1
|
Bisesi AT, Möbius W, Nadell CD, Hansen EG, Bowden SD, Harcombe WR. Bacteriophage specificity is impacted by interactions between bacteria. mSystems 2024; 9:e0117723. [PMID: 38376179 PMCID: PMC11237722 DOI: 10.1128/msystems.01177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024] Open
Abstract
Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains of Escherichia coli and Salmonella enterica by competing a generalist T5-like phage able to infect both prey against P22vir, an S. enterica-specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that the in vitro cost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest. IMPORTANCE There is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and an in vitro system consisting of Escherichia coli, Salmonella enterica, a T5-like generalist phage, and the specialist phage P22vir to highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections.
Collapse
Affiliation(s)
- Ave T. Bisesi
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Wolfram Möbius
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Eleanore G. Hansen
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Steven D. Bowden
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
2
|
Kimchi O, Meir Y, Wingreen NS. Lytic and temperate phage naturally coexist in a dynamic population model. THE ISME JOURNAL 2024; 18:wrae093. [PMID: 38818736 PMCID: PMC11187991 DOI: 10.1093/ismejo/wrae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
When phage infect their bacterial hosts, they may either lyse the cell and generate a burst of new phage, or lysogenize the bacterium, incorporating the phage genome into it. Phage lysis/lysogeny strategies are assumed to be highly optimized, with the optimal tradeoff depending on environmental conditions. However, in nature, phage of radically different lysis/lysogeny strategies coexist in the same environment, preying on the same bacteria. How can phage preying on the same bacteria coexist if one is more optimal than the other? Here, we address this conundrum within a modeling framework, simulating the population dynamics of communities of phage and their lysogens. We find that coexistence between phage of different lysis/lysogeny strategies is a natural outcome of chaotic population dynamics that arise within sufficiently diverse communities, which ensure no phage is able to absolutely dominate its competitors. Our results further suggest a bet-hedging mechanism at the level of the phage pan-genome, wherein obligate lytic (virulent) strains typically outcompete temperate strains, but also more readily fluctuate to extinction within a local community.
Collapse
Affiliation(s)
- Ofer Kimchi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yigal Meir
- Department of Physics, Ben-Gurion University, Be’er Sheva 84105, Israel
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Songphasuk T, Imklin N, Sriprasong P, Woonwong Y, Nasanit R, Sajapitak S. Bacteriophage efficacy in controlling swine enteric colibacillosis pathogens: An in vitro study. Vet World 2022; 15:2822-2829. [PMID: 36718320 PMCID: PMC9880851 DOI: 10.14202/vetworld.2022.2822-2829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Background and Aim Swine enteric colibacillosis caused by Escherichia coli is a major problem in the swine industry, causing diarrhea among swine and resulting in substantial financial losses. However, efforts to counter this disease are impeded by the increase in antimicrobial resistance (AMR) worldwide, so intensive research is being conducted to identify alternative treatments. This study isolated, characterized, and evaluated the efficacy of bacteriophages to control pathogens causative of swine enteric colibacillosis. Materials and Methods Five sewage samples were collected from different areas of a swine farm in Suphanburi province, Thailand and the bacteriophages were enriched and isolated, followed by purification by the agar overlay method using E. coli RENR as the host strain. The selected phages were characterized by evaluating their morphology, while their specificity was verified by the host range test. The efficiency of plating and multiplicity of infection (MOI) were also determined. Results Four selected phages, namely, vB_Eco-RPNE4i3, vB_Eco-RPNE6i4, vB_Eco-RPNE7i1, and vB_Eco-RPNE8i3, demonstrated different patterns of host range and phage efficiency. They significantly decreased E. coli concentration at the tested MOIs (0.01-100) from 1 h onward. However, bacterial regrowth was observed in all phage treatments. Conclusion This study shows the potential of using phages as an alternative treatment for swine enteric colibacillosis. The obtained results demonstrated that the selected phages had a therapeutic effect against pathogens causative of swine enteric colibacillosis. Therefore, phages could be applied as an alternative treatment to control specific bacterial strains and reduce AMR arising from the overuse of antibiotics.
Collapse
Affiliation(s)
- Techaphon Songphasuk
- Veterinary Clinical Study Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Napakhwan Imklin
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Pattaraporn Sriprasong
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Yonlayong Woonwong
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Rujikan Nasanit
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand,Corresponding authors: Rujikan Nasanit, e-mail: ; Somchai Sajapitak, e-mail: Co-authors: TS: , NI: , PS: , YW:
| | - Somchai Sajapitak
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| |
Collapse
|
4
|
Kannoly S, Singh A, Dennehy JJ. An Optimal Lysis Time Maximizes Bacteriophage Fitness in Quasi-Continuous Culture. mBio 2022; 13:e0359321. [PMID: 35467417 PMCID: PMC9239172 DOI: 10.1128/mbio.03593-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Optimality models have a checkered history in evolutionary biology. While optimality models have been successful in providing valuable insight into the evolution of a wide variety of biological traits, a common objection is that optimality models are overly simplistic and ignore organismal genetics. We revisit evolutionary optimization in the context of a major bacteriophage life history trait, lysis time. Lysis time refers to the period spanning phage infection of a host cell and its lysis, whereupon phage progenies are released. Lysis time, therefore, directly determines phage fecundity assuming progeny assembly does not exhaust host resources prior to lysis. Noting that previous tests of lysis time optimality rely on batch culture, we implemented a quasi-continuous culture system to observe productivity of a panel of isogenic phage λ genotypes differing in lysis time. We report that under our experimental conditions, λ phage productivity is maximized around optimal lysis times ranging from 60 to 100 min, and λ wildtype strain falls within this range. It would appear that natural selection on phage λ lysis time uncovered a set of genetic solutions that optimized progeny production in its ecological milieu relative to alternative genotypes. We discuss this finding in light of recent results that lysis time variation is also minimized in the strains with lysis times closer to the λ wild-type strain. IMPORTANCE Optimality theory presents the idea that natural selection acts on organismal traits to produce genotypes that maximize organismal survival and reproduction. As such, optimality theory is a valuable tool in guiding our understanding of the genetic constraints and tradeoffs organisms experience as their genotypes are selected to produce optimal solutions to biological problems. However, optimality theory is often critiqued as being overly simplistic and ignoring the roles of chance and history in the evolution of organismal traits. We show here that the wild-type genotype of a popular laboratory model organism, the bacteriophage λ, produces a phenotype for a major life history trait, lysis time, that maximizes the reproductive success of bearers of that genotype relative to other possible genotypes. This result demonstrates, as is rarely shown experimentally, that natural selection can achieve optimal solutions to ecological challenges.
Collapse
Affiliation(s)
- Sherin Kannoly
- Biology Department, Queens College of The City University of New York, New York City, New York, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - John J. Dennehy
- Biology Department, Queens College of The City University of New York, New York City, New York, USA
- The Graduate Center of the City University of New York, New York City, New York, USA
| |
Collapse
|
5
|
de Jonge PA, von Meijenfeldt FB, Costa AR, Nobrega FL, Brouns SJ, Dutilh BE. Adsorption Sequencing as a Rapid Method to Link Environmental Bacteriophages to Hosts. iScience 2020; 23:101439. [PMID: 32823052 PMCID: PMC7452251 DOI: 10.1016/j.isci.2020.101439] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
An important viromics challenge is associating bacteriophages to hosts. To address this, we developed adsorption sequencing (AdsorpSeq), a readily implementable method to measure phages that are preferentially adsorbed to specific host cell envelopes. AdsorpSeq thus captures the key initial infection cycle step. Phages are added to cell envelopes, adsorbed phages are isolated through gel electrophoresis, after which adsorbed phage DNA is sequenced and compared with the full virome. Here, we show that AdsorpSeq allows for separation of phages based on receptor-adsorbing capabilities. Next, we applied AdsorpSeq to identify phages in a wastewater virome that adsorb to cell envelopes of nine bacteria, including important pathogens. We detected 26 adsorbed phages including common and rare members of the virome, a minority being related to previously characterized phages. We conclude that AdsorpSeq is an effective new tool for rapid characterization of environmental phage adsorption, with a proof-of-principle application to Gram-negative host cell envelopes.
Collapse
Affiliation(s)
- Patrick A. de Jonge
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, 3584 CH Utrecht, the Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | | | - Ana Rita Costa
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | - Franklin L. Nobrega
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | - Stan J.J. Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
6
|
Goldin S, Hulata Y, Baran N, Lindell D. Quantification of T4-Like and T7-Like Cyanophages Using the Polony Method Show They Are Significant Members of the Virioplankton in the North Pacific Subtropical Gyre. Front Microbiol 2020; 11:1210. [PMID: 32612586 PMCID: PMC7308941 DOI: 10.3389/fmicb.2020.01210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The North Pacific Subtropical Gyre (NPSG) is one of the largest biomes on Earth, with the cyanobacterium Prochlorococcus being the most abundant primary producer year-round. Viruses that infect cyanobacteria (cyanophages) influence cyanobacterial mortality, diversity and evolution. Two major cyanophage families are the T4-like cyanomyoviruses and T7-like cyanopodoviruses, yet their abundances and distribution patterns remain unknown due to difficulty in quantifying their populations. To address this limitation, we previously adapted the polony method (for PCR colony) to quantify T7-like cyanophages and applied it to spring populations in the Red Sea. Here, we further adapted the method for the quantification of T4-like cyanophages and analyzed the abundances of T4-like and T7-like cyanophage populations in the photic zone of the NPSG in summer 2015 and spring 2016. Combined, the peak abundances of these two cyanophage families reached 2.8 × 106 and 1.1 × 106 cyanophages ⋅ ml–1 in the summer and spring, respectively. They constituted between 3 and 16% of total virus-like particles (VLPs), comprising a substantial component of the virioplankton in the NPSG. While both cyanophage families were highly abundant, the T4-like cyanophages were generally 1.3–4.4 fold more so. In summer, cyanophages had similar and reproducible distribution patterns with depth. Abundances were relatively low in the upper mixed layer and increased to form a pronounced subsurface peak at 100 m (1.9 × 106 and 9.1 × 105 phages ⋅ ml–1 for the T4-like and T7-like cyanophages, respectively), coincident with the maximum in Prochlorococcus populations. Less vertical structure in cyanophage abundances was apparent in the spring profile, despite a subsurface peak in Prochlorococcus numbers. In the summer upper mixed layer, cyanophages constituted a smaller proportion of VLPs than below it and cyanophage to cyanobacteria ratios were considerably lower (1.3–2.8) than those of VLPs to bacteria (8.1–21.2). Differences in abundances between the two families and their contribution to VLPs with depth suggest differences in cyanophage production and/or decay processes relative to other members of the virioplankton in the upper mixed layer. These findings highlight the importance of quantifying distinct populations within the virioplankton to gain accurate understanding of their distribution patterns.
Collapse
Affiliation(s)
- Svetlana Goldin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yotam Hulata
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nava Baran
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
7
|
Okamoto KW, Amarasekare P, Post DM, Vasseur DA, Turner PE. The interplay between host community structure and pathogen life‐history constraints in driving the evolution of host‐range shifts. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Kenichi W. Okamoto
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
- Department of Biology University of St. Thomas St. Paul MN USA
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | - Priyanga Amarasekare
- Department of Ecology and Evolutionary Biology University of California Los Angeles CA USA
| | - David M. Post
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - David A. Vasseur
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| |
Collapse
|
8
|
Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc Natl Acad Sci U S A 2019; 116:16899-16908. [PMID: 31383764 PMCID: PMC6708340 DOI: 10.1073/pnas.1906897116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-term coexistence between unicellular cyanobacteria and their lytic viruses (cyanophages) in the oceans is thought to be due to the presence of sensitive cells in which cyanophages reproduce, ultimately killing the cell, while other cyanobacteria survive due to resistance to infection. Here, we investigated resistance in marine cyanobacteria from the genera Synechococcus and Prochlorococcus and compared modes of resistance against specialist and generalist cyanophages belonging to the T7-like and T4-like cyanophage families. Resistance was extracellular in most interactions against specialist cyanophages irrespective of the phage family, preventing entry into the cell. In contrast, resistance was intracellular in practically all interactions against generalist T4-like cyanophages. The stage of intracellular arrest was interaction-specific, halting at various stages of the infection cycle. Incomplete infection cycles proceeded to various degrees of phage genome transcription and translation as well as phage genome replication in numerous interactions. In a particularly intriguing case, intracellular capsid assembly was observed, but the phage genome was not packaged. The cyanobacteria survived the encounter despite late-stage infection and partial genome degradation. We hypothesize that this is tolerated due to genome polyploidy, which we found for certain strains of both Synechococcus and Prochlorococcus Our findings unveil a heavy cost of promiscuous entry of generalist phages into nonhost cells that is rarely paid by specialist phages and suggests the presence of unknown mechanisms of intracellular resistance in the marine unicellular cyanobacteria. Furthermore, these findings indicate that the range for virus-mediated horizontal gene transfer extends beyond hosts to nonhost cyanobacterial cells.
Collapse
|
9
|
de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and Evolutionary Determinants of Bacteriophage Host Range. Trends Microbiol 2018; 27:51-63. [PMID: 30181062 DOI: 10.1016/j.tim.2018.08.006] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/07/2018] [Accepted: 08/13/2018] [Indexed: 01/12/2023]
Abstract
The host range of a bacteriophage is the taxonomic diversity of hosts it can successfully infect. Host range, one of the central traits to understand in phages, is determined by a range of molecular interactions between phage and host throughout the infection cycle. While many well studied model phages seem to exhibit a narrow host range, recent ecological and metagenomics studies indicate that phages may have specificities that range from narrow to broad. There is a growing body of studies on the molecular mechanisms that enable phages to infect multiple hosts. These mechanisms, and their evolution, are of considerable importance to understanding phage ecology and the various clinical, industrial, and biotechnological applications of phage. Here we review knowledge of the molecular mechanisms that determine host range, provide a framework defining broad host range in an evolutionary context, and highlight areas for additional research.
Collapse
Affiliation(s)
- Patrick A de Jonge
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8 3584 CH Utrecht, The Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ, Delft, The Netherlands
| | - Franklin L Nobrega
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ, Delft, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ, Delft, The Netherlands; Laboratory for Microbiology, Wageningen University, Stippeneng 4 6708 WE, Wageningen, The Netherlands; These authors made equal contributions
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8 3584 CH Utrecht, The Netherlands; Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525GA Nijmegen, The Netherlands; These authors made equal contributions.
| |
Collapse
|
10
|
Hillesland KL. Evolution on the bright side of life: microorganisms and the evolution of mutualism. Ann N Y Acad Sci 2017; 1422:88-103. [PMID: 29194650 DOI: 10.1111/nyas.13515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 01/15/2023]
Abstract
Mutualistic interactions, where two interacting species have a net beneficial effect on each other's fitness, play a crucial role in the survival and evolution of many species. Despite substantial empirical and theoretical work in past decades, the impact of these interactions on natural selection is not fully understood. In addition, mutualisms between microorganisms have been largely ignored, even though they are ecologically important and can be used as tools to bridge the gap between theory and empirical work. Here, I describe two problems with our current understanding of natural selection in mutualism and highlight the properties of microbial mutualisms that could help solve them. One problem is that bias and methodological problems have limited our understanding of the variety of mechanisms by which species may adapt to mutualism. Another problem is that it is rare for experiments testing coevolution in mutualism to address whether each species has adapted to evolutionary changes in its partner. These problems can be addressed with genome resequencing and time-shift experiments, techniques that are easier to perform in microorganisms. In addition, microbial mutualisms may inspire novel insights and hypotheses about natural selection in mutualism.
Collapse
|
11
|
Abstract
A general means of viral attenuation involves the extensive recoding of synonymous codons in the viral genome. The mechanistic underpinnings of this approach remain unclear, however. Using quantitative proteomics and RNA sequencing, we explore the molecular basis of attenuation in a strain of bacteriophage T7 whose major capsid gene was engineered to carry 182 suboptimal codons. We do not detect transcriptional effects from recoding. Proteomic observations reveal that translation is halved for the recoded major capsid gene, and a more modest reduction applies to several coexpressed downstream genes. We observe no changes in protein abundances of other coexpressed genes that are encoded upstream. Viral burst size, like capsid protein abundance, is also decreased by half. Together, these observations suggest that, in this virus, reduced translation of an essential polycistronic transcript and diminished virion assembly form the molecular basis of attenuation.
Collapse
|
12
|
Abstract
Variation in diet breadth among organisms is a pervasive feature of the natural world that has resisted general explanation. In particular, trade-offs in the ability to use one resource at the expense of another have been expected but rarely detected. We explore a spatial model for the evolution of specialization, motivated by studies of plant-feeding insects. The model is neutral with respect to the causes and consequences of diet breadth: the number of hosts utilized is not constrained by trade-offs, and specialization or generalization does not confer a direct advantage with respect to the persistence of populations or the probability of diversification. We find that diet breadth evolves in ways that resemble reports from natural communities. Simulated communities are dominated by specialized species, with a predictable but less species-rich component of generalized taxa. These results raise the possibility that specialization might be a consequence of stochastic diversification dynamics acting on spatially segregated consumer-resource associations rather than a trait either favored or constrained directly by natural selection. Finally, our model generates hypotheses for global patterns of herbivore diet breadth, including a positive effect of host richness and a negative effect of evenness in host plant abundance on the number of specialized taxa.
Collapse
|
13
|
Yu P, Mathieu J, Li M, Dai Z, Alvarez PJJ. Isolation of Polyvalent Bacteriophages by Sequential Multiple-Host Approaches. Appl Environ Microbiol 2016; 82:808-15. [PMID: 26590277 PMCID: PMC4725286 DOI: 10.1128/aem.02382-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
Many studies on phage biology are based on isolation methods that may inadvertently select for narrow-host-range phages. Consequently, broad-host-range phages, whose ecological significance is largely unexplored, are consistently overlooked. To enhance research on such polyvalent phages, we developed two sequential multihost isolation methods and tested both culture-dependent and culture-independent phage libraries for broad infectivity. Lytic phages isolated from activated sludge were capable of interspecies or even interorder infectivity without a significant reduction in the efficiency of plating (0.45 to 1.15). Two polyvalent phages (PX1 of the Podoviridae family and PEf1 of the Siphoviridae family) were characterized in terms of adsorption rate (3.54 × 10(-10) to 8.53 × 10(-10) ml/min), latent time (40 to 55 min), and burst size (45 to 99 PFU/cell), using different hosts. These phages were enriched with a nonpathogenic host (Pseudomonas putida F1 or Escherichia coli K-12) and subsequently used to infect model problematic bacteria. By using a multiplicity of infection of 10 in bacterial challenge tests, >60% lethality was observed for Pseudomonas aeruginosa relative to uninfected controls. The corresponding lethality for Pseudomonas syringae was ∼ 50%. Overall, this work suggests that polyvalent phages may be readily isolated from the environment by using different sequential hosts, and this approach should facilitate the study of their ecological significance as well as enable novel applications.
Collapse
Affiliation(s)
- Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Mengyan Li
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Zhaoyi Dai
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
14
|
Hesse E, Best A, Boots M, Hall AR, Buckling A. Spatial heterogeneity lowers rather than increases host-parasite specialization. J Evol Biol 2015; 28:1682-90. [PMID: 26135011 PMCID: PMC4973826 DOI: 10.1111/jeb.12689] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 11/26/2022]
Abstract
Abiotic environmental heterogeneity can promote the evolution of diverse resource specialists, which in turn may increase the degree of host-parasite specialization. We coevolved Pseudomonas fluorescens and lytic phage ϕ2 in spatially structured populations, each consisting of two interconnected subpopulations evolving in the same or different nutrient media (homogeneous and heterogeneous environments, respectively). Counter to the normal expectation, host-parasite specialization was significantly lower in heterogeneous compared with homogeneous environments. This result could not be explained by dispersal homogenizing populations, as this would have resulted in the heterogeneous treatments having levels of specialization equal to or greater than that of the homogeneous environments. We argue that selection for costly generalists is greatest when the coevolving species are exposed to diverse environmental conditions and that this can provide an explanation for our results. A simple coevolutionary model of this process suggests that this can be a general mechanism by which environmental heterogeneity can reduce rather than increase host-parasite specialization.
Collapse
Affiliation(s)
- E Hesse
- ESI, Biosciences, University of Exeter, Penryn, UK
| | - A Best
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - M Boots
- CLES, Biosciences, University of Exeter, Penryn, UK
| | | | - A Buckling
- ESI, Biosciences, University of Exeter, Penryn, UK
| |
Collapse
|
15
|
Wongsuntornpoj S, Moreno Switt AI, Bergholz P, Wiedmann M, Chaturongakul S. Salmonella phages isolated from dairy farms in Thailand show wider host range than a comparable set of phages isolated from U.S. dairy farms. Vet Microbiol 2014; 172:345-52. [PMID: 24939592 DOI: 10.1016/j.vetmic.2014.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/10/2014] [Accepted: 05/17/2014] [Indexed: 01/10/2023]
Abstract
Salmonella is a zoonotic pathogen with globally distributed serovars as well as serovars predominantly found in certain regions; for example, serovar Weltevreden is rarely isolated in the U.S., but is common in Thailand. Relative to our understanding of Salmonella diversity, our understanding of the global diversity of Salmonella phages is limited. We hypothesized that the serovar diversity in a given environment and farming system will affect the Salmonella phage diversity associated with animal hosts. We thus isolated and characterized Salmonella phages from 15 small-scale dairy farms in Thailand and compared the host ranges of the 62 Salmonella phage isolates obtained with host range diversity for 129 phage isolates obtained from dairy farms in the U.S. The 62 phage isolates from Thailand represented genome sizes ranging from 40 to 200 kb and showed lysis of 6-25 of the 26 host strains tested (mean number of strain lysed=19). By comparison, phage isolates previously obtained in a survey of 15 U.S. dairy farms showed a narrow host range (lysis of 1-17; mean number of strains lysed=4); principal coordinate analysis also confirmed U.S. and Thai phages had distinct host lysis profiles. Our data indicate that dairy farms that differ in management practices and are located on different continents can yield phage isolates that differ in their host ranges, providing an avenue for isolation of phages with desirable host range characteristics for commercial applications. Farming systems characterized by coexistence of different animals may facilitate presence of Salmonella phages with wide host ranges.
Collapse
Affiliation(s)
- Sarach Wongsuntornpoj
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Andrea I Moreno Switt
- Department of Food Science, Cornell University, Ithaca, NY, USA; Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile
| | - Peter Bergholz
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Soraya Chaturongakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
16
|
Sieber M, Gudelj I. Do-or-die life cycles and diverse post-infection resistance mechanisms limit the evolution of parasite host ranges. Ecol Lett 2014; 17:491-8. [PMID: 24495077 DOI: 10.1111/ele.12249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/09/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023]
Abstract
In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host-use trade-offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade-offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria-phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade-offs.
Collapse
Affiliation(s)
- Michael Sieber
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | | |
Collapse
|
17
|
Roychoudhury P, Shrestha N, Wiss VR, Krone SM. Fitness benefits of low infectivity in a spatially structured population of bacteriophages. Proc Biol Sci 2013; 281:20132563. [PMID: 24225463 DOI: 10.1098/rspb.2013.2563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For a parasite evolving in a spatially structured environment, an evolutionarily advantageous strategy may be to reduce its transmission rate or infectivity. We demonstrate this empirically using bacteriophage (phage) from an evolution experiment where spatial structure was maintained over 550 phage generations on agar plates. We found that a single substitution in the major capsid protein led to slower adsorption of phage to host cells with no change in lysis time or burst size. Plaques formed by phage isolates containing this mutation were not only larger but also contained more phage per unit area. Using a spatially explicit, individual-based model, we showed that when there is a trade-off between adsorption and diffusion (i.e. less 'sticky' phage diffuse further), slow adsorption can maximize plaque size, plaque density and overall productivity. These findings suggest that less infective pathogens may have an advantage in spatially structured populations, even when well-mixed models predict that they will not.
Collapse
Affiliation(s)
- Pavitra Roychoudhury
- Department of Mathematics, University of Idaho, , Moscow, ID, USA, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, , Moscow, ID, USA, Department of Biological Sciences, University of Idaho, , Moscow, ID, USA
| | | | | | | |
Collapse
|
18
|
Salmonella bacteriophage diversity reflects host diversity on dairy farms. Food Microbiol 2013; 36:275-85. [PMID: 24010608 DOI: 10.1016/j.fm.2013.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 05/30/2013] [Accepted: 06/17/2013] [Indexed: 12/13/2022]
Abstract
Salmonella is an animal and human pathogen of worldwide concern. Surveillance programs indicate that the incidence of Salmonella serovars fluctuates over time. While bacteriophages are likely to play a role in driving microbial diversity, our understanding of the ecology and diversity of Salmonella phages is limited. Here we report the isolation of Salmonella phages from manure samples from 13 dairy farms with a history of Salmonella presence. Salmonella phages were isolated from 10 of the 13 farms; overall 108 phage isolates were obtained on serovar Newport, Typhimurium, Dublin, Kentucky, Anatum, Mbandaka, and Cerro hosts. Host range characterization found that 51% of phage isolates had a narrow host range, while 49% showed a broad host range. The phage isolates represented 65 lysis profiles; genome size profiling of 94 phage isolates allowed for classification of phage isolates into 11 groups with subsequent restriction fragment length polymorphism analysis showing considerable variation within a given group. Our data not only show an abundance of diverse Salmonella phage isolates in dairy farms, but also show that phage isolates that lyse the most common serovars causing salmonellosis in cattle are frequently obtained, suggesting that phages may play an important role in the ecology of Salmonella on dairy farms.
Collapse
|
19
|
Chantranupong L, Heineman RH. A common, non-optimal phenotypic endpoint in experimental adaptations of bacteriophage lysis time. BMC Evol Biol 2012; 12:37. [PMID: 22429718 PMCID: PMC3324380 DOI: 10.1186/1471-2148-12-37] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/19/2012] [Indexed: 11/17/2022] Open
Abstract
Background Optimality models of evolution, which ignore genetic details and focus on natural selection, are widely used but sometimes criticized as oversimplifications. Their utility for quantitatively predicting phenotypic evolution can be tested experimentally. One such model predicts optimal bacteriophage lysis interval, how long a virus should produce progeny before lysing its host bacterium to release them. The genetic basis of this life history trait is well studied in many easily propagated phages, making it possible to test the model across a variety of environments and taxa. Results We adapted two related small single-stranded DNA phages, ΦX174 and ST-1, to various conditions. The model predicted the evolution of the lysis interval in response to host density and other environmental factors. In all cases the initial phages lysed later than predicted. The ΦX174 lysis interval did not evolve detectably when the phage was adapted to normal hosts, indicating complete failure of optimality predictions. ΦX174 grown on slyD-defective hosts which initially entirely prevented lysis readily recovered to a lysis interval similar to that attained on normal hosts. Finally, the lysis interval still evolved to the same endpoint when the environment was altered to delay optimal lysis interval. ST-1 lysis interval evolved to be ~2 min shorter, qualitatively in accord with predictions. However, there were no changes in the single known lysis gene. Part of ST-1's total lysis time evolution consisted of an earlier start to progeny production, an unpredicted phenotypic response outside the boundaries of the optimality model. Conclusions The consistent failure of the optimality model suggests that constraint and genetic details affect quantitative and even qualitative success of optimality predictions. Several features of ST-1 adaptation show that lysis time is best understood as an output of multiple traits, rather than in isolation.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
20
|
Bull JJ, Heineman RH, Wilke CO. The phenotype-fitness map in experimental evolution of phages. PLoS One 2011; 6:e27796. [PMID: 22132144 PMCID: PMC3222649 DOI: 10.1371/journal.pone.0027796] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/25/2011] [Indexed: 11/18/2022] Open
Abstract
Evolutionary biologists commonly interpret adaptations of organisms by reference to a phenotype-fitness map, a model of how different states of a phenotype affect fitness. Notwithstanding the popularity of this approach, it remains difficult to directly test these mappings, both because the map often describes only a small subset of phenotypes contributing to total fitness and because direct measures of fitness are difficult to obtain and compare to the map. Both limitations can be overcome for bacterial viruses (phages) grown in the experimental condition of unlimited hosts. A complete accounting of fitness requires 3 easily measured phenotypes, and total fitness is also directly measurable for arbitrary genotypes. Yet despite the presumed transparency of this system, directly estimated fitnesses often differ from fitnesses calculated from the phenotype-fitness map. This study attempts to resolve these discrepancies, both by developing a more exact analytical phenotype-fitness map and by exploring the empirical foundations of direct fitness estimates. We derive an equation (the phenotype-fitness map) for exponential phage growth that allows an arbitrary distribution of lysis times and burst sizes. We also show that direct estimates of fitness are, in many cases, plausibly in error because the population has not attained stable age distribution and thus violates the model underlying the phenotype-fitness map. In conjunction with data provided here, the new understanding appears to resolve a discrepancy between the reported fitness of phage T7 and the substantially lower value calculated from its phenotype-fitness map.
Collapse
Affiliation(s)
- James J Bull
- The Institute for Cellular and Molecular Biology, Center for Computational Biology and Bioinformatics, Section of Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America.
| | | | | |
Collapse
|
21
|
Momeni B, Chen CC, Hillesland KL, Waite A, Shou W. Using artificial systems to explore the ecology and evolution of symbioses. Cell Mol Life Sci 2011; 68:1353-68. [PMID: 21424911 PMCID: PMC11114700 DOI: 10.1007/s00018-011-0649-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
The web of life is weaved from diverse symbiotic interactions between species. Symbioses vary from antagonistic interactions such as competition and predation to beneficial interactions such as mutualism. What are the bases for the origin and persistence of symbiosis? What affects the ecology and evolution of symbioses? How do symbiotic interactions generate ecological patterns? How do symbiotic partners evolve and coevolve? Many of these questions are difficult to address in natural systems. Artificial systems, from abstract to living, have been constructed to capture essential features of natural symbioses and to address these key questions. With reduced complexity and increased controllability, artificial systems can serve as useful models for natural systems. We review how artificial systems have contributed to our understanding of symbioses.
Collapse
Affiliation(s)
- Babak Momeni
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109 USA
| | - Chi-Chun Chen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109 USA
- Research Center for Biodiversity, Academia Sinica, Nankang, 115 Taipei, Taiwan
| | - Kristina L. Hillesland
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98185 USA
| | - Adam Waite
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109 USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98185 USA
| | - Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109 USA
| |
Collapse
|
22
|
Abstract
Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure--whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation--an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.
Collapse
Affiliation(s)
- J J Bull
- The Institute for Cellular and Molecular Biology, Section of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
23
|
Mechanisms responsible for a PhiX174 mutant's ability to infect Escherichia coli by phosphorylation. J Virol 2010; 84:4860-3. [PMID: 20147402 DOI: 10.1128/jvi.00047-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability for a virus to expand its host range is dependent upon a successful mode of viral entry. As such, the host range of the well-studied PhiX174 bacteriophage is dictated by the presence of a particular lipopolysaccharide (LPS) on the bacterial surface. The mutant PhiX174 strain JACS-K, unlike its ancestor, is capable of infecting both its native host Escherichia coli C and E. coli K-12, which does not have the necessary LPS. The conversion of an alanine to a very reactive threonine on its virion surface was found to be responsible for the strain's expanded host range.
Collapse
|
24
|
Bacteriophages as model organisms for virus emergence research. Trends Microbiol 2009; 17:450-7. [PMID: 19765997 PMCID: PMC7127698 DOI: 10.1016/j.tim.2009.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 06/29/2009] [Accepted: 07/10/2009] [Indexed: 12/18/2022]
Abstract
Viruses fully emerge by gaining the ability to sustainably infect new host populations. When the hosts are humans, emerging viruses can present major public health issues, as exemplified by the AIDS pandemic. Therefore, heuristic approaches to identify nascent diseases before they become pandemic would be valuable. Unfortunately, the current patient-based and epidemiological approaches are ill-suited in this regard because they are largely responsive and not predictive. Alternative approaches based on virus evolutionary ecology might have greater potential to predict virus emergence. However, given the difficulties encountered when studying metazoan viruses in this context, the development of new model systems is greatly desirable. Here, I highlight studies that show that bacteriophages are appropriate model organisms for virus emergence research because of the ease in which important population parameters can be manipulated. Ideally this research will permit identifying major factors determining the persistence or extinction of emerging viruses. If such viruses could be recognized in advance, patient-based and epidemiological strategies could be better mobilized to deal with them.
Collapse
|
25
|
Keller TE, Molineux IJ, Bull JJ. Viral resistance evolution fully escapes a rationally designed lethal inhibitor. Mol Biol Evol 2009; 26:2041-6. [PMID: 19494036 DOI: 10.1093/molbev/msp111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viruses are notoriously capable of evolving resistance to drugs. However, if the endpoint of resistance evolution is only partial escape, a feasible strategy should be to stack drugs, so the combined effect of partial inhibition by several drugs results in net inhibition. Assessing the feasibility of this approach requires quantitative data on viral fitness before and after evolution of resistance to a drug, as done here with bacteriophage T7. An inhibitory gene expressed from a phage promoter aborts wild-type T7 infections. The effect is so severe that the phage population declines when exposed to the inhibitor but expands a billion-fold per hour in its absence. In prior work, T7 evolved modest resistance to this inhibitor, an expected result. Given the nature of the inhibitor, that it used the phage's own promoter to target the phage's destruction, we anticipated that resistance evolution would be limited as the phage may need to evolve a new regulatory system, with simultaneous changes in its RNA polymerase (RNAP) and many of its promoters to fully escape inhibition. We show here that further adaptation of the partially resistant phage led to complete resistance. Resistance evolution was due to three mutations in the RNAP gene and two other genes; unexpectedly, no changes were observed in promoters. Consideration of other mechanisms of T7 inhibition leaves hope that permanent inhibition of viral growth with drugs can in principle be achieved.
Collapse
Affiliation(s)
- Thomas E Keller
- Section of Integrative Biology, The University of Texas at Austin, USA.
| | | | | |
Collapse
|
26
|
Knies JL, Kingsolver JG, Burch CL. Hotter is better and broader: thermal sensitivity of fitness in a population of bacteriophages. Am Nat 2009; 173:419-30. [PMID: 19232002 DOI: 10.1086/597224] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Hotter is better is a hypothesis of thermal adaptation that posits that the rate-depressing effects of low temperature on biochemical reactions cannot be overcome by physiological plasticity or genetic adaptation. If so, then genotypes or populations adapted to warmer temperatures will have higher maximum growth rates than those adapted to low temperatures. Here we test hotter is better by measuring thermal reaction norms for intrinsic rate of population growth among an intraspecific collection of bacteriophages recently isolated from nature. Consistent with hotter is better, we find that phage genotypes with higher optimal temperatures have higher maximum growth rates. Unexpectedly, we also found that hotter is broader, meaning that the phages with the highest optimal temperatures also have the greatest temperature ranges. We found that the temperature sensitivity of fitness for phages is similar to that for insects.
Collapse
Affiliation(s)
- Jennifer L Knies
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
27
|
Benmayor R, Hodgson DJ, Perron GG, Buckling A. Host mixing and disease emergence. Curr Biol 2009; 19:764-7. [PMID: 19375316 PMCID: PMC7126095 DOI: 10.1016/j.cub.2009.03.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 02/11/2009] [Accepted: 03/04/2009] [Indexed: 11/02/2022]
Abstract
Recent cases of emergent diseases have renewed interest in the evolutionary and ecological mechanisms that promote parasite adaptation to novel hosts [1-6]. Crucial to adaptation is the degree of mixing of original, susceptible hosts, and novel hosts. An increase in the frequency of the original host has two opposing effects on adaptation: an increase in the supply of mutant pathogens with improved performance on the novel host [7-9]; and reduced selection to infect novel hosts, caused by fitness costs commonly observed to be associated with host switching [10-17]. The probability of disease emergence will therefore peak at intermediate frequencies of the original host. We tested these predictions by following the evolution of a virus grown under a range of different frequencies of susceptible (original) and resistant (novel) host bacteria. Viruses that evolved to infect resistant hosts were only detected when susceptible hosts were at frequencies between 0.1% and 1%. Subsequent experiments supported the predictions that there was reduced selection and mutation supply at higher and lower frequencies, respectively. These results suggest that adaptation to novel hosts can occur only under very specific ecological conditions, and that small changes in contact rates between host species might help to mitigate disease emergence.
Collapse
|
28
|
Hillesland KL, Velicer GJ, Lenski RE. Experimental evolution of a microbial predator's ability to find prey. Proc Biol Sci 2009; 276:459-67. [PMID: 18832061 DOI: 10.1098/rspb.2008.1098] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Foraging theory seeks to explain how the distribution and abundance of prey influence the evolution of predatory behaviour, including the allocation of effort to searching for prey and handling them after they are found. While experiments have shown that many predators alter their behaviour phenotypically within individual lifetimes, few have examined the actual evolution of predatory behaviour in light of this theory. Here, we test the effects of prey density on the evolution of a predator's searching and handling behaviours using a bacterial predator, Myxococcus xanthus. Sixteen predator populations evolved for almost a year on agar surfaces containing patches of Escherichia coli prey at low or high density. Improvements in searching rate were significantly greater in those predators that evolved at low prey density. Handling performance also improved in some predator populations, but prey density did not significantly affect the magnitude of these gains. As the predators evolved greater foraging proficiency, their capacity diminished to produce fruiting bodies that enable them to survive prolonged periods of starvation. More generally, these results demonstrate that predators evolve behaviours that reflect at least some of the opportunities and limitations imposed by the distribution and abundance of their prey.
Collapse
Affiliation(s)
- Kristina L Hillesland
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|