially to population dynamics and resilience to changing conditions.
Collapse
Affiliation(s)
- Julius G Bright Ross
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - Chris Newman
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - Christina D Buesching
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, The Recanati-Kaplan Centre, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Adaptive walks on high-dimensional fitness landscapes and seascapes with distance-dependent statistics. Theor Popul Biol 2019; 130:13-49. [PMID: 31605706 DOI: 10.1016/j.tpb.2019.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 11/21/2022]
Abstract
The dynamics of evolution is intimately shaped by epistasis - interactions between genetic elements which cause the fitness-effect of combinations of mutations to be non-additive. Analyzing evolutionary dynamics that involves large numbers of epistatic mutations is intrinsically difficult. A crucial feature is that the fitness landscape in the vicinity of the current genome depends on the evolutionary history. A key step is thus developing models that enable study of the effects of past evolution on future evolution. In this work, we introduce a broad class of high-dimensional random fitness landscapes for which the correlations between fitnesses of genomes are a general function of genetic distance. Their Gaussian character allows for tractable computational as well as analytic understanding. We study the properties of these landscapes focusing on the simplest evolutionary process: random adaptive (uphill) walks. Conventional measures of "ruggedness" are shown to not much affect such adaptive walks. Instead, the long-distance statistics of epistasis cause all properties to be highly conditional on past evolution, determining the statistics of the local landscape (the distribution of fitness-effects of available mutations and combinations of these), as well as the global geometry of evolutionary trajectories. In order to further explore the effects of conditioning on past evolution, we model the effects of slowly changing environments. At long times, such fitness "seascapes" cause a statistical steady state with highly intermittent evolutionary dynamics: populations undergo bursts of rapid adaptation, interspersed with periods in which adaptive mutations are rare and the population waits for more new directions to be opened up by changes in the environment. Finally, we discuss prospects for studying more complex evolutionary dynamics and on broader classes of high-dimensional landscapes and seascapes.
Collapse
|
17
|
France MT, Forney LJ. The Relationship between Spatial Structure and the Maintenance of Diversity in Microbial Populations. Am Nat 2019; 193:503-513. [PMID: 30912968 DOI: 10.1086/701799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Spatial structure is pervasive in the microbial world, yet we know little about how it influences the evolution of microbial populations. It is thought that spatial structure limits the scale of competitive interactions and protracts selective sweeps. This may allow microbial populations to simultaneously explore multiple evolutionary paths. But how structured a microbial population must be before this effect is realized is not known. We used empirical and simulation studies to explore the relationship between spatial structure and the maintenance of diversity. The degree of spatial structure experienced by Escherichia coli metapopulations was manipulated by varying the migration rate between its component subpopulations. Each subpopulation was inoculated with an equal number of two equally fit genotypes, and their frequencies in 12 subpopulations were determined during 150 generations of evolution. We observed that the frequency of the "loser" genotypes decreased exponentially as the migration rate between the subpopulations was increased and that higher frequencies of the loser genotypes were maintained in structured metapopulations. These results demonstrate that structured microbial populations can evolve along multiple evolutionary trajectories even when migration rates between the subpopulations are relatively high.
Collapse
|
18
|
Chavhan YD, Ali SI, Dey S. Larger Numbers Can Impede Adaptation in Asexual Populations despite Entailing Greater Genetic Variation. Evol Biol 2019. [DOI: 10.1007/s11692-018-9467-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Bajić D, Vila JCC, Blount ZD, Sánchez A. On the deformability of an empirical fitness landscape by microbial evolution. Proc Natl Acad Sci U S A 2018; 115:11286-11291. [PMID: 30322921 PMCID: PMC6217403 DOI: 10.1073/pnas.1808485115] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A fitness landscape is a map between the genotype and its reproductive success in a given environment. The topography of fitness landscapes largely governs adaptive dynamics, constraining evolutionary trajectories and the predictability of evolution. Theory suggests that this topography can be deformed by mutations that produce substantial changes to the environment. Despite its importance, the deformability of fitness landscapes has not been systematically studied beyond abstract models, and little is known about its reach and consequences in empirical systems. Here we have systematically characterized the deformability of the genome-wide metabolic fitness landscape of the bacterium Escherichia coli Deformability is quantified by the noncommutativity of epistatic interactions, which we experimentally demonstrate in mutant strains on the path to an evolutionary innovation. Our analysis shows that the deformation of fitness landscapes by metabolic mutations rarely affects evolutionary trajectories in the short range. However, mutations with large environmental effects produce long-range landscape deformations in distant regions of the genotype space that affect the fitness of later descendants. Our results therefore suggest that, even in situations in which mutations have strong environmental effects, fitness landscapes may retain their power to forecast evolution over small mutational distances despite the potential attenuation of that power over longer evolutionary trajectories. Our methods and results provide an avenue for integrating adaptive and eco-evolutionary dynamics with complex genetics and genomics.
Collapse
Affiliation(s)
- Djordje Bajić
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511;
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| | - Jean C C Vila
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| | - Zachary D Blount
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
- Department of Biology, Kenyon College, Gambier OH 43022
| | - Alvaro Sánchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511;
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| |
Collapse
|
20
|
Margolis E, Rosch JW. Fitness Landscape of the Immune Compromised Favors the Emergence of Antibiotic Resistance. ACS Infect Dis 2018; 4:1275-1277. [PMID: 30070470 DOI: 10.1021/acsinfecdis.8b00158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antibiotic resistance can come at a high cost, both in terms of fitness for the pathogen and poorer outcomes for patients. The fitness landscape encountered by bacterial pathogens varies greatly throughout patient populations in terms of host immunity as well as the duration and spectrum of antibiotics encountered. Severely immunocompromised patients present a favorable environment for antibiotic resistance to emerge due to lack of immune-mediated competition and increased opportunities to evolve both on-target and compensatory mutations. Such patients may present unique pathways for antibiotic resistance to emerge.
Collapse
Affiliation(s)
- Elisa Margolis
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Jason W. Rosch
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| |
Collapse
|
21
|
Environmental pleiotropy and demographic history direct adaptation under antibiotic selection. Heredity (Edinb) 2018; 121:438-448. [PMID: 30190561 PMCID: PMC6180006 DOI: 10.1038/s41437-018-0137-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/10/2023] Open
Abstract
Evolutionary rescue following environmental change requires mutations permitting population growth in the new environment. If change is severe enough to prevent most of the population reproducing, rescue becomes reliant on mutations already present. If change is sustained, the fitness effects in both environments, and how they are associated—termed ‘environmental pleiotropy’—may determine which alleles are ultimately favoured. A population’s demographic history—its size over time—influences the variation present. Although demographic history is known to affect the probability of evolutionary rescue, how it interacts with environmental pleiotropy during severe and sustained environmental change remains unexplored. Here, we demonstrate how these factors interact during antibiotic resistance evolution, a key example of evolutionary rescue fuelled by pre-existing mutations with pleiotropic fitness effects. We combine published data with novel simulations to characterise environmental pleiotropy and its effects on resistance evolution under different demographic histories. Comparisons among resistance alleles typically revealed no correlation for fitness—i.e., neutral pleiotropy—above and below the sensitive strain’s minimum inhibitory concentration. Resistance allele frequency following experimental evolution showed opposing correlations with their fitness effects in the presence and absence of antibiotic. Simulations demonstrated that effects of environmental pleiotropy on allele frequencies depended on demographic history. At the population level, the major influence of environmental pleiotropy was on mean fitness, rather than the probability of evolutionary rescue or diversity. Our work suggests that determining both environmental pleiotropy and demographic history is critical for predicting resistance evolution, and we discuss the practicalities of this during in vivo evolution.
Collapse
|
22
|
Van den Bergh B, Swings T, Fauvart M, Michiels J. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol Mol Biol Rev 2018; 82:e00008-18. [PMID: 30045954 PMCID: PMC6094045 DOI: 10.1128/mmbr.00008-18] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In experimental evolution, laboratory-controlled conditions select for the adaptation of species, which can be monitored in real time. Despite the current popularity of such experiments, nature's most pervasive biological force was long believed to be observable only on time scales that transcend a researcher's life-span, and studying evolution by natural selection was therefore carried out solely by comparative means. Eventually, microorganisms' propensity for fast evolutionary changes proved us wrong, displaying strong evolutionary adaptations over a limited time, nowadays massively exploited in laboratory evolution experiments. Here, we formulate a guide to experimental evolution with microorganisms, explaining experimental design and discussing evolutionary dynamics and outcomes and how it is used to assess ecoevolutionary theories, improve industrially important traits, and untangle complex phenotypes. Specifically, we give a comprehensive overview of the setups used in experimental evolution. Additionally, we address population dynamics and genetic or phenotypic diversity during evolution experiments and expand upon contributing factors, such as epistasis and the consequences of (a)sexual reproduction. Dynamics and outcomes of evolution are most profoundly affected by the spatiotemporal nature of the selective environment, where changing environments might lead to generalists and structured environments could foster diversity, aided by, for example, clonal interference and negative frequency-dependent selection. We conclude with future perspectives, with an emphasis on possibilities offered by fast-paced technological progress. This work is meant to serve as an introduction to those new to the field of experimental evolution, as a guide to the budding experimentalist, and as a reference work to the seasoned expert.
Collapse
Affiliation(s)
- Bram Van den Bergh
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- Douglas Lab, Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Toon Swings
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| | - Maarten Fauvart
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
- imec, Leuven, Belgium
| | - Jan Michiels
- Laboratory of Symbiotic and Pathogenic Interactions, Centre of Microbial and Plant Genetics, KU Leuven-University of Leuven, Leuven, Belgium
- Michiels Lab, Center for Microbiology, VIB, Leuven, Belgium
| |
Collapse
|
23
|
Ibacache-Quiroga C, Oliveros JC, Couce A, Blázquez J. Parallel Evolution of High-Level Aminoglycoside Resistance in Escherichia coli Under Low and High Mutation Supply Rates. Front Microbiol 2018; 9:427. [PMID: 29615988 PMCID: PMC5867336 DOI: 10.3389/fmicb.2018.00427] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/22/2018] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is a major concern in public health worldwide, thus there is much interest in characterizing the mutational pathways through which susceptible bacteria evolve resistance. Here we use experimental evolution to explore the mutational pathways toward aminoglycoside resistance, using gentamicin as a model, under low and high mutation supply rates. Our results show that both normo and hypermutable strains of Escherichia coli are able to develop resistance to drug dosages > 1,000-fold higher than the minimal inhibitory concentration for their ancestors. Interestingly, such level of resistance was often associated with changes in susceptibility to other antibiotics, most prominently with increased resistance to fosfomycin. Whole-genome sequencing revealed that all resistant derivatives presented diverse mutations in five common genetic elements: fhuA, fusA and the atpIBEFHAGDC, cyoABCDE, and potABCD operons. Despite the large number of mutations acquired, hypermutable strains did not pay, apparently, fitness cost. In contrast to recent studies, we found that the mutation supply rate mainly affected the speed (tempo) but not the pattern (mode) of evolution: both backgrounds acquired the mutations in the same order, although the hypermutator strain did it faster. This observation is compatible with the adaptive landscape for high-level gentamicin resistance being relatively smooth, with few local maxima; which might be a common feature among antibiotics for which resistance involves multiple loci.
Collapse
Affiliation(s)
- Claudia Ibacache-Quiroga
- Centro Nacional de Biotecnología, Madrid, Spain.,Centro de Micro-Bioinnovación, Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | | | - Alejandro Couce
- Unité Mixte de Recherche 1137, Infection, Antimicrobiens, Modélisation, Evolution, INSERM, Université Paris Diderot, Paris, France
| | - Jesus Blázquez
- Centro Nacional de Biotecnología, Madrid, Spain.,Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
24
|
Vogwill T, Phillips RL, Gifford DR, MacLean RC. Divergent evolution peaks under intermediate population bottlenecks during bacterial experimental evolution. Proc Biol Sci 2017; 283:rspb.2016.0749. [PMID: 27466449 PMCID: PMC4971204 DOI: 10.1098/rspb.2016.0749] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
There is growing evidence that parallel molecular evolution is common, but its causes remain poorly understood. Demographic parameters such as population bottlenecks are predicted to be major determinants of parallelism. Here, we test the hypothesis that bottleneck intensity shapes parallel evolution by elucidating the genomic basis of adaptation to antibiotic-supplemented media in hundreds of populations of the bacterium Pseudomonas fluorescens Pf0-1. As expected, bottlenecking decreased the rate of phenotypic and molecular adaptation. Surprisingly, bottlenecking had no impact on the likelihood of parallel adaptive molecular evolution at a genome-wide scale. However, bottlenecking had a profound impact on the genes involved in antibiotic resistance. Specifically, under either intense or weak bottlenecking, resistance predominantly evolved by strongly beneficial mutations which provide high levels of antibiotic resistance. In contrast with intermediate bottlenecking regimes, resistance evolved by a greater diversity of genetic mechanisms, significantly reducing the observed levels of parallel genetic evolution. Our results demonstrate that population bottlenecking can be a major predictor of parallel evolution, but precisely how may be more complex than many simple theoretical predictions.
Collapse
Affiliation(s)
- Tom Vogwill
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Robyn L Phillips
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Danna R Gifford
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
25
|
Pesce D, Lehman N, de Visser JAGM. Sex in a test tube: testing the benefits of in vitro recombination. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0529. [PMID: 27619693 DOI: 10.1098/rstb.2015.0529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 01/06/2023] Open
Abstract
The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Diego Pesce
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Niles Lehman
- Department of Chemistry, Portland State University, Portland, OR 97207, USA
| | | |
Collapse
|
26
|
Vahdati AR, Wagner A. Population Size Affects Adaptation in Complex Ways: Simulations on Empirical Adaptive Landscapes. Evol Biol 2017. [DOI: 10.1007/s11692-017-9440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Adaptive benefits from small mutation supplies in an antibiotic resistance enzyme. Proc Natl Acad Sci U S A 2017; 114:12773-12778. [PMID: 29133391 DOI: 10.1073/pnas.1712999114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Populations with large mutation supplies adapt via the "greedy" substitution of the fittest genotype available, leading to fast and repeatable short-term responses. At longer time scales, smaller mutation supplies may in theory lead to larger improvements when distant high-fitness genotypes more readily evolve from lower-fitness intermediates. Here we test for long-term adaptive benefits from small mutation supplies using in vitro evolution of an antibiotic-degrading enzyme in the presence of a novel antibiotic. Consistent with predictions, large mutant libraries cause rapid initial adaptation via the substitution of cohorts of mutations, but show later deceleration and convergence. Smaller libraries show on average smaller initial, but also more variable, improvements, with two lines yielding alleles with exceptionally high resistance levels. These two alleles share three mutations with the large-library alleles, which are known from previous work, but also have unique mutations. Replay evolution experiments and analyses of the adaptive landscape of the enzyme suggest that the benefit resulted from a combination of avoiding mutational cohorts leading to local peaks and chance. Our results demonstrate adaptive benefits from limited mutation supplies on a rugged fitness landscape, which has implications for artificial selection protocols in biotechnology and argues for a better understanding of mutation supplies in clinical settings.
Collapse
|
28
|
Genetic bottlenecks in intraspecies virus transmission. Curr Opin Virol 2017; 28:20-25. [PMID: 29107838 DOI: 10.1016/j.coviro.2017.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Ultimately, viral evolution is a consequence of mutations that arise within and spread between infected hosts. The transmission bottleneck determines how much of the viral diversity generated in one host passes to another during transmission. It therefore plays a vital role in linking within-host processes to larger evolutionary trends. Although many studies suggest that transmission severely restricts the amount of genetic diversity that passes between individuals, there are important exceptions to this rule. In many cases, the factors that determine the size of the transmission bottleneck are only beginning to be understood. Here, we review how transmission bottlenecks are measured, how they arise, and their consequences for viral evolution.
Collapse
|
29
|
Vahdati AR, Sprouffske K, Wagner A. Effect of Population Size and Mutation Rate on the Evolution of RNA Sequences on an Adaptive Landscape Determined by RNA Folding. Int J Biol Sci 2017; 13:1138-1151. [PMID: 29104505 PMCID: PMC5666329 DOI: 10.7150/ijbs.19436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/05/2017] [Indexed: 02/04/2023] Open
Abstract
The dynamics of populations evolving on an adaptive landscape depends on multiple factors, including the structure of the landscape, the rate of mutations, and effective population size. Existing theoretical work often makes ad hoc and simplifying assumptions about landscape structure, whereas experimental work can vary important parameters only to a limited extent. We here overcome some of these limitations by simulating the adaptive evolution of RNA molecules, whose fitness is determined by the thermodynamics of RNA secondary structure folding. We study the influence of mutation rates and population sizes on final mean population fitness, on the substitution rates of mutations, and on population diversity. We show that evolutionary dynamics cannot be understood as a function of mutation rate µ, population size N, or population mutation rate Nµ alone. For example, at a given mutation rate, clonal interference prevents the fixation of beneficial mutations as population size increases, but larger populations still arrive at a higher mean fitness. In addition, at the highest population mutation rates we study, mean final fitness increases with population size, because small populations are driven to low fitness by the relatively higher incidence of mutations they experience. Our observations show that mutation rate and population size can interact in complex ways to influence the adaptive dynamics of a population on a biophysically motivated fitness landscape.
Collapse
Affiliation(s)
- Ali R Vahdati
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,The Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kathleen Sprouffske
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,The Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,The Swiss Institute of Bioinformatics, Lausanne, Switzerland.,The Santa Fe Institute, Santa Fe, USA
| |
Collapse
|
30
|
van Dijk T, Hwang S, Krug J, de Visser JAGM, Zwart MP. Mutation supply and the repeatability of selection for antibiotic resistance. Phys Biol 2017; 14:055005. [PMID: 28699625 DOI: 10.1088/1478-3975/aa7f36] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Whether evolution can be predicted is a key question in evolutionary biology. Here we set out to better understand the repeatability of evolution, which is a necessary condition for predictability. We explored experimentally the effect of mutation supply and the strength of selective pressure on the repeatability of selection from standing genetic variation. Different sizes of mutant libraries of antibiotic resistance gene TEM-1 β-lactamase in Escherichia coli, generated by error-prone PCR, were subjected to different antibiotic concentrations. We determined whether populations went extinct or survived, and sequenced the TEM gene of the surviving populations. The distribution of mutations per allele in our mutant libraries followed a Poisson distribution. Extinction patterns could be explained by a simple stochastic model that assumed the sampling of beneficial mutations was key for survival. In most surviving populations, alleles containing at least one known large-effect beneficial mutation were present. These genotype data also support a model which only invokes sampling effects to describe the occurrence of alleles containing large-effect driver mutations. Hence, evolution is largely predictable given cursory knowledge of mutational fitness effects, the mutation rate and population size. There were no clear trends in the repeatability of selected mutants when we considered all mutations present. However, when only known large-effect mutations were considered, the outcome of selection is less repeatable for large libraries, in contrast to expectations. We show experimentally that alleles carrying multiple mutations selected from large libraries confer higher resistance levels relative to alleles with only a known large-effect mutation, suggesting that the scarcity of high-resistance alleles carrying multiple mutations may contribute to the decrease in repeatability at large library sizes.
Collapse
Affiliation(s)
- Thomas van Dijk
- Laboratory of Genetics, Wageningen University, Wageningen, Netherlands. These authors contributed equally
| | | | | | | | | |
Collapse
|
31
|
Ueda M, Takeuchi N, Kaneko K. Stronger selection can slow down evolution driven by recombination on a smooth fitness landscape. PLoS One 2017; 12:e0183120. [PMID: 28809951 PMCID: PMC5557360 DOI: 10.1371/journal.pone.0183120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/31/2017] [Indexed: 11/18/2022] Open
Abstract
Stronger selection implies faster evolution—that is, the greater the force, the faster the change. This apparently self-evident proposition, however, is derived under the assumption that genetic variation within a population is primarily supplied by mutation (i.e. mutation-driven evolution). Here, we show that this proposition does not actually hold for recombination-driven evolution, i.e. evolution in which genetic variation is primarily created by recombination rather than mutation. By numerically investigating population genetics models of recombination, migration and selection, we demonstrate that stronger selection can slow down evolution on a perfectly smooth fitness landscape. Through simple analytical calculation, this apparently counter-intuitive result is shown to stem from two opposing effects of natural selection on the rate of evolution. On the one hand, natural selection tends to increase the rate of evolution by increasing the fixation probability of fitter genotypes. On the other hand, natural selection tends to decrease the rate of evolution by decreasing the chance of recombination between immigrants and resident individuals. As a consequence of these opposing effects, there is a finite selection pressure maximizing the rate of evolution. Hence, stronger selection can imply slower evolution if genetic variation is primarily supplied by recombination.
Collapse
Affiliation(s)
- Masahiko Ueda
- Department of Basic Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
- * E-mail:
| | - Nobuto Takeuchi
- Research Center for Complex Systems Biology, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kunihiko Kaneko
- Department of Basic Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
32
|
Genotypic Complexity of Fisher's Geometric Model. Genetics 2017; 206:1049-1079. [PMID: 28450460 DOI: 10.1534/genetics.116.199497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/15/2017] [Indexed: 01/30/2023] Open
Abstract
Fisher's geometric model was originally introduced to argue that complex adaptations must occur in small steps because of pleiotropic constraints. When supplemented with the assumption of additivity of mutational effects on phenotypic traits, it provides a simple mechanism for the emergence of genotypic epistasis from the nonlinear mapping of phenotypes to fitness. Of particular interest is the occurrence of reciprocal sign epistasis, which is a necessary condition for multipeaked genotypic fitness landscapes. Here we compute the probability that a pair of randomly chosen mutations interacts sign epistatically, which is found to decrease with increasing phenotypic dimension n, and varies nonmonotonically with the distance from the phenotypic optimum. We then derive expressions for the mean number of fitness maxima in genotypic landscapes comprised of all combinations of L random mutations. This number increases exponentially with L, and the corresponding growth rate is used as a measure of the complexity of the landscape. The dependence of the complexity on the model parameters is found to be surprisingly rich, and three distinct phases characterized by different landscape structures are identified. Our analysis shows that the phenotypic dimension, which is often referred to as phenotypic complexity, does not generally correlate with the complexity of fitness landscapes and that even organisms with a single phenotypic trait can have complex landscapes. Our results further inform the interpretation of experiments where the parameters of Fisher's model have been inferred from data, and help to elucidate which features of empirical fitness landscapes can be described by this model.
Collapse
|
33
|
LaBar T, Adami C. Different Evolutionary Paths to Complexity for Small and Large Populations of Digital Organisms. PLoS Comput Biol 2016; 12:e1005066. [PMID: 27923053 PMCID: PMC5140054 DOI: 10.1371/journal.pcbi.1005066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/18/2016] [Indexed: 12/02/2022] Open
Abstract
A major aim of evolutionary biology is to explain the respective roles of adaptive versus non-adaptive changes in the evolution of complexity. While selection is certainly responsible for the spread and maintenance of complex phenotypes, this does not automatically imply that strong selection enhances the chance for the emergence of novel traits, that is, the origination of complexity. Population size is one parameter that alters the relative importance of adaptive and non-adaptive processes: as population size decreases, selection weakens and genetic drift grows in importance. Because of this relationship, many theories invoke a role for population size in the evolution of complexity. Such theories are difficult to test empirically because of the time required for the evolution of complexity in biological populations. Here, we used digital experimental evolution to test whether large or small asexual populations tend to evolve greater complexity. We find that both small and large-but not intermediate-sized-populations are favored to evolve larger genomes, which provides the opportunity for subsequent increases in phenotypic complexity. However, small and large populations followed different evolutionary paths towards these novel traits. Small populations evolved larger genomes by fixing slightly deleterious insertions, while large populations fixed rare beneficial insertions that increased genome size. These results demonstrate that genetic drift can lead to the evolution of complexity in small populations and that purifying selection is not powerful enough to prevent the evolution of complexity in large populations.
Collapse
Affiliation(s)
- Thomas LaBar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Ecology, Evolutionary Biology, and Behavior Program, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Christoph Adami
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Ecology, Evolutionary Biology, and Behavior Program, East Lansing, Michigan, United States of America
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
34
|
Harmand N, Gallet R, Jabbour-Zahab R, Martin G, Lenormand T. Fisher's geometrical model and the mutational patterns of antibiotic resistance across dose gradients. Evolution 2016; 71:23-37. [PMID: 27805262 DOI: 10.1111/evo.13111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/07/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022]
Abstract
Fisher's geometrical model (FGM) has been widely used to depict the fitness effects of mutations. It is a general model with few underlying assumptions that gives a large and comprehensive view of adaptive processes. It is thus attractive in several situations, for example adaptation to antibiotics, but comes with limitations, so that more mechanistic approaches are often preferred to interpret experimental data. It might be possible however to extend FGM assumptions to better account for mutational data. This is theoretically challenging in the context of antibiotic resistance because resistance mutations are assumed to be rare. In this article, we show with Escherichia coli how the fitness effects of resistance mutations screened at different doses of nalidixic acid vary across a dose-gradient. We found experimental patterns qualitatively consistent with the basic FGM (rate of resistance across doses, gamma distributed costs) but also unexpected patterns such as a decreasing mean cost of resistance with increasing screen dose. We show how different extensions involving mutational modules and variations in trait covariance across environments, can be discriminated based on these data. Overall, simple extensions of the FGM accounted well for complex mutational effects of resistance mutations across antibiotic doses.
Collapse
Affiliation(s)
- Noémie Harmand
- UMR 5175 CEFE, CNRS-Université Montpellier-Université P. Valéry-EPHE, Montpellier Cedex 5, France
| | - Romain Gallet
- INRA-UMR BGPI, Cirad TA A-54/K Campus International de Baillarguet 34398 Montpellier Cedex 5, France
| | - Roula Jabbour-Zahab
- UMR 5175 CEFE, CNRS-Université Montpellier-Université P. Valéry-EPHE, Montpellier Cedex 5, France
| | - Guillaume Martin
- Institut des Sciences de l'Evolution de Montpellier, UMR CNRS-UM II 5554, Université Montpellier II, 34 095 Montpellier cedex 5, France
| | - Thomas Lenormand
- UMR 5175 CEFE, CNRS-Université Montpellier-Université P. Valéry-EPHE, Montpellier Cedex 5, France
| |
Collapse
|
35
|
Ogbunugafor CB, Eppstein MJ. Competition along trajectories governs adaptation rates towards antimicrobial resistance. Nat Ecol Evol 2016; 1:7. [PMID: 28812552 DOI: 10.1038/s41559-016-0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/02/2016] [Indexed: 11/09/2022]
Abstract
The increasing availability of genotype-phenotype maps for different combinations of mutations has empowered evolutionary biologists with the tools to interrogate the predictability of adaptive evolution, especially in the context of the evolution of antimicrobial resistance. Large microbial populations are known to generate competing beneficial mutations, but determining how these mutations contribute to the adaptive trajectories that are most likely to be followed remains a challenge. Despite a recognition that there may also be competition between successive alleles on the same trajectory, prior studies have not fully considered how this impacts adaptation rates along, or likelihood of following, individual trajectories. Here, we develop a metric that quantifies the competition between successive alleles along adaptive trajectories and show how this competition largely governs the rate of evolution in simulations on empirical fitness landscapes for proteins involved in drug resistance in two species of malaria (Plasmodium falciparum and P. vivax). Our findings reveal that a trajectory with a larger-than-average initial fitness increase may have smaller fitness increases in later steps, which slows adaptation. In some circumstances, these trajectories may be outcompeted by alleles on faster alternative trajectories that are being explored simultaneously. The ability to predict adaptation rates along accessible trajectories has implications for efforts to manage antimicrobial resistance in real-world settings and for the broader intellectual pursuit of predictive evolution in complex adaptive fitness landscapes for a variety of application domains.
Collapse
Affiliation(s)
- C Brandon Ogbunugafor
- Department of Biology, University of Vermont, Burlington, Vermont 05405, USA.,Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA
| | - Margaret J Eppstein
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont 05405, USA.,Department of Computer Science, University of Vermont, Burlington, Vermont 05405, USA
| |
Collapse
|
36
|
Abstract
Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs.
Collapse
Affiliation(s)
- Boyang Zhao
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michael T. Hemann
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Douglas A. Lauffenburger
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
37
|
Steenackers HP, Parijs I, Dubey A, Foster KR, Vanderleyden J. Experimental evolution in biofilm populations. FEMS Microbiol Rev 2016; 40:373-97. [PMID: 26895713 PMCID: PMC4852284 DOI: 10.1093/femsre/fuw002] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. This review paper provides an overview of (i) the different experimental models used to study biofilm evolution, (ii) the vast amount of diversification observed during biofilm evolution (including potential causes and consequences) and (iii) recent insights in how growth in biofilms can lead to the evolution of cooperative phenotypes.
Collapse
Affiliation(s)
- Hans P Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
| | - Ilse Parijs
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
| | | | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3QU, UK
| | - Jozef Vanderleyden
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
38
|
Gorter FA, Aarts MMG, Zwaan BJ, de Visser JAGM. Dynamics of Adaptation in Experimental Yeast Populations Exposed to Gradual and Abrupt Change in Heavy Metal Concentration. Am Nat 2016; 187:110-9. [DOI: 10.1086/684104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Lachapelle J, Reid J, Colegrave N. Repeatability of adaptation in experimental populations of different sizes. Proc Biol Sci 2015; 282:rspb.2014.3033. [PMID: 25788593 DOI: 10.1098/rspb.2014.3033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The degree to which evolutionary trajectories and outcomes are repeatable across independent populations depends on the relative contribution of selection, chance and history. Population size has been shown theoretically and empirically to affect the amount of variation that arises among independent populations adapting to the same environment. Here, we measure the contribution of selection, chance and history in different-sized experimental populations of the unicellular alga Chlamydomonas reinhardtii adapting to a high salt environment to determine which component of evolution is affected by population size. We find that adaptation to salt is repeatable at the fitness level in medium (Ne = 5 × 10(4)) and large (Ne = 4 × 10(5)) populations because of the large contribution of selection. Adaptation is not repeatable in small (Ne = 5 × 10(3)) populations because of large constraints from history. The threshold between stochastic and deterministic evolution in this case is therefore between effective population sizes of 10(3) and 10(4). Our results indicate that diversity across populations is more likely to be maintained if they are small. Experimental outcomes in large populations are likely to be robust and can inform our predictions about outcomes in similar situations.
Collapse
Affiliation(s)
- Josianne Lachapelle
- School of Biological Sciences, University of Edinburgh, King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Joshua Reid
- School of Biological Sciences, University of Edinburgh, King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Nick Colegrave
- School of Biological Sciences, University of Edinburgh, King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
40
|
Tipping the mutation–selection balance: Limited migration increases the frequency of deleterious mutants. J Theor Biol 2015; 380:123-33. [DOI: 10.1016/j.jtbi.2015.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 11/21/2022]
|
41
|
Dellus-Gur E, Elias M, Caselli E, Prati F, Salverda MLM, de Visser JAGM, Fraser JS, Tawfik DS. Negative Epistasis and Evolvability in TEM-1 β-Lactamase--The Thin Line between an Enzyme's Conformational Freedom and Disorder. J Mol Biol 2015; 427:2396-409. [PMID: 26004540 DOI: 10.1016/j.jmb.2015.05.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 12/28/2022]
Abstract
Epistasis is a key factor in evolution since it determines which combinations of mutations provide adaptive solutions and which mutational pathways toward these solutions are accessible by natural selection. There is growing evidence for the pervasiveness of sign epistasis--a complete reversion of mutational effects, particularly in protein evolution--yet its molecular basis remains poorly understood. We describe the structural basis of sign epistasis between G238S and R164S, two adaptive mutations in TEM-1 β-lactamase--an enzyme that endows antibiotics resistance. Separated by 10 Å, these mutations initiate two separate trajectories toward increased hydrolysis rates and resistance toward second and third-generation cephalosporins antibiotics. Both mutations allow the enzyme's active site to adopt alternative conformations and accommodate the new antibiotics. By solving the corresponding set of crystal structures, we found that R164S causes local disorder whereas G238S induces discrete conformations. When combined, the mutations in 238 and 164 induce local disorder whereby nonproductive conformations that perturb the enzyme's catalytic preorganization dominate. Specifically, Asn170 that coordinates the deacylating water molecule is misaligned, in both the free form and the inhibitor-bound double mutant. This local disorder is not restored by stabilizing global suppressor mutations and thus leads to an evolutionary cul-de-sac. Conformational dynamism therefore underlines the reshaping potential of protein's structures and functions but also limits protein evolvability because of the fragility of the interactions networks that maintain protein structures.
Collapse
Affiliation(s)
- Eynat Dellus-Gur
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mikael Elias
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Emilia Caselli
- Department of Chemistry, University of Modena, Modena 41100, Italy
| | - Fabio Prati
- Department of Chemistry, University of Modena, Modena 41100, Italy
| | - Merijn L M Salverda
- Institute for Translational Vaccinology (Intravacc), Bilthoven 3720 AL, The Netherlands
| | - J Arjan G M de Visser
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen 6700 AH, The Netherlands
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA.
| | - Dan S Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
42
|
Massey SE. Genetic code evolution reveals the neutral emergence of mutational robustness, and information as an evolutionary constraint. Life (Basel) 2015; 5:1301-32. [PMID: 25919033 PMCID: PMC4500140 DOI: 10.3390/life5021301] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 01/09/2023] Open
Abstract
The standard genetic code (SGC) is central to molecular biology and its origin and evolution is a fundamental problem in evolutionary biology, the elucidation of which promises to reveal much about the origins of life. In addition, we propose that study of its origin can also reveal some fundamental and generalizable insights into mechanisms of molecular evolution, utilizing concepts from complexity theory. The first is that beneficial traits may arise by non-adaptive processes, via a process of "neutral emergence". The structure of the SGC is optimized for the property of error minimization, which reduces the deleterious impact of point mutations. Via simulation, it can be shown that genetic codes with error minimization superior to the SGC can emerge in a neutral fashion simply by a process of genetic code expansion via tRNA and aminoacyl-tRNA synthetase duplication, whereby similar amino acids are added to codons related to that of the parent amino acid. This process of neutral emergence has implications beyond that of the genetic code, as it suggests that not all beneficial traits have arisen by the direct action of natural selection; we term these "pseudaptations", and discuss a range of potential examples. Secondly, consideration of genetic code deviations (codon reassignments) reveals that these are mostly associated with a reduction in proteome size. This code malleability implies the existence of a proteomic constraint on the genetic code, proportional to the size of the proteome (P), and that its reduction in size leads to an "unfreezing" of the codon - amino acid mapping that defines the genetic code, consistent with Crick's Frozen Accident theory. The concept of a proteomic constraint may be extended to propose a general informational constraint on genetic fidelity, which may be used to explain variously, differences in mutation rates in genomes with differing proteome sizes, differences in DNA repair capacity and genome GC content between organisms, a selective pressure in the evolution of sexual reproduction, and differences in translational fidelity. Lastly, the utility of the concept of an informational constraint to other diverse fields of research is explored.
Collapse
Affiliation(s)
- Steven E Massey
- Biology Department, PO Box 23360, University of Puerto Rico-Rio Piedras, San Juan, PR 00931, USA.
| |
Collapse
|
43
|
Ochs IE, Desai MM. The competition between simple and complex evolutionary trajectories in asexual populations. BMC Evol Biol 2015; 15:55. [PMID: 25881244 PMCID: PMC4391547 DOI: 10.1186/s12862-015-0334-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/11/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND On rugged fitness landscapes where sign epistasis is common, adaptation can often involve either individually beneficial "uphill" mutations or more complex mutational trajectories involving fitness valleys or plateaus. The dynamics of the evolutionary process determine the probability that evolution will take any specific path among a variety of competing possible trajectories. Understanding this evolutionary choice is essential if we are to understand the outcomes and predictability of adaptation on rugged landscapes. RESULTS We present a simple model to analyze the probability that evolution will eschew immediately uphill paths in favor of crossing fitness valleys or plateaus that lead to higher fitness but less accessible genotypes. We calculate how this probability depends on the population size, mutation rates, and relevant selection pressures, and compare our analytical results to Wright-Fisher simulations. CONCLUSION We find that the probability of valley crossing depends nonmonotonically on population size: intermediate size populations are most likely to follow a "greedy" strategy of acquiring immediately beneficial mutations even if they lead to evolutionary dead ends, while larger and smaller populations are more likely to cross fitness valleys to reach distant advantageous genotypes. We explicitly identify the boundaries between these different regimes in terms of the relevant evolutionary parameters. Above a certain threshold population size, we show that the probability that the population finds the more distant peak depends only on a single simple combination of the relevant parameters.
Collapse
Affiliation(s)
- Ian E Ochs
- Department of Organismic and Evolutionary Biology, Department of Physics, and FAS Center for Systems Biology, Harvard University, Cambridge, 02138, MA, USA.
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Department of Physics, and FAS Center for Systems Biology, Harvard University, Cambridge, 02138, MA, USA.
| |
Collapse
|
44
|
DeHaan LR, Van Tassel DL. Useful insights from evolutionary biology for developing perennial grain crops. AMERICAN JOURNAL OF BOTANY 2014; 101:1801-1819. [PMID: 25326622 DOI: 10.3732/ajb.1400084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Annual grain crops dominate agricultural landscapes and provide the majority of calories consumed by humanity. Perennial grain crops could potentially ameliorate the land degradation and off-site impacts associated with annual grain cropping. However, herbaceous perennial plants with constitutively high allocation to harvestable seeds are rare to absent in nature. Recent trade-off theory models suggest that rugged fitness landscapes may explain the absence of this form better than sink competition models. Artificial selection for both grain production and multiyear lifespan can lead to more rapid progress in the face of fitness and genetic trade-offs than natural selection but is likely to result in plant types that differ substantially from all current domestic crops. Perennial grain domestication is also likely to require the development of selection strategies that differ from published crop breeding methods, despite their success in improving long-domesticated crops; for this purpose, we have reviewed literature in the areas of population and evolutionary genetics, domestication, and molecular biology. Rapid domestication will likely require genes with large effect that are expected to exhibit strong pleiotropy and epistasis. Cryptic genetic variation will need to be deliberately exposed both to purge mildly deleterious alleles and to generate novel agronomic phenotypes. We predict that perennial grain domestication programs will benefit from population subdivision followed by selection for simple traits in each subpopulation, the evaluation of very large populations, high selection intensity, rapid cycling through generations, and heterosis. The latter may be particularly beneficial in the development of varieties with stable yield and tolerance to crowding.
Collapse
Affiliation(s)
- Lee R DeHaan
- The Land Institute, 2440 E. Water Well Rd., Salina, Kansas 67401 USA
| | | |
Collapse
|
45
|
Seetharaman S, Jain K. Length of adaptive walk on uncorrelated and correlated fitness landscapes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032703. [PMID: 25314469 DOI: 10.1103/physreve.90.032703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Indexed: 06/04/2023]
Abstract
We consider the adaptation dynamics of an asexual population that walks uphill on a rugged fitness landscape which is endowed with a large number of local fitness peaks. We work in a parameter regime where only those mutants that are a single mutation away are accessible, as a result of which the population eventually gets trapped at a local fitness maximum and the adaptive walk terminates. We study how the number of adaptive steps taken by the population before reaching a local fitness peak depends on the initial fitness of the population, the extreme value distribution of the beneficial mutations, and correlations among the fitnesses. Assuming that the relative fitness difference between successive steps is small, we analytically calculate the average walk length for both uncorrelated and correlated fitnesses in all extreme value domains for a given initial fitness. We present numerical results for the model where the fitness differences can be large and find that the walk length behavior differs from that in the former model in the Fréchet domain of extreme value theory. We also discuss the relevance of our results to microbial experiments.
Collapse
Affiliation(s)
- Sarada Seetharaman
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Kavita Jain
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
46
|
Quantifying the role of population subdivision in evolution on rugged fitness landscapes. PLoS Comput Biol 2014; 10:e1003778. [PMID: 25122220 PMCID: PMC4133052 DOI: 10.1371/journal.pcbi.1003778] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/29/2014] [Indexed: 11/22/2022] Open
Abstract
Natural selection drives populations towards higher fitness, but crossing fitness valleys or plateaus may facilitate progress up a rugged fitness landscape involving epistasis. We investigate quantitatively the effect of subdividing an asexual population on the time it takes to cross a fitness valley or plateau. We focus on a generic and minimal model that includes only population subdivision into equivalent demes connected by global migration, and does not require significant size changes of the demes, environmental heterogeneity or specific geographic structure. We determine the optimal speedup of valley or plateau crossing that can be gained by subdivision, if the process is driven by the deme that crosses fastest. We show that isolated demes have to be in the sequential fixation regime for subdivision to significantly accelerate crossing. Using Markov chain theory, we obtain analytical expressions for the conditions under which optimal speedup is achieved: valley or plateau crossing by the subdivided population is then as fast as that of its fastest deme. We verify our analytical predictions through stochastic simulations. We demonstrate that subdivision can substantially accelerate the crossing of fitness valleys and plateaus in a wide range of parameters extending beyond the optimal window. We study the effect of varying the degree of subdivision of a population, and investigate the trade-off between the magnitude of the optimal speedup and the width of the parameter range over which it occurs. Our results, obtained for fitness valleys and plateaus, also hold for weakly beneficial intermediate mutations. Finally, we extend our work to the case of a population connected by migration to one or several smaller islands. Our results demonstrate that subdivision with migration alone can significantly accelerate the crossing of fitness valleys and plateaus, and shed light onto the quantitative conditions necessary for this to occur. Experimental evidence has recently been accumulating to suggest that fitness landscape ruggedness is common in a variety of organisms. Rugged landscapes arise from interactions between genetic variants, called epistasis, which can lead to fitness valleys or plateaus. The time needed to cross such fitness valleys or plateaus exhibits a rich dependence on population size, since stochastic effects have higher importance in small populations, increasing the probability of fixation of neutral or deleterious mutants. This may lead to an advantage of population subdivision, a possibility which has been strongly debated for nearly one hundred years. In this work, we quantitatively determine when, and to what extent, population subdivision accelerates valley and plateau crossing. Using the simple model of an asexual population subdivided into identical demes connected by gobal migration, we derive the conditions under which crossing by a subdivided population is driven by its fastest deme, thus giving rise to the maximal speedup. Our analytical predictions are verified using stochastic simulations. We investigate the effect of varying the degree of subdivision of a population. We generalize our results to weakly beneficial intermediates and to different population structures. We discuss the magnitude and robustness of the effect for realistic parameter values.
Collapse
|
47
|
Cao H, Butler K, Hossain M, Lewis JD. Variation in the fitness effects of mutations with population density and size in Escherichia coli. PLoS One 2014; 9:e105369. [PMID: 25121498 PMCID: PMC4133409 DOI: 10.1371/journal.pone.0105369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/23/2014] [Indexed: 11/18/2022] Open
Abstract
The fitness effects of mutations are context specific and depend on both external (e.g., environment) and internal (e.g., cellular stress, genetic background) factors. The influence of population size and density on fitness effects are unknown, despite the central role population size plays in the supply and fixation of mutations. We addressed this issue by comparing the fitness of 92 Keio strains (Escherichia coli K12 single gene knockouts) at comparatively high (1.2×10(7) CFUs/mL) and low (2.5×10(2) CFUs/mL) densities, which also differed in population size (high: 1.2×10(8); low: 1.25×10(3)). Twenty-eight gene deletions (30%) exhibited a fitness difference, ranging from 5 to 174% (median: 35%), between the high and low densities. Our analyses suggest this variation among gene deletions in fitness responses reflected in part both gene orientation and function, of the gene properties we examined (genomic position, length, orientation, and function). Although we could not determine the relative effects of population density and size, our results suggest fitness effects of mutations vary with these two factors, and this variation is gene-specific. Besides being a mechanism for density-dependent selection (r-K selection), the dependence of fitness effects on population density and size has implications for any population that varies in size over time, including populations undergoing evolutionary rescue, species invasions into novel habitats, and cancer progression and metastasis. Further, combined with recent advances in understanding the roles of other context-specific factors in the fitness effects of mutations, our results will help address theoretical and applied biological questions more realistically.
Collapse
Affiliation(s)
- Huansheng Cao
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| | - Kevin Butler
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| | - Mithi Hossain
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| | - James D. Lewis
- Louis Calder Center–Biological Field Station and Department of Biological Sciences, Fordham University, Armonk, New York, United States of America
| |
Collapse
|
48
|
de Visser JAGM, Krug J. Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet 2014; 15:480-90. [PMID: 24913663 DOI: 10.1038/nrg3744] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The genotype-fitness map (that is, the fitness landscape) is a key determinant of evolution, yet it has mostly been used as a superficial metaphor because we know little about its structure. This is now changing, as real fitness landscapes are being analysed by constructing genotypes with all possible combinations of small sets of mutations observed in phylogenies or in evolution experiments. In turn, these first glimpses of empirical fitness landscapes inspire theoretical analyses of the predictability of evolution. Here, we review these recent empirical and theoretical developments, identify methodological issues and organizing principles, and discuss possibilities to develop more realistic fitness landscape models.
Collapse
Affiliation(s)
- J Arjan G M de Visser
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Joachim Krug
- Institute for Theoretical Physics, University of Cologne, Zülpicher Str. 77, 50937 Köln, Germany
| |
Collapse
|
49
|
Morton ER, Platt TG, Fuqua C, Bever JD. Non-additive costs and interactions alter the competitive dynamics of co-occurring ecologically distinct plasmids. Proc Biol Sci 2014; 281:20132173. [PMID: 24500159 PMCID: PMC3924060 DOI: 10.1098/rspb.2013.2173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/07/2014] [Indexed: 11/12/2022] Open
Abstract
Plasmids play an important role in shaping bacterial evolution and adaptation to heterogeneous environments. As modular genetic elements that are often conjugative, the selective pressures that act on plasmid-borne genes are distinct from those that act on the chromosome. Many bacteria are co-infected by multiple plasmids that impart niche-specific phenotypes. Thus, in addition to host-plasmid dynamics, interactions between co-infecting plasmids are likely to be important drivers of plasmid population dynamics, evolution and ecology. Agrobacterium tumefaciens is a facultative plant pathogen that commonly harbours two distinct megaplasmids. Virulence depends on the presence of the tumour-inducing (Ti) plasmid, with benefits that are primarily restricted to the disease environment. Here, we demonstrate that a second megaplasmid, the At plasmid, confers a competitive advantage in the rhizosphere. To assess the individual and interactive costs of these plasmids, we generated four isogenic derivatives: plasmidless, pAt only, pTi only and pAtpTi, and performed pairwise competitions under carbon-limiting conditions. These studies reveal a low cost to the virulence plasmid when outside of the disease environment, and a strikingly high cost to the At plasmid. In addition, the costs of pAt and pTi in the same host were significantly lower than predicted based on single plasmid costs, signifying the first demonstration of non-additivity between naturally occurring co-resident plasmids. Based on these empirically demonstrated costs and benefits, we developed a resource-consumer model to generate predictions about the frequencies of these genotypes in relevant environments, showing that non-additivity between co-residing plasmids allows for their stable coexistence across environments.
Collapse
Affiliation(s)
- Elise R. Morton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
50
|
Abstract
The accumulation of beneficial mutations on competing genetic backgrounds in rapidly adapting populations has a striking impact on evolutionary dynamics. This effect, known as clonal interference, causes erratic fluctuations in the frequencies of observed mutations, randomizes the fixation times of successful mutations, and leaves distinct signatures on patterns of genetic variation. Here, we show how this form of "genetic draft" affects the forward-time dynamics of site frequencies in rapidly adapting asexual populations. We calculate the probability that mutations at individual sites shift in frequency over a characteristic timescale, extending Gillespie's original model of draft to the case where many strongly selected beneficial mutations segregate simultaneously. We then derive the sojourn time of mutant alleles, the expected fixation time of successful mutants, and the site frequency spectrum of beneficial and neutral mutations. Finally, we show how this form of draft affects inferences in the McDonald-Kreitman test and how it relates to recent observations that some aspects of genetic diversity are described by the Bolthausen-Sznitman coalescent in the limit of very rapid adaptation.
Collapse
|