1
|
Adjemout M, Gallardo F, Torres M, Thiam A, Mbengue B, Dieye A, Marquet S, Rihet P. From Genome-wide Association Studies to Functional Variants: ARL14 Cis-regulatory Variants Are Associated With Severe Malaria. J Infect Dis 2024; 230:e743-e752. [PMID: 38531688 PMCID: PMC11420786 DOI: 10.1093/infdis/jiae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Genome-wide association studies have identified several nonfunctional tag single-nucleotide polymorphisms (SNPs) associated with severe malaria. We hypothesized that causal SNPs could play a significant role in severe malaria by altering promoter or enhancer activity. Here, we sought to identify such regulatory SNPs. METHODS SNPs in linkage disequilibrium with tagSNPs associated with severe malaria were identified and were further annotated using FUMA. Then, SNPs were prioritized using the integrative weighted scoring method to identify regulatory ones. Gene reporter assays were performed to assess the regulatory effect of a region containing candidates. The association between SNPs and severe malaria was assessed using logistic regression models in a Senegalese cohort. RESULTS Among 418 SNPs, the best candidates were rs116525449 and rs79644959, which were in full disequilibrium between them, and located within the ARL14 promoter. Our gene reporter assay results revealed that the region containing the SNPs exhibited cell-specific promoter or enhancer activity, while the SNPs influenced promoter activity. We detected an association between severe malaria and those 2 SNPs using the overdominance model and we replicated the association of severe malaria with the tagSNP rs116423146. CONCLUSIONS We suggest that these SNPs regulate ARL14 expression in immune cells and the presentation of antigens to T lymphocytes, thus influencing severe malaria development.
Collapse
Affiliation(s)
- Mathieu Adjemout
- Aix-Marseille Univ, Inserm, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Marseille, France
| | - Frederic Gallardo
- Aix-Marseille Univ, Inserm, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Marseille, France
| | - Magali Torres
- Aix-Marseille Univ, Inserm, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Marseille, France
| | - Alassane Thiam
- Pole d'Immunophysiopathologie & Maladies Infectieuses, Institut Pasteur de Dakar
| | - Babacar Mbengue
- Service d'Immunologie, Université Cheikh Anta Diop de Dakar, Senegal
| | - Alioune Dieye
- Service d'Immunologie, Université Cheikh Anta Diop de Dakar, Senegal
| | - Sandrine Marquet
- Aix-Marseille Univ, Inserm, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Marseille, France
| | - Pascal Rihet
- Aix-Marseille Univ, Inserm, TAGC Theories and Approaches of Genomic Complexity, MarMaRa Institute, Marseille, France
| |
Collapse
|
2
|
Constantinescu AE, Hughes DA, Bull CJ, Fleming K, Mitchell RE, Zheng J, Kar S, Timpson NJ, Amulic B, Vincent EE. A genome-wide association study of neutrophil count in individuals associated to an African continental ancestry group facilitates studies of malaria pathogenesis. Hum Genomics 2024; 18:26. [PMID: 38491524 PMCID: PMC10941368 DOI: 10.1186/s40246-024-00585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND 'Benign ethnic neutropenia' (BEN) is a heritable condition characterized by lower neutrophil counts, predominantly observed in individuals of African ancestry, and the genetic basis of BEN remains a subject of extensive research. In this study, we aimed to dissect the genetic architecture underlying neutrophil count variation through a linear-mixed model genome-wide association study (GWAS) in a population of African ancestry (N = 5976). Malaria caused by P. falciparum imposes a tremendous public health burden on people living in sub-Saharan Africa. Individuals living in malaria endemic regions often have a reduced circulating neutrophil count due to BEN, raising the possibility that reduced neutrophil counts modulate severity of malaria in susceptible populations. As a follow-up, we tested this hypothesis by conducting a Mendelian randomization (MR) analysis of neutrophil counts on severe malaria (MalariaGEN, N = 17,056). RESULTS We carried out a GWAS of neutrophil count in individuals associated to an African continental ancestry group within UK Biobank, identifying 73 loci (r2 = 0.1) and 10 index SNPs (GCTA-COJO loci) associated with neutrophil count, including previously unknown rare loci regulating neutrophil count in a non-European population. BOLT-LMM was reliable when conducted in a non-European population, and additional covariates added to the model did not largely alter the results of the top loci or index SNPs. The two-sample bi-directional MR analysis between neutrophil count and severe malaria showed the greatest evidence for an effect between neutrophil count and severe anaemia, although the confidence intervals crossed the null. CONCLUSION Our GWAS of neutrophil count revealed unique loci present in individuals of African ancestry. We note that a small sample-size reduced our power to identify variants with low allele frequencies and/or low effect sizes in our GWAS. Our work highlights the need for conducting large-scale biobank studies in Africa and for further exploring the link between neutrophils and severe malaria.
Collapse
Affiliation(s)
- Andrei-Emil Constantinescu
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A Hughes
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Louisiana State University, Louisiana, USA
| | - Caroline J Bull
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
- Health Data Research UK, London, UK
| | - Kathryn Fleming
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases, National Health Commission, Shanghai, People's Republic of China
- Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Early Cancer Insitute, University of Cambridge, Cambridge, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Borko Amulic
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK.
- School of Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Prabhu SR, Ware AP, Umakanth S, Hande M, Mahabala C, Saadi AV, Satyamoorthy K. Erythrocyte miRNA-92a-3p interactions with PfEMP1 as determinants of clinical malaria. Funct Integr Genomics 2023; 23:93. [PMID: 36941394 PMCID: PMC10027640 DOI: 10.1007/s10142-023-01028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023]
Abstract
Based on the recently added high throughput analysis data on small noncoding RNAs in modulating disease pathophysiology of malaria, we performed an integrative computational analysis for exploring the role of human-host erythrocytic microRNAs (miRNAs) and their influence on parasite survival and host homeostasis. An in silico analysis was performed on transcriptomic datasets accessed from PlasmoDB and Gene Expression Omnibus (GEO) repositories analyzed using miRanda, miRTarBase, mirDIP, and miRDB to identify the candidate miRNAs that were further subjected to network analysis using MCODE and DAVID. This was followed by immune infiltration analysis and screening for RNA degradation mechanisms. Seven erythrocytic miRNAs, miR-451a, miR-92a-3p, miR-16-5p, miR-142-3p, miR-15b-5p, miR-19b-3p, and miR-223-3p showed favourable interactions with parasite genes expressed during blood stage infection. The miR-92a-3p that targeted the virulence gene PfEMP1 showed drastic reduction during infection. Performing pathway analysis for the human-host gene targets for the miRNA identified TOB1, TOB2, CNOT4, and XRN1 genes that are associated to RNA degradation processes, with the exoribonuclease XRN1, highly enriched in the malarial samples. On evaluating the role of exoribonucleases in miRNA degradation further, the pattern of Plasmodium falciparum_XRN1 showed increased levels during infection thus suggesting a defensive role for parasite survival. This study identifies miR-92a-3p, a member of C13orf25/ miR-17-92 cluster, as a novel miRNA inhibitor of the crucial parasite genes responsible for symptomatic malaria. Evidence for a plausible link to chromosome 13q31.3 loci controlling the epigenetic disease regulation is also suggested.
Collapse
Affiliation(s)
- Sowmya R Prabhu
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shashikiran Umakanth
- Department of Medicine, Dr. TMA Pai Hospital, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manjunath Hande
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Chakrapani Mahabala
- Department of Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Abdul Vahab Saadi
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Thiam A, Nisar S, Adjemout M, Gallardo F, Ka O, Mbengue B, Diop G, Dieye A, Marquet S, Rihet P. ATP2B4 regulatory genetic variants are associated with mild malaria. Malar J 2023; 22:68. [PMID: 36849945 PMCID: PMC9972758 DOI: 10.1186/s12936-023-04503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Genome-wide association studies have identified ATP2B4 as a severe malaria resistance gene. Recently, 8 potential causal regulatory variants have been shown to be associated with severe malaria. METHODS Genotyping of rs10900585, rs11240734, rs1541252, rs1541253, rs1541254, rs1541255, rs10751450, rs10751451 and rs10751452 was performed in 154 unrelated individuals (79 controls and 75 mild malaria patients). rs10751450, rs10751451 and rs10751452 were genotyped by Taqman assays, whereas the fragment of the ATP2B4 gene containing the remaining SNPs was sequenced. Logistic regression analysis was used to assess the association between the SNPs and mild malaria. RESULTS The results showed that mild malaria was associated with rs10900585, rs11240734, rs1541252, rs1541253, rs1541254, rs1541255, rs10751450, rs10751451 and rs10751452. The homozygous genotypes for the major alleles were associated with an increased risk of mild malaria. Furthermore, the haplotype containing the major alleles and that containing the minor alleles were the most frequent haplotypes. Individuals with the major haplotypes had a significantly higher risk of mild malaria compared to the carriers of the minor allele haplotype. CONCLUSIONS ATP2B4 polymorphisms that have been associated with severe malaria are also associated with mild malaria.
Collapse
Affiliation(s)
- Alassane Thiam
- grid.418508.00000 0001 1956 9596Unité d’Immunogénétique, Institut Pasteur de Dakar, Dakar, Senegal
| | - Samia Nisar
- grid.5399.60000 0001 2176 4817Aix Marseille Univ, INSERM, TAGC, MarMaRa Institute, Marseille, France ,grid.444997.30000 0004 1761 3137Sardar Bahadur Khan Women’s University, Quetta, 1800 Balochistan Pakistan
| | - Mathieu Adjemout
- grid.5399.60000 0001 2176 4817Aix Marseille Univ, INSERM, TAGC, MarMaRa Institute, Marseille, France
| | - Frederic Gallardo
- grid.5399.60000 0001 2176 4817Aix Marseille Univ, INSERM, TAGC, MarMaRa Institute, Marseille, France
| | - Oumar Ka
- grid.8191.10000 0001 2186 9619Service d’Immunologie, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Babacar Mbengue
- grid.8191.10000 0001 2186 9619Service d’Immunologie, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Gora Diop
- grid.418508.00000 0001 1956 9596Unité d’Immunogénétique, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alioune Dieye
- grid.8191.10000 0001 2186 9619Service d’Immunologie, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Sandrine Marquet
- Aix Marseille Univ, INSERM, TAGC, MarMaRa Institute, Marseille, France.
| | - Pascal Rihet
- Aix Marseille Univ, INSERM, TAGC, MarMaRa Institute, Marseille, France.
| |
Collapse
|
5
|
Sánchez-Arcila JC, Jensen KDC. Forward Genetics in Apicomplexa Biology: The Host Side of the Story. Front Cell Infect Microbiol 2022; 12:878475. [PMID: 35646724 PMCID: PMC9133346 DOI: 10.3389/fcimb.2022.878475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Forward genetic approaches have been widely used in parasitology and have proven their power to reveal the complexities of host-parasite interactions in an unbiased fashion. Many aspects of the parasite's biology, including the identification of virulence factors, replication determinants, antibiotic resistance genes, and other factors required for parasitic life, have been discovered using such strategies. Forward genetic approaches have also been employed to understand host resistance mechanisms to parasitic infection. Here, we will introduce and review all forward genetic approaches that have been used to identify host factors involved with Apicomplexa infections, which include classical genetic screens and QTL mapping, GWAS, ENU mutagenesis, overexpression, RNAi and CRISPR-Cas9 library screens. Collectively, these screens have improved our understanding of host resistance mechanisms, immune regulation, vaccine and drug designs for Apicomplexa parasites. We will also discuss how recent advances in molecular genetics give present opportunities to further explore host-parasite relationships.
Collapse
Affiliation(s)
- Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
- Health Science Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
6
|
Identification of ATP2B4 Regulatory Element Containing Functional Genetic Variants Associated with Severe Malaria. Int J Mol Sci 2022; 23:ijms23094849. [PMID: 35563239 PMCID: PMC9101746 DOI: 10.3390/ijms23094849] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
Genome-wide association studies for severe malaria (SM) have identified 30 genetic variants mostly located in non-coding regions. Here, we aimed to identify potential causal genetic variants located in these loci and demonstrate their functional activity. We systematically investigated the regulatory effect of the SNPs in linkage disequilibrium (LD) with the malaria-associated genetic variants. Annotating and prioritizing genetic variants led to the identification of a regulatory region containing five ATP2B4 SNPs in LD with rs10900585. We found significant associations between SM and rs10900585 and our candidate SNPs (rs11240734, rs1541252, rs1541253, rs1541254, and rs1541255) in a Senegalese population. Then, we demonstrated that both individual SNPs and the combination of SNPs had regulatory effects. Moreover, CRISPR/Cas9-mediated deletion of this region decreased ATP2B4 transcript and protein levels and increased Ca2+ intracellular concentration in the K562 cell line. Our data demonstrate that severe malaria-associated genetic variants alter the expression of ATP2B4 encoding a plasma membrane calcium-transporting ATPase 4 (PMCA4) expressed on red blood cells. Altering the activity of this regulatory element affects the risk of SM, likely through calcium concentration effect on parasitaemia.
Collapse
|
7
|
Abstract
Malaria has been the pre-eminent cause of early mortality in many parts of the world throughout much of the last five thousand years and, as a result, it is the strongest force for selective pressure on the human genome yet described. Around one third of the variability in the risk of severe and complicated malaria is now explained by additive host genetic effects. Many individual variants have been identified that are associated with malaria protection, but the most important all relate to the structure or function of red blood cells. They include the classical polymorphisms that cause sickle cell trait, α-thalassaemia, G6PD deficiency, and the major red cell blood group variants. More recently however, with improving technology and experimental design, others have been identified that include the Dantu blood group variant, polymorphisms in the red cell membrane protein ATP2B4, and several variants related to the immune response. Characterising how these genes confer their effects could eventually inform novel therapeutic approaches to combat malaria. Nevertheless, all together, only a small proportion of the heritable component of malaria resistance can be explained by the variants described so far, underscoring its complex genetic architecture and the need for continued research.
Collapse
Affiliation(s)
- Silvia N Kariuki
- Department of Epidemiology, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Thomas N Williams
- Department of Epidemiology, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Department of Medicine, Imperial College of Science and Technology, London, UK.
| |
Collapse
|
8
|
First genome-wide association study of non-severe malaria in two birth cohorts in Benin. Hum Genet 2019; 138:1341-1357. [PMID: 31667592 DOI: 10.1007/s00439-019-02079-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
Abstract
Recent research efforts to identify genes involved in malaria susceptibility using genome-wide approaches have focused on severe malaria. Here, we present the first GWAS on non-severe malaria designed to identify genetic variants involved in innate immunity or innate resistance mechanisms. Our study was performed on two cohorts of infants from southern Benin (525 and 250 individuals used as discovery and replication cohorts, respectively) closely followed from birth to 18-24 months of age, with an assessment of a space- and time-dependent environmental risk of exposure. Both the recurrence of mild malaria attacks and the recurrence of malaria infections as a whole (symptomatic and asymptomatic) were considered. Post-GWAS functional analyses were performed using positional, eQTL, and chromatin interaction mapping to identify the genes underlying association signals. Our study highlights a role of PTPRT, a tyrosine phosphatase receptor involved in STAT3 pathway, in the protection against both mild malaria attacks and malaria infections (p = 9.70 × 10-8 and p = 1.78 × 10-7, respectively, in the discovery cohort). Strong statistical support was also found for a role of MYLK4 (meta-analysis, p = 5.29 × 10-8 with malaria attacks), and for several other genes, whose biological functions are relevant in malaria infection. Results shows that GWAS on non-severe malaria can successfully identify new candidate genes and inform physiological mechanisms underlying natural protection against malaria.
Collapse
|
9
|
Thiam A, Baaklini S, Mbengue B, Nisar S, Diarra M, Marquet S, Fall MM, Sanka M, Thiam F, Diallo RN, Torres M, Dieye A, Rihet P. NCR3 polymorphism, haematological parameters, and severe malaria in Senegalese patients. PeerJ 2018; 6:e6048. [PMID: 30533319 PMCID: PMC6282937 DOI: 10.7717/peerj.6048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Background Host factors, including host genetic variation, have been shown to influence the outcome of Plasmodium falciparum infection. Genome-wide linkage studies have mapped mild malaria resistance genes on chromosome 6p21, whereas NCR3-412 polymorphism (rs2736191) lying within this region was found to be associated with mild malaria. Methods Blood samples were taken from 188 Plasmodium falciparum malaria patients (76 mild malaria patients, 85 cerebral malaria patients, and 27 severe non-cerebral malaria patients). NCR3-412 (rs2736191) was analysed by sequencing, and haematological parameters were measured. Finally, their association with clinical phenotypes was assessed. Results We evidenced an association of thrombocytopenia with both cerebral malaria and severe non-cerebral malaria, and of an association of high leukocyte count with cerebral malaria. Additionally, we found no association of NCR3-412 with either cerebral malaria, severe non-cerebral malaria, or severe malaria after grouping cerebral malaria and severe non-cerebral malaria patients. Conclusions Our results suggest that NCR3 genetic variation has no effect, or only a small effect on the occurrence of severe malaria, although it has been strongly associated with mild malaria. We discuss the biological meaning of these results. Besides, we confirmed the association of thrombocytopenia and high leukocyte count with severe malaria phenotypes.
Collapse
Affiliation(s)
- Alassane Thiam
- Unité d'Immunogénétique, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Babacar Mbengue
- Service d'Immunologie, University Cheikh Anta Diop of Dakar, Dakar, Senegal
| | - Samia Nisar
- Aix Marseille Univ, INSERM, TAGC, Marseille, France
| | - Maryam Diarra
- G4 Biostatistique, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | | | - Michel Sanka
- Aix Marseille Univ, INSERM, TAGC, Marseille, France
| | - Fatou Thiam
- Unité d'Immunogénétique, Institut Pasteur de Dakar, Dakar, Senegal
| | | | | | - Alioune Dieye
- Unité d'Immunogénétique, Institut Pasteur de Dakar, Dakar, Senegal.,Service d'Immunologie, University Cheikh Anta Diop of Dakar, Dakar, Senegal
| | - Pascal Rihet
- Aix Marseille Univ, INSERM, TAGC, Marseille, France
| |
Collapse
|
10
|
Genome-wide association study of antibody responses to Plasmodium falciparum candidate vaccine antigens. Genes Immun 2016; 17:110-7. [PMID: 26741287 DOI: 10.1038/gene.2015.59] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 02/04/2023]
Abstract
We conducted a genome-wide association study (GWAS) of antibody responses directed to three Plasmodium falciparum vaccine candidate antigens (MSP1, MSP2 and GLURP) previously associated with different patterns of protection against malaria infection in Senegalese children. A total of 174 950 single-nucleotide polymorphisms (SNPs) were tested for association with immunoglobulin G1 (IgG1) responses directed to MSP1 and to GLURP and with IgG3 responses to MSP2 FC27 and to MSP2 3D7. We first performed a single-trait analysis with each antibody response and then a multiple-trait analysis in which we analyzed simultaneously the three immune responses associated with the control of clinical malaria episodes. Suggestive associations (P<1 × 10(-4)) were observed for 25 SNPs in MSP1 antibody response analysis or in multiple-trait analysis. According to the strength of their observed associations and their functional role, the following genes are of particular interest: RASGRP3 (2p22.3, P=7.6 × 10(-6)), RIMS1 (6q13, P=2.0 × 10(-5)), MVB12B (9q33.3, P=8.9 × 10(-5)) and GNPTAB (12q23.2, P=7.4 × 10(-5)). Future studies will be required to replicate these findings in other African populations. This work will contribute to the elucidation of the host genetic factors underlying variable immune responses to P. falciparum.
Collapse
|
11
|
van Bruggen R, Gualtieri C, Iliescu A, Louicharoen Cheepsunthorn C, Mungkalasut P, Trape JF, Modiano D, Sodiomon Sirima B, Singhasivanon P, Lathrop M, Sakuntabhai A, Bureau JF, Gros P. Modulation of Malaria Phenotypes by Pyruvate Kinase (PKLR) Variants in a Thai Population. PLoS One 2015; 10:e0144555. [PMID: 26658699 PMCID: PMC4677815 DOI: 10.1371/journal.pone.0144555] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/19/2015] [Indexed: 01/11/2023] Open
Abstract
Pyruvate kinase (PKLR) is a critical erythrocyte enzyme that is required for glycolysis and production of ATP. We have shown that Pklr deficiency in mice reduces the severity (reduced parasitemia, increased survival) of blood stage malaria induced by infection with Plasmodium chabaudi AS. Likewise, studies in human erythrocytes infected ex vivo with P. falciparum show that presence of host PK-deficiency alleles reduces infection phenotypes. We have characterized the genetic diversity of the PKLR gene, including haplotype structure and presence of rare coding variants in two populations from malaria endemic areas of Thailand and Senegal. We investigated the effect of PKLR genotypes on rich longitudinal datasets including haematological and malaria-associated phenotypes. A coding and possibly damaging variant (R41Q) was identified in the Thai population with a minor allele frequency of ~4.7%. Arginine 41 (R41) is highly conserved in the pyruvate kinase family and its substitution to Glutamine (R41Q) affects protein stability. Heterozygosity for R41Q is shown to be associated with a significant reduction in the number of attacks with Plasmodium falciparum, while correlating with an increased number of Plasmodium vivax infections. These results strongly suggest that PKLR protein variants may affect the frequency, and the intensity of malaria episodes induced by different Plasmodium parasites in humans living in areas of endemic malaria.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Base Sequence
- Disease Susceptibility
- Erythrocytes/enzymology
- Erythrocytes/parasitology
- Gene Expression
- Genotype
- Humans
- Malaria/enzymology
- Malaria/genetics
- Malaria/pathology
- Malaria, Falciparum/enzymology
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/genetics
- Malaria, Falciparum/pathology
- Malaria, Vivax/enzymology
- Malaria, Vivax/epidemiology
- Malaria, Vivax/genetics
- Malaria, Vivax/pathology
- Mice
- Mice, Knockout
- Parasitemia/enzymology
- Parasitemia/epidemiology
- Parasitemia/genetics
- Parasitemia/pathology
- Phenotype
- Plasmodium chabaudi/physiology
- Plasmodium falciparum/physiology
- Plasmodium vivax/physiology
- Polymorphism, Single Nucleotide
- Protein Stability
- Pyruvate Kinase/chemistry
- Pyruvate Kinase/genetics
- Pyruvate Kinase/metabolism
- Senegal/epidemiology
- Sequence Alignment
- Severity of Illness Index
- Thailand/epidemiology
Collapse
Affiliation(s)
- Rebekah van Bruggen
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Christian Gualtieri
- Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Alexandra Iliescu
- Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Punchalee Mungkalasut
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand, 10330
| | - Jean-François Trape
- Laboratoire de Paludologie et Zoologie Médicale, Institut de Recherche pour le Développement, Dakar, Sénégal
| | - David Modiano
- Department of Public Health and Infectious Diseases, Instituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Bienvenu Sodiomon Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ministry of Health, Ouagadougou, Burkina Faso
| | - Pratap Singhasivanon
- Department of Tropical Hygiene (Biomedical and Health Informatics), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mark Lathrop
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Anavaj Sakuntabhai
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, URA3012, F-75015, Paris, France
| | - Jean-François Bureau
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, URA3012, F-75015, Paris, France
| | - Philippe Gros
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
12
|
Joos C, Varela ML, Mbengue B, Mansourou A, Marrama L, Sokhna C, Tall A, Trape JF, Touré A, Mercereau-Puijalon O, Perraut R. Antibodies to Plasmodium falciparum merozoite surface protein-1p19 malaria vaccine candidate induce antibody-dependent respiratory burst in human neutrophils. Malar J 2015; 14:409. [PMID: 26471813 PMCID: PMC4608189 DOI: 10.1186/s12936-015-0935-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/27/2015] [Indexed: 11/29/2022] Open
Abstract
Background Identification of plasmodial antigens targeted by protective immune mechanisms is important for malaria vaccine development. Among functional assays, the neutrophil antibody-dependent respiratory burst (ADRB) induced by opsonized Plasmodium falciparum merozoites has been correlated with acquired immunity to clinical malaria in endemic areas, but the target merozoite antigens are unknown. Here, the contribution of antibodies to the conserved C-terminal domain of the P. falciparum merozoite surface protein-1 (PfMSP1p19) in mediating ADRB was investigated in sera from individuals living in two Senegalese villages with differing malaria endemicity. Methods Anti-PfMSP1p19 antibody levels in sera from 233 villagers were investigated and the involvement of anti-PfMSP1p19 antibodies in ADRB was explored in a subset of samples using (1) isogenic P. falciparum parasite clones expressing P. falciparum or Plasmodium chabaudi MSP1p19; (2) PfMSP1p19-coated plaque ADRB; and, (3) ADRB triggering using sera depleted from PfMSP1p19 antibodies by absorption onto the baculovirus recombinant antigen. Results ADRB activity correlated with anti-PfMSP1p19 IgG levels (P < 10−3). A substantial contribution of PfMSP1p19 antibody responses to ADRB was confirmed (P < 10−4) in an age-adjusted linear regression model. PfMSP1p19 antibodies accounted for 33.1 % (range 7–54 %) and 33.2 % (range 0–70 %) of ADRB activity evaluated using isogenic merozoites (P < 10−3) and depleted sera (P = 0.0017), respectively. Coating of PfMSP1p19 on plates induced strong ADRB in anti-PfMSP1p19-positive sera. Conclusion These data show that naturally acquired P. falciparum MSP1p19 antibodies are potent inducers of neutrophil ADRB and support the development of PfMSP1p19-based malaria vaccine using ADRB assay as a functional surrogate for protection. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0935-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Joos
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Senegal. .,Unité d'Immunologie Moléculaire des Parasites, Institut Pasteur, Paris, France.
| | | | - Babacar Mbengue
- Unité d'Immunogénétique/UCAD, Institut Pasteur de Dakar, Dakar, Senegal.
| | | | - Laurence Marrama
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Senegal.
| | - Cheikh Sokhna
- Institut de Recherche pour le Développement (IRD), URMITE, Dakar, Senegal.
| | - Adama Tall
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Senegal.
| | | | - Aissatou Touré
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Senegal.
| | | | - Ronald Perraut
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Senegal.
| |
Collapse
|
13
|
Laneri K, Paul RE, Tall A, Faye J, Diene-Sarr F, Sokhna C, Trape JF, Rodó X. Dynamical malaria models reveal how immunity buffers effect of climate variability. Proc Natl Acad Sci U S A 2015; 112:8786-91. [PMID: 26124134 PMCID: PMC4507245 DOI: 10.1073/pnas.1419047112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Assessing the influence of climate on the incidence of Plasmodium falciparum malaria worldwide and how it might impact local malaria dynamics is complex and extrapolation to other settings or future times is controversial. This is especially true in the light of the particularities of the short- and long-term immune responses to infection. In sites of epidemic malaria transmission, it is widely accepted that climate plays an important role in driving malaria outbreaks. However, little is known about the role of climate in endemic settings where clinical immunity develops early in life. To disentangle these differences among high- and low-transmission settings we applied a dynamical model to two unique adjacent cohorts of mesoendemic seasonal and holoendemic perennial malaria transmission in Senegal followed for two decades, recording daily P. falciparum cases. As both cohorts are subject to similar meteorological conditions, we were able to analyze the relevance of different immunological mechanisms compared with climatic forcing in malaria transmission. Transmission was first modeled by using similarly unique datasets of entomological inoculation rate. A stochastic nonlinear human-mosquito model that includes rainfall and temperature covariates, drug treatment periods, and population variability is capable of simulating the complete dynamics of reported malaria cases for both villages. We found that under moderate transmission intensity climate is crucial; however, under high endemicity the development of clinical immunity buffers any effect of climate. Our models open the possibility of forecasting malaria from climate in endemic regions but only after accounting for the interaction between climate and immunity.
Collapse
Affiliation(s)
- Karina Laneri
- Institut Català de Ciències del Clima, Climate Dynamics and Impacts Unit, 08005 Barcelona, Catalonia, Spain; Centro Atómico Bariloche, Consejo Nacional Investigaciones Científicas y Técnicas, Grupo de Física Estadística e Interdisciplinaria, 8400 S. C. de Bariloche, Rio Negro, Argentina;
| | - Richard E Paul
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Department of Genomes and Genetics, F-75724 Paris cedex 15, France; Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, F-75015 Paris, France
| | - Adama Tall
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses (UR 172), BP 220 Dakar, Senegal
| | - Joseph Faye
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses (UR 172), BP 220 Dakar, Senegal
| | - Fatoumata Diene-Sarr
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses (UR 172), BP 220 Dakar, Senegal
| | - Cheikh Sokhna
- Institut de Recherche pour le Développement, Unité de Pathogénie Afro-Tropicale (Unité Mixte de Recherche 198), Département Santé, BP 1386, CP 18524, Dakar, Senegal
| | - Jean-François Trape
- Institut de Recherche pour le Développement, Unité de Pathogénie Afro-Tropicale (Unité Mixte de Recherche 198), Département Santé, BP 1386, CP 18524, Dakar, Senegal
| | - Xavier Rodó
- Institut Català de Ciències del Clima, Climate Dynamics and Impacts Unit, 08005 Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Risk factors for Plasmodium falciparum gametocyte positivity in a longitudinal cohort. PLoS One 2015; 10:e0123102. [PMID: 25830351 PMCID: PMC4382284 DOI: 10.1371/journal.pone.0123102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 02/27/2015] [Indexed: 12/03/2022] Open
Abstract
Malaria transmission intensity is highly heterogeneous even at a very small scale. Implementing targeted intervention in malaria transmission hotspots offers the potential to reduce the burden of disease both locally and in adjacent areas. Transmission of malaria parasites from man to mosquito requires the production of gametocyte stage parasites. Cluster analysis of a 19-year long cohort study for gametocyte carriage revealed spatially defined gametocyte hotspots that occurred during the time when chloroquine was the drug used for clinical case treatment. In addition to known risk factors for gametocyte carriage, notably young age (<15 years old) and associated with a clinical episode, blood groups B and O increased risk compared to groups A and AB. A hotspot of clinical P. falciparum clinical episodes that overlapped the gametocyte hotspots was also identified. Gametocyte positivity was found to be increased in individuals who had been treated with chloroquine, as opposed to other drug treatment regimens, for a clinical P. falciparum episode up to 30 days previously. It seems likely the hotspots were generated by a vicious circle of ineffective treatment of clinical cases and concomitant gametocyte production in a sub-population characterized by an increased prevalence of all the identified risk factors. While rapid access to treatment with an effective anti-malarial can reduce the duration of gametocyte carriage and onward parasite transmission, localised hotspots represent a challenge to malaria control and eventual eradication.
Collapse
|
15
|
Grant AV, Roussilhon C, Paul R, Sakuntabhai A. The genetic control of immunity to Plasmodium infection. BMC Immunol 2015; 16:14. [PMID: 25887595 PMCID: PMC4374205 DOI: 10.1186/s12865-015-0078-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Malaria remains a major worldwide public health problem with ~207 million cases and ~627,000 deaths per year, mainly affecting children under five years of age in Africa. Recent efforts at elaborating a genetic architecture of malaria have focused on severe malaria, leading to the identification of two new genes and confirmation of previously known variants in HBB, ABO and G6PD, by exploring the whole human genome in genome-wide association (GWA) studies. Molecular pathways controlling phenotypes representing effectiveness of host immunity, notably parasitemia and IgG levels, are of particular interest given the current lack of an efficacious vaccine and the need for new treatment options. Results We propose a global causal framework of malaria phenotypes implicating progression from the initial infection with Plasmodium spp. to the development of the infection through liver and blood-stage multiplication cycles (parasitemia as a quantitative trait), to clinical malaria attack, and finally to severe malaria. Genetic polymorphism may control any of these stages, such that preceding stages act as mediators of subsequent stages. A biomarker of humoral immunity, IgG levels, can also be integrated into the framework, potentially mediating the impact of polymorphism by limiting parasitemia levels. Current knowledge of the genetic basis of parasitemia levels and IgG levels is reviewed through key examples including the hemoglobinopathies, showing that the protective effect of HBB variants on malaria clinical phenotypes may partially be mediated through parasitemia and cytophilic IgG levels. Another example is the IgG receptor FcγRIIa, encoded by FCGR2A, such that H131 homozygotes displayed higher IgG2 levels and were protective against high parasitemia and onset of malaria symptoms as shown in a causal diagram. Conclusions We thus underline the value of parasitemia and IgG levels as phenotypes in the understanding of the human genetic architecture of malaria, and the need for applying GWA approaches to these phenotypes.
Collapse
Affiliation(s)
- Audrey V Grant
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| | - Christian Roussilhon
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| | - Richard Paul
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| | - Anavaj Sakuntabhai
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| |
Collapse
|
16
|
Brisebarre A, Kumulungui B, Sawadogo S, Afridi S, Fumoux F, Rihet P. Genome-wide significant linkage to IgG subclass responses against Plasmodium falciparum antigens on chromosomes 8p22-p21, 9q34 and 20q13. Genes Immun 2014; 16:187-92. [PMID: 25521226 DOI: 10.1038/gene.2014.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 11/09/2022]
Abstract
A genome-wide scan was conducted for the levels of total immunoglobulin G (IgG) and IgG subclasses directed against Plasmodium falciparum antigens in an urban population living in Burkina Faso. Non-parametric multipoint linkage analysis provided three chromosomal regions with genome-wide significant evidence (logarithm of the odds (LOD) score >3.6), and five chromosomal regions with genome-wide suggestive evidence (LOD score >2.2). IgG3 levels were significantly linked to chromosomes 8p22-p21 and 20q13, whereas IgG4 levels were significantly linked to chromosome 9q34. In addition, we detected suggestive linkage of IgG1 levels to chromosomes 18p11-q12 and 18q12-q21, IgG4 levels to chromosomes 1p31 and 12q24 and IgG levels to chromosome 6p24-p21. Moreover, we genotyped genetic markers located within the regions of interest in a rural population living in Burkina Faso. We detected genome-wide significant and suggestive linkage results when combining the two study populations for chromosomes 1p31, 6p24-p21, 8p22-p21, 9q34, 12q24 and 20q13. Because high anti-parasite IgG3 and low anti-parasite IgG4 levels were associated with malaria resistance, the chromosomal regions linked to IgG3 and IgG4 levels are of special interest. Although the results should be confirmed in an independent population, they may provide new insights in understanding both the genetic control of IgG production and malaria resistance.
Collapse
Affiliation(s)
- A Brisebarre
- 1] INSERM, UMR1090 TAGC, Marseille, France [2] Aix-Marseille Université, Marseille, France
| | - B Kumulungui
- Université des Sciences et Techniques de Masuku, Institut National Supérieur d'Agronomie et de Biotechnologies, Franceville, Gabon
| | - S Sawadogo
- University of Ouagadougou, UFR des Sciences de la Santé, Ouagadougou, Burkina Faso
| | - S Afridi
- 1] INSERM, UMR1090 TAGC, Marseille, France [2] Aix-Marseille Université, Marseille, France
| | - F Fumoux
- 1] Aix-Marseille Université, Marseille, France [2] UMR-MD3, Marseille, France
| | - P Rihet
- 1] INSERM, UMR1090 TAGC, Marseille, France [2] Aix-Marseille Université, Marseille, France
| |
Collapse
|
17
|
Brisebarre A, Kumulungui B, Sawadogo S, Atkinson A, Garnier S, Fumoux F, Rihet P. A genome scan for Plasmodium falciparum malaria identifies quantitative trait loci on chromosomes 5q31, 6p21.3, 17p12, and 19p13. Malar J 2014; 13:198. [PMID: 24884991 PMCID: PMC4057593 DOI: 10.1186/1475-2875-13-198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide studies have mapped several loci controlling Plasmodium falciparum mild malaria and parasitaemia, only two of them being significant at the genome level. The objective of the present study was to identify malaria resistance loci in individuals living in Burkina Faso. METHODS A genome scan that involved 314 individuals belonging to 63 families was performed. Markers located within chromosomes 6p21.3 and 17p12 were genotyped in 247 additional individuals belonging to 55 families. The linkage and the association of markers with parasitaemia and mild malaria were assessed by using the maximum-likelihood binomial method extended to quantitative trait linkage and the quantitative trait disequilibrium test, respectively. RESULTS Multipoint linkage analysis showed a significant linkage of mild malaria to chromosome 6p21.3 (LOD score 3.73, P = 1.7 10-5), a suggestive linkage of mild malaria to chromosome 19p13.12 (LOD score 2.50, P = 3.5 10-4), and a suggestive linkage of asymptomatic parasitaemia to chromosomes 6p21.3 (LOD score 2.36, P = 4.9 10-4) and 17p12 (LOD score 2.87, P = 1.4 10-4). Genome-wide family-based association analysis revealed a significant association between three chromosome 5q31 markers and asymptomatic parasitaemia, whereas there was no association with mild malaria. When taking into account 247 additional individuals, a significant linkage of asymptomatic parasitaemia to chromosome 17p12 (LOD score 3.6, P = 2 10-5) was detected. CONCLUSION A new genome-wide significant malaria locus on chromosome 17p12 and a new suggestive locus on chromosome 19p13.12 are reported. Moreover, there was evidence that confirmed the influence of chromosomes 5q31 and 6p21.3 as loci controlling mild malaria or asymptomatic parasitaemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pascal Rihet
- INSERM, UMR1090 TAGC, Marseille F-13288, France.
| |
Collapse
|
18
|
Lokossou AG, Dechavanne C, Bouraïma A, Courtin D, Le Port A, Ladékpo R, Noukpo J, Bonou D, Ahouangninou C, Sabbagh A, Fayomi B, Massougbodji A, Garcia A, Migot-Nabias F. Association of IL-4 and IL-10 maternal haplotypes with immune responses to P. falciparum in mothers and newborns. BMC Infect Dis 2013; 13:215. [PMID: 23668806 PMCID: PMC3679728 DOI: 10.1186/1471-2334-13-215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 05/03/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Particular cytokine gene polymorphisms are involved in the regulation of the antibody production. The consequences of already described IL-4, IL-10 and IL-13 gene polymorphisms on biological parameters and antibody levels were investigated among 576 mothers at delivery and their newborns in the context of P. falciparum placental malaria infection. METHODS The study took place in the semi-rural area of Tori-Bossito, in south-west Benin, where malaria is meso-endemic. Six biallelic polymorphisms were determined by quantitative PCR using TaqMan® Pre-Designed SNP Genotyping Assays, in IL-4 (rs2243250, rs2070874), IL-10 (rs1800896, rs1800871, rs1800872) and IL-13 (rs1800925) genes. Antibody responses directed to P. falciparum MSP-1, MSP-2, MSP-3, GLURP-R0, GLURP-R2 and AMA-1 recombinant proteins were determined by ELISA. RESULTS The maternal IL-4(-590)*T/IL-4(+33)*T haplotype (one or two copies) was associated with favorable maternal condition at delivery (high haemoglobin levels, absence of placental parasites) and one of its component, the IL-4(-590)TT genotype, was related to low IgG levels to MSP-1, MSP-2/3D7 and MSP-2/FC27. Inversely, the maternal IL-10(-1082)AA was positively associated with P. falciparum placenta infection at delivery. As a consequence, the IL-10(-819)*T allele (in CT and TT genotypes) as well as the IL-10(-1082)*A/IL-10(-819)*T/IL-10(-592)*A haplotype (one or two copies) in which it is included, were related to an increased risk for anaemia in newborns. The maternal IL-10(-1082)AA genotype was related to high IgG levels to MSP-2/3D7 and AMA-1 in mothers and newborns, respectively. The IL-13 gene polymorphism was only involved in the newborn's antibody response to AMA-1. CONCLUSION These data revealed that IL-4 and IL-10 maternal gene polymorphisms are likely to play a role in the regulation of biological parameters in pregnant women at delivery (anaemia, P. falciparum placenta infection) and in newborns (anaemia). Moreover, IL-4, IL-10 and IL-13 maternal gene polymorphisms were related to IgG responses to MSP-1, MSP-2/3D7 and MSP-2/FC27 in mothers as well as to AMA-1 in newborns.
Collapse
Affiliation(s)
- Adjimon Gatien Lokossou
- Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hammami I, Nuel G, Garcia A. Statistical properties of parasite density estimators in malaria. PLoS One 2013; 8:e51987. [PMID: 23516389 PMCID: PMC3597708 DOI: 10.1371/journal.pone.0051987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 11/14/2012] [Indexed: 02/04/2023] Open
Abstract
Malaria is a global health problem responsible for nearly one million deaths every year around 85% of which concern children younger than five years old in Sub-Saharan Africa. In addition, around 300 million clinical cases are declared every year. The level of infection, expressed as parasite density, is classically defined as the number of asexual parasites relative to a microliter of blood. Microscopy of Giemsa-stained thick blood films is the gold standard for parasite enumeration. Parasite density estimation methods usually involve threshold values; either the number of white blood cells counted or the number of high power fields read. However, the statistical properties of parasite density estimators generated by these methods have largely been overlooked. Here, we studied the statistical properties (mean error, coefficient of variation, false negative rates) of parasite density estimators of commonly used threshold-based counting techniques depending on variable threshold values. We also assessed the influence of the thresholds on the cost-effectiveness of parasite density estimation methods. In addition, we gave more insights on the behavior of measurement errors according to varying threshold values, and on what should be the optimal threshold values that minimize this variability.
Collapse
Affiliation(s)
- Imen Hammami
- Department of Applied Mathematics (MAP5), UMR CNRS 8145, Paris Descartes University, Paris, France.
| | | | | |
Collapse
|
20
|
Loucoubar C, Grange L, Paul R, Huret A, Tall A, Telle O, Roussilhon C, Faye J, Diene-Sarr F, Trape JF, Mercereau-Puijalon O, Sakuntabhai A, Bureau JF. High number of previous Plasmodium falciparum clinical episodes increases risk of future episodes in a sub-group of individuals. PLoS One 2013; 8:e55666. [PMID: 23405191 PMCID: PMC3566008 DOI: 10.1371/journal.pone.0055666] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 12/29/2012] [Indexed: 11/18/2022] Open
Abstract
There exists great disparity in the number of clinical P. falciparum episodes among children of the same age and living in similar conditions. The epidemiological determinants of such disparity are unclear. We used a data-mining approach to explore a nineteen-year longitudinal malaria cohort study dataset from Senegal and identify variables associated with increased risk of malaria episodes. These were then verified using classical statistics and replicated in a second cohort. In addition to age, we identified a novel high-risk group of children in whom the history of P. falciparum clinical episodes greatly increased risk of further episodes. Age and a high number of previous falciparum clinical episodes not only play major roles in explaining the risk of P. falciparum episodes but also are risk factors for different groups of people. Combined, they explain the majority of falciparum clinical attacks. Contrary to what is widely believed, clinical immunity to P. falciparum does not de facto occur following many P. falciparum clinical episodes. There exist a sub-group of children who suffer repeated clinical episodes. In addition to posing an important challenge for population stratification during clinical trials, this sub-group disproportionally contributes to the disease burden and may necessitate specific prevention and control measures.
Collapse
Affiliation(s)
- Cheikh Loucoubar
- Institut Pasteur, Department Genome and Genetics, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
- Centre National de la Recherche Scientifique, Unité Recherche Associée 3012, Paris, France
- Institut Pasteur de Dakar, Unité d’Epidémiologie des Maladies Infectieuses, Dakar, Senegal
- Université Paris Descartes, Mathématiques Appliquées Paris 5- Unité Mixte de Recherche Centre National de la Recherche Scientifique 8145, Paris, France
- Ecole des Hautes Etudes en Santé Publique, Rennes, France
| | - Laura Grange
- Institut Pasteur, Department Genome and Genetics, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
- Centre National de la Recherche Scientifique, Unité Recherche Associée 3012, Paris, France
| | - Richard Paul
- Institut Pasteur, Department Genome and Genetics, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
- Centre National de la Recherche Scientifique, Unité Recherche Associée 3012, Paris, France
| | | | - Adama Tall
- Institut Pasteur de Dakar, Unité d’Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Olivier Telle
- Institut Pasteur, Department Genome and Genetics, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
- Centre National de la Recherche Scientifique, Unité Recherche Associée 3012, Paris, France
| | - Christian Roussilhon
- Institut Pasteur, Department Genome and Genetics, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
- Centre National de la Recherche Scientifique, Unité Recherche Associée 3012, Paris, France
| | - Joseph Faye
- Institut Pasteur de Dakar, Unité d’Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Fatoumata Diene-Sarr
- Institut Pasteur de Dakar, Unité d’Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Jean-François Trape
- Institut de Recherche pour le Développement, Dakar, Unité de Pathogénie Afro-Tropicale (Unité Mixte de Recherche 198), Dakar, Senegal
| | - Odile Mercereau-Puijalon
- Institut Pasteur, Department of Parasitology, Unité d’Immunologie Moléculaire des Parasites, Paris, France
| | - Anavaj Sakuntabhai
- Institut Pasteur, Department Genome and Genetics, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
- Centre National de la Recherche Scientifique, Unité Recherche Associée 3012, Paris, France
- Mahidol University, Systems Biology of Diseases Unit, Faculty of Science, Bangkok, Thailand
- * E-mail:
| | - Jean-François Bureau
- Institut Pasteur, Department Genome and Genetics, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
- Centre National de la Recherche Scientifique, Unité Recherche Associée 3012, Paris, France
| |
Collapse
|
21
|
Herrant M, Loucoubar C, Bassène H, Gonçalves B, Boufkhed S, Diene Sarr F, Fontanet A, Tall A, Baril L, Mercereau-Puijalon O, Mécheri S, Sakuntabhai A, Paul R. Asthma and atopic dermatitis are associated with increased risk of clinical Plasmodium falciparum malaria. BMJ Open 2013; 3:bmjopen-2013-002835. [PMID: 23883878 PMCID: PMC3731724 DOI: 10.1136/bmjopen-2013-002835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES To assess the impact of atopy and allergy on the risk of clinical malaria. DESIGN A clinical and immunological allergy cross-sectional survey in a birth cohort of 175 children from 1 month to 14 years of age followed for up to 15 years in a longitudinal open cohort study of malaria in Senegal. Malaria incidence data were available for 143 of these children (aged 4 months to 14 years of age) for up to 15 years. Mixed-model regression analysis was used to determine the impact of allergy status on malaria incidence, adjusting for age, gender, sickle-cell trait and force of infection. MAIN OUTCOME MEASURES Asthma, allergic rhinoconjunctivitis and atopic dermatitis status, the number of clinical Plasmodium falciparum malaria episodes since birth and associated parasite density. RESULTS 12% of the children were classified as asthmatic and 10% as having atopic dermatitis. These groups had respectively a twofold (OR 2.12 95%; CI 1.46 to 3.08; p=8×10(-5)) and threefold (OR 3.15; 1.56 to 6.33; p=1.3×10(-3)) increase in the risk of clinical P falciparum malaria once older than the age of peak incidence of clinical malaria (3-4 years of age). They also presented with higher P falciparum parasite densities (asthma: mean 105.3 parasites/μL±SE 41.0 vs 51.3±9.7; p=6.2×10(-3). Atopic dermatitis: 135.4±70.7 vs 52.3±11.0; p=0.014). There was no effect of allergy on the number of non-malaria clinical presentations. Individuals with allergic rhinoconjunctivitis did not have an increased risk of clinical malaria nor any difference in parasite densities. CONCLUSIONS These results demonstrate that asthma and atopic dermatitis delay the development of clinical immunity to P falciparum. Despite the encouraging decrease in malaria incidence rates in Africa, a significant concern is the extent to which the increase in allergy will exacerbate the burden of malaria. Given the demonstrated antiparasitic effect of antihistamines, administration to atopic children will likely reduce the burden of clinical malaria in these children, increase the efficacy of first-line treatment antimalarials and alleviate the non-infectious consequences of atopy.
Collapse
Affiliation(s)
- Magali Herrant
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, CNRS URA3012, Paris, France
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Cheikh Loucoubar
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, CNRS URA3012, Paris, France
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
- INSERM, U946, Genetic Variation and Human Diseases Unit,Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Hubert Bassène
- Institut de Recherche pour le Développement (IRD), Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, URMITE CNRS-IRD 198 UMR 6236, Dakar, Sénégal
| | - Bronner Gonçalves
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Sabah Boufkhed
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Fatoumata Diene Sarr
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Arnaud Fontanet
- Institut Pasteur, Unité d'Epidémiologie des Maladies Emergentes, Paris, France
- Conservatoire National des Arts et Métiers, Paris, France
| | - Adama Tall
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Laurence Baril
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | | | - Salaheddine Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasite, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 2581, Paris, France
| | - Anavaj Sakuntabhai
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, CNRS URA3012, Paris, France
- Complex Systems Group, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Richard Paul
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, CNRS URA3012, Paris, France
| |
Collapse
|
22
|
The host genetic diversity in malaria infection. J Trop Med 2012; 2012:940616. [PMID: 23316245 PMCID: PMC3532872 DOI: 10.1155/2012/940616] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/06/2012] [Accepted: 11/19/2012] [Indexed: 02/06/2023] Open
Abstract
Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment.
Collapse
|
23
|
Enhanced basophil reactivities during severe malaria and their relationship with the Plasmodium falciparum histamine-releasing factor translationally controlled tumor protein. Infect Immun 2012; 80:2963-70. [PMID: 22753372 DOI: 10.1128/iai.00072-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies suggest shared pathogenic pathways during malaria and allergy. Indeed, IgE, histamine, and the parasite-derived Plasmodium falciparum histamine-releasing factor translationally controlled tumor protein (PfTCTP) can be found at high levels in serum from patients experiencing malaria, but their relationship with basophil activation remains unknown. We recruited P. falciparum-infected patients in Senegal with mild malaria (MM; n = 19) or severe malaria (SM; n = 9) symptoms and healthy controls (HC; n = 38). Levels of serum IgE, PfTCTP, and IgG antibodies against PfTCTP were determined by enzyme-linked immunosorbent assays (ELISA). Basophil reactivities to IgE-dependent and -independent stimulations were measured ex vivo using fresh blood by looking at the expression level of the basophil activation marker CD203c with flow cytometry. Unstimulated basophils from MM had significantly lower levels of CD203c expression compared to those from HC and SM. After normalization on this baseline level, basophils from SM showed an enhanced reactivity to calcimycin (A23187) and hemozoin. Although SM reached higher median levels of activation after anti-IgE stimulation, great interindividual differences did not allow the results to reach statistical significance. When primed with recombinant TCTP before anti-IgE, qualitative differences in terms of a better ability to control excessive activation could be described for SM. IgE levels were very high in malaria patients, but concentrations in MM and SM were similar and were not associated with basophil responses, which demonstrates that the presence of IgE alone cannot explain the various basophil reactivities. Indeed, PfTCTP could be detected in 32% of patients, with higher concentrations for SM. These PfTCTP-positive patients displayed significantly higher basophil reactivities to any stimulus. Moreover, the absence of anti-PfTCTP IgG was associated with higher responses in SM but not MM. Our results show an association between basophil reactivity and malaria severity and suggest a pathogenic role for plasmodial PfTCTP in the induction of this allergy-like mechanism.
Collapse
|
24
|
Atkinson A, Garnier S, Afridi S, Fumoux F, Rihet P. Genetic variations in genes involved in heparan sulphate biosynthesis are associated with Plasmodium falciparum parasitaemia: a familial study in Burkina Faso. Malar J 2012; 11:108. [PMID: 22475533 PMCID: PMC3364897 DOI: 10.1186/1475-2875-11-108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/04/2012] [Indexed: 12/18/2022] Open
Abstract
Background There is accumulating evidence that host heparan sulphate proteoglycans play an important role in the life cycle of Plasmodium through their heparan sulphate chains, suggesting that genetic variations in genes involved in heparan sulphate biosynthesis may influence parasitaemia. Interestingly, Hs3st3a1 and Hs3st3b1 encoding enzymes involved in the biosynthesis of heparan sulphate are located within a chromosomal region linked to Plasmodium chabaudi parasitaemia in mice. This suggests that HS3ST3A1 and HS3ST3B1 may influence P. falciparum parasitaemia in humans. Methods Polymorphisms within HS3ST3A1 and HS3ST3B1 were identified in 270 individuals belonging to 44 pedigrees and living in Burkina Faso. Linkage and association between parasitaemia and the polymorphisms were assessed with MERLIN and FBAT. A genetic interaction analysis was also conducted based on the PGMDR approach. Results Linkage between P. falciparum parasitaemia and the chromosomal region containing HS3ST3A1 and HS3ST3B1 was detected on the basis of the 20 SNPs identified. In addition, rs28470223 located within the promoter of HS3ST3A1 was associated with P. falciparum parasitaemia, whereas the PGMDR analysis revealed a genetic interaction between HS3ST3A1 and HS3ST3B1. Seventy-three significant multi-locus models were identified after correcting for multiple tests; 37 significant multi-locus models included rs28470223, whereas 38 multi-locus models contained at least one mis-sense mutation within HS3ST3B1. Conclusion Genetic variants of HS3ST3A1 and HS3ST3B1 are associated with P. falciparum parasitaemia. This suggests that those variants alter both the function of heparan sulphate proteoglycans and P. falciparum parasitaemia.
Collapse
|
25
|
Impact of mosquito bites on asexual parasite density and gametocyte prevalence in asymptomatic chronic Plasmodium falciparum infections and correlation with IgE and IgG titers. Infect Immun 2012; 80:2240-6. [PMID: 22451520 DOI: 10.1128/iai.06414-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An immunomodulatory role of arthropod saliva has been well documented, but evidence for an effect on Plasmodium sp. infectiousness remains controversial. Mosquito saliva may orient the immune response toward a Th2 profile, thereby priming a Th2 response against subsequent antigens, including Plasmodium. Orientation toward a Th1 versus a Th2 profile promotes IgG and IgE proliferation, respectively, where the former is crucial for the development of an efficient antiparasite immune response. Here we assessed the direct effect of mosquito bites on the density of Plasmodium falciparum asexual parasites and the prevalence of gametocytes in chronic, asymptomatic infections in a longitudinal cohort study of seasonal transmission. We additionally correlated these parasitological measures with IgE and IgG antiparasite and anti-salivary gland extract titers. The mosquito biting density was positively correlated with the asexual parasite density but not asexual parasite prevalence and was negatively correlated with gametocyte prevalence. Individual anti-salivary gland IgE titers were also negatively correlated with gametocyte carriage and were strongly positively correlated with antiparasite IgE titers, consistent with the hypothesis that mosquito bites predispose individuals to develop an IgE antiparasite response. We provide evidence that mosquito bites have an impact on asymptomatic infections and differentially so for the production of asexual and sexual parasites. An increased research focus on the immunological impact of mosquito bites during asymptomatic infections is warranted, to establish whether strategies targeting the immune response to saliva can reduce the duration of infection and the onward transmission of the parasite.
Collapse
|
26
|
Blank U, Mécheri S. Duality and complexity of allergic type inflammatory mechanisms in determining the outcome of malaria disease. Front Immunol 2011; 2:78. [PMID: 22566867 PMCID: PMC3342065 DOI: 10.3389/fimmu.2011.00078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/01/2011] [Indexed: 11/17/2022] Open
Abstract
One of the effector arms of the pathogenesis of severe forms of malaria disease is the development of uncontrolled or excessive inflammatory responses. A characteristic inflammatory response may arise from the propensity of some individuals to produce IgE antibodies against environmental antigens or against parasite components. We believe that an allergic inflammatory response which develops concomitantly with a malaria episode may drive the disease course toward severe forms. The role of the IgE–FcεRI complex in malaria severity in Plasmodium falciparum-hosting patients is unknown. Subsequently, except a very limited number of reports, study of effector cells that express this complex such as mast cells and basophils and that may contribute to malaria pathogenesis have been particularly neglected. A better understanding of this type of inflammatory response and its implication in malaria disease and how it impacts Plasmodium parasite development may provide additional tools to alleviate or to cure this deadly disease.
Collapse
|
27
|
Impact of changing drug treatment and malaria endemicity on the heritability of malaria phenotypes in a longitudinal family-based cohort study. PLoS One 2011; 6:e26364. [PMID: 22073159 PMCID: PMC3207815 DOI: 10.1371/journal.pone.0026364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/25/2011] [Indexed: 11/20/2022] Open
Abstract
Despite considerable success of genome wide association (GWA) studies in identifying causal variants for many human diseases, their success in unraveling the genetic basis to complex diseases has been more mitigated. Pathogen population structure may impact upon the infectious phenotype, especially with the intense short-term selective pressure that drug treatment exerts on pathogens. Rigorous analysis that accounts for repeated measures and disentangles the influence of genetic and environmental factors must be performed. Attempts should be made to consider whether pathogen diversity will impact upon host genetic responses to infection.We analyzed the heritability of two Plasmodium falciparum phenotypes, the number of clinical malaria episodes (PFA) and the proportion of these episodes positive for gametocytes (Pfgam), in a family-based cohort followed for 19 years, during which time there were four successive drug treatment regimes, with documented appearance of drug resistance. Repeated measures and variance components analyses were performed with fixed environmental, additive genetic, intra-individual and maternal effects for each drug period. Whilst there was a significant additive genetic effect underlying PFA during the first drug period of study, this was lost in subsequent periods. There was no additive genetic effect for Pfgam. The intra-individual effect increased significantly in the chloroquine period.The loss of an additive genetic effect following novel drug treatment may result in significant loss of power to detect genes in a GWA study. Prior genetic analysis must be a pre-requisite for more detailed GWA studies. The temporal changes in the individual genetic and the intra-individual estimates are consistent with those expected if there were specific host-parasite interactions. The complex basis to the human response to malaria parasite infection likely includes dominance/epistatic genetic effects encompassed within the intra-individual variance component. Evaluating their role in influencing the outcome of infection through host genotype by parasite genotype interactions warrants research effort.
Collapse
|
28
|
Lemaire D, Barbosa T, Rihet P. Coping with genetic diversity: the contribution of pathogen and human genomics to modern vaccinology. Braz J Med Biol Res 2011; 45:376-85. [PMID: 22030866 PMCID: PMC3854287 DOI: 10.1590/s0100-879x2011007500142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/04/2011] [Indexed: 11/21/2022] Open
Abstract
Vaccine development faces major difficulties partly because of genetic variation in both infectious organisms and humans. This causes antigenic variation in infectious agents and a high interindividual variability in the human response to the vaccine. The exponential growth of genome sequence information has induced a shift from conventional culture-based to genome-based vaccinology, and allows the tackling of challenges in vaccine development due to pathogen genetic variability. Additionally, recent advances in immunogenetics and genomics should help in the understanding of the influence of genetic factors on the interindividual and interpopulation variations in immune responses to vaccines, and could be useful for developing new vaccine strategies. Accumulating results provide evidence for the existence of a number of genes involved in protective immune responses that are induced either by natural infections or vaccines. Variation in immune responses could be viewed as the result of a perturbation of gene networks; this should help in understanding how a particular polymorphism or a combination thereof could affect protective immune responses. Here we will present: i) the first genome-based vaccines that served as proof of concept, and that provided new critical insights into vaccine development strategies; ii) an overview of genetic predisposition in infectious diseases and genetic control in responses to vaccines; iii) population genetic differences that are a rationale behind group-targeted vaccines; iv) an outlook for genetic control in infectious diseases, with special emphasis on the concept of molecular networks that will provide a structure to the huge amount of genomic data.
Collapse
Affiliation(s)
- D Lemaire
- Universidade Federal da Bahia, Salvador, BA, Brasil
| | | | | |
Collapse
|
29
|
Laroque A, Min-Oo G, Tam M, Radovanovic I, Stevenson MM, Gros P. Genetic control of susceptibility to infection with Plasmodium chabaudi chabaudi AS in inbred mouse strains. Genes Immun 2011; 13:155-63. [PMID: 21975430 PMCID: PMC4912355 DOI: 10.1038/gene.2011.67] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To identify genetic effects modulating blood stage replication of the malarial parasite, we phenotyped a group of 25 inbred mouse strains for susceptibility to Plasmodium chabaudi chabaudi AS infection (peak parasitemia, survival). A broad spectrum of responses was observed, with strains such as C57BL/6J being the most resistant (low parasitemia, 100% survival), and strains such as NZW/LacJ and C3HeB/FeJ being extremely susceptible (very high parasitemia and uniform lethality). A number of strains showed intermediate phenotypes and gender specific effects, suggestive of rich genetic diversity in response to malaria in inbred strains. An F2 progeny were generated from SM/J (susceptible) and C57BL/6J (resistant) parental strains, and was phenotyped for susceptibility to P. chabaudi chabaudi AS. A whole genome scan in these animals identified the Char1 locus (LOD=7.40) on chromosome 9 as a key regulator of parasite density and pointed to a conserved 0.4Mb haplotype at Char1 that segregates with susceptibility/resistance to infection. In addition, a second locus was detected in [SM/J x C57BL/6J] F2 mice on the X chromosome (LOD=4.26), which was given the temporary designation Char11. These studies identify a conserved role of Char1 in regulating response to malaria in inbred mouse strains, and provide a prioritized 0.4Mb interval for the search of positional candidates.
Collapse
Affiliation(s)
- A Laroque
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Driss A, Hibbert JM, Wilson NO, Iqbal SA, Adamkiewicz TV, Stiles JK. Genetic polymorphisms linked to susceptibility to malaria. Malar J 2011; 10:271. [PMID: 21929748 PMCID: PMC3184115 DOI: 10.1186/1475-2875-10-271] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/19/2011] [Indexed: 12/26/2022] Open
Abstract
The influence of host genetics on susceptibility to Plasmodium falciparum malaria has been extensively studied over the past twenty years. It is now clear that malaria parasites have imposed strong selective forces on the human genome in endemic regions. Different genes have been identified that are associated with different malaria related phenotypes. Factors that promote severity of malaria include parasitaemia, parasite induced inflammation, anaemia and sequestration of parasitized erythrocytes in brain microvasculature. Recent advances in human genome research technologies such as genome-wide association studies (GWAS) and fine genotyping tools have enabled the discovery of several genetic polymorphisms and biomarkers that warrant further study in host-parasite interactions. This review describes and discusses human gene polymorphisms identified thus far that have been shown to be associated with susceptibility or resistance to P. falciparum malaria. Although some polymorphisms play significant roles in susceptibility to malaria, several findings are inconclusive and contradictory and must be considered with caution. The discovery of genetic markers associated with different malaria phenotypes will help elucidate the pathophysiology of malaria and enable development of interventions or cures. Diversity in human populations as well as environmental effects can influence the clinical heterogeneity of malaria, thus warranting further investigations with a goal of developing new interventions, therapies and better management against malaria.
Collapse
Affiliation(s)
- Adel Driss
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | |
Collapse
|
31
|
An exhaustive, non-euclidean, non-parametric data mining tool for unraveling the complexity of biological systems--novel insights into malaria. PLoS One 2011; 6:e24085. [PMID: 21931645 PMCID: PMC3170284 DOI: 10.1371/journal.pone.0024085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022] Open
Abstract
Complex, high-dimensional data sets pose significant analytical challenges in the post-genomic era. Such data sets are not exclusive to genetic analyses and are also pertinent to epidemiology. There has been considerable effort to develop hypothesis-free data mining and machine learning methodologies. However, current methodologies lack exhaustivity and general applicability. Here we use a novel non-parametric, non-euclidean data mining tool, HyperCube®, to explore exhaustively a complex epidemiological malaria data set by searching for over density of events in m-dimensional space. Hotspots of over density correspond to strings of variables, rules, that determine, in this case, the occurrence of Plasmodium falciparum clinical malaria episodes. The data set contained 46,837 outcome events from 1,653 individuals and 34 explanatory variables. The best predictive rule contained 1,689 events from 148 individuals and was defined as: individuals present during 1992–2003, aged 1–5 years old, having hemoglobin AA, and having had previous Plasmodium malariae malaria parasite infection ≤10 times. These individuals had 3.71 times more P. falciparum clinical malaria episodes than the general population. We validated the rule in two different cohorts. We compared and contrasted the HyperCube® rule with the rules using variables identified by both traditional statistical methods and non-parametric regression tree methods. In addition, we tried all possible sub-stratified quantitative variables. No other model with equal or greater representativity gave a higher Relative Risk. Although three of the four variables in the rule were intuitive, the effect of number of P. malariae episodes was not. HyperCube® efficiently sub-stratified quantitative variables to optimize the rule and was able to identify interactions among the variables, tasks not easy to perform using standard data mining methods. Search of local over density in m-dimensional space, explained by easily interpretable rules, is thus seemingly ideal for generating hypotheses for large datasets to unravel the complexity inherent in biological systems.
Collapse
|
32
|
Pullan RL, Bukirwa H, Snow RW, Brooker S. Heritability of Plasmodium parasite density in a rural Ugandan community. Am J Trop Med Hyg 2010; 83:990-5. [PMID: 21036825 PMCID: PMC2963957 DOI: 10.4269/ajtmh.2010.10-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many factors influence variation in Plasmodium infection levels, including parasite/host genetics, immunity, and exposure. Here, we examine the roles of host genetics and exposure in determining parasite density, and test whether effects differ with age. Data for 1,711 residents of an eastern Ugandan community were used in pedigree-based variance component analysis. Heritability of parasite density was 13% (P < 0.001) but was not significant after controlling for shared household. Allowing variance components to vary between children (< 16 years) and adults (≥ 16 years) revealed striking age differences; 26% of variation could be explained by additively acting genes in children (P < 0.001), but there was no genetic involvement in adults. Domestic environment did not explain variation in children and explained 5% in adults (P = 0.09). Genetic effects are an important determinant of parasite density in children in this population, consistent with previous quantitative genetic studies of Plasmodium parasitaemia, although differences in environmental exposure play a lesser role.
Collapse
Affiliation(s)
- Rachel L Pullan
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | | | | | | |
Collapse
|
33
|
Milet J, Nuel G, Watier L, Courtin D, Slaoui Y, Senghor P, Migot-Nabias F, Gaye O, Garcia A. Genome wide linkage study, using a 250K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population. PLoS One 2010; 5:e11616. [PMID: 20657648 PMCID: PMC2904701 DOI: 10.1371/journal.pone.0011616] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/06/2010] [Indexed: 12/22/2022] Open
Abstract
Multiple factors are involved in the variability of host's response to P. falciparum infection, like the intensity and seasonality of malaria transmission, the virulence of parasite and host characteristics like age or genetic make-up. Although admitted nowadays, the involvement of host genetic factors remains unclear. Discordant results exist, even concerning the best-known malaria resistance genes that determine the structure or function of red blood cells. Here we report on a genome-wide linkage and association study for P. falciparum infection intensity and mild malaria attack among a Senegalese population of children and young adults from 2 to 18 years old. A high density single nucleotide polymorphisms (SNP) genome scan (Affimetrix GeneChip Human Mapping 250K-nsp) was performed for 626 individuals: i.e. 249 parents and 377 children out of the 504 ones included in the follow-up. The population belongs to a unique ethnic group and was closely followed-up during 3 years. Genome-wide linkage analyses were performed on four clinical and parasitological phenotypes and association analyses using the family based association tests (FBAT) method were carried out in regions previously linked to malaria phenotypes in literature and in the regions for which we identified a linkage peak. Analyses revealed three strongly suggestive evidences for linkage: between mild malaria attack and both the 6p25.1 and the 12q22 regions (empirical p-value = 5×10−5 and 9×10−5 respectively), and between the 20p11q11 region and the prevalence of parasite density in asymptomatic children (empirical p-value = 1.5×10−4). Family based association analysis pointed out one significant association between the intensity of plasmodial infection and a polymorphism located in ARHGAP26 gene in the 5q31–q33 region (p-value = 3.7×10−5). This study identified three candidate regions, two of them containing genes that could point out new pathways implicated in the response to malaria infection. Furthermore, we detected one gene associated with malaria infection in the 5q31–q33 region.
Collapse
Affiliation(s)
- Jacqueline Milet
- UMR 216 - Mère et Enfant face aux infections tropicales, Institut de Recherche pour le Développement (IRD), Paris, France
- Laboratoire de parasitologie, Université Paris Descartes, Paris, France
| | - Gregory Nuel
- UMR CNRS 8145 - Mathématiques Appliquées Paris 5 (MAP5), Université Paris Descartes, Paris, France
| | - Laurence Watier
- U 657, Institut National de la Santé et de la Recherche Médicale (INSERM), Garches, France
| | - David Courtin
- UMR 216 - Mère et Enfant face aux infections tropicales, Institut de Recherche pour le Développement (IRD), Paris, France
- Laboratoire de parasitologie, Université Paris Descartes, Paris, France
| | - Yousri Slaoui
- UMR CNRS 8145 - Mathématiques Appliquées Paris 5 (MAP5), Université Paris Descartes, Paris, France
| | - Paul Senghor
- Laboratoire de Parasitologie et de Mycologie, Département de Biologie et d'Explorations fonctionnelles, Faculté de Médecine, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Florence Migot-Nabias
- UMR 216 - Mère et Enfant face aux infections tropicales, Institut de Recherche pour le Développement (IRD), Paris, France
- Laboratoire de parasitologie, Université Paris Descartes, Paris, France
| | - Oumar Gaye
- Laboratoire de Parasitologie et de Mycologie, Département de Biologie et d'Explorations fonctionnelles, Faculté de Médecine, Université Cheikh Anta Diop, Dakar, Sénégal
| | - André Garcia
- UMR 216 - Mère et Enfant face aux infections tropicales, Institut de Recherche pour le Développement (IRD), Paris, France
- Laboratoire de parasitologie, Université Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
34
|
Lawaly YR, Sakuntabhai A, Marrama L, Konate L, Phimpraphi W, Sokhna C, Tall A, Diène Sarr F, Peerapittayamongkol C, Louicharoen C, Schneider BS, Levescot A, Talman A, Casademont I, Menard D, Trape JF, Rogier C, Kaewkunwal J, Sura T, Nuchprayoon I, Ariey F, Baril L, Singhasivanon P, Mercereau-Puijalon O, Paul R. Heritability of the human infectious reservoir of malaria parasites. PLoS One 2010; 5:e11358. [PMID: 20613877 PMCID: PMC2894056 DOI: 10.1371/journal.pone.0011358] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 05/28/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Studies on human genetic factors associated with malaria have hitherto concentrated on their role in susceptibility to and protection from disease. In contrast, virtually no attention has been paid to the role of human genetics in eliciting the production of parasite transmission stages, the gametocytes, and thus enhancing the spread of disease. METHODS AND FINDINGS We analysed four longitudinal family-based cohort studies from Senegal and Thailand followed for 2-8 years and evaluated the relative impact of the human genetic and non-genetic factors on gametocyte production in infections of Plasmodium falciparum or P. vivax. Prevalence and density of gametocyte carriage were evaluated in asymptomatic and symptomatic infections by examination of Giemsa-stained blood smears and/or RT-PCR (for falciparum in one site). A significant human genetic contribution was found to be associated with gametocyte prevalence in asymptomatic P. falciparum infections. By contrast, there was no heritability associated with the production of gametocytes for P. falciparum or P. vivax symptomatic infections. Sickle cell mutation, HbS, was associated with increased gametocyte prevalence but its contribution was small. CONCLUSIONS The existence of a significant human genetic contribution to gametocyte prevalence in asymptomatic infections suggests that candidate gene and genome wide association approaches may be usefully applied to explore the underlying human genetics. Prospective epidemiological studies will provide an opportunity to generate novel and perhaps more epidemiologically pertinent gametocyte data with which similar analyses can be performed and the role of human genetics in parasite transmission ascertained.
Collapse
Affiliation(s)
| | - Anavaj Sakuntabhai
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
- Institut Pasteur, Unité de Pathogénie Virale, Paris, France
| | - Laurence Marrama
- Institut Pasteur de Dakar, Unité d'Epidémiologie, Dakar, Senegal
| | - Lassana Konate
- Faculté des Sciences et Techniques, UCAD, Dakar, Senegal
| | - Waraphon Phimpraphi
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - Cheikh Sokhna
- Institut de Recherche pour le Développement, Laboratoire de Paludologie, Dakar, Senegal
| | - Adama Tall
- Institut Pasteur de Dakar, Unité d'Epidémiologie, Dakar, Senegal
| | | | | | - Chalisa Louicharoen
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
- Inter-Department Program of Biomedical Science, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | | | - Anaïs Levescot
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
| | - Arthur Talman
- Unité d'Epidémiologie Moléculaire, Institut Pasteur, Phnom Penh, Cambodia
| | - Isabelle Casademont
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
- Institut Pasteur, Unité de Pathogénie Virale, Paris, France
| | - Didier Menard
- Unité d'Epidémiologie Moléculaire, Institut Pasteur, Phnom Penh, Cambodia
| | - Jean-François Trape
- Institut de Recherche pour le Développement, Laboratoire de Paludologie, Dakar, Senegal
| | - Christophe Rogier
- Institut de Médecine Tropicale du Service de Santé des Armées, Unité de Recherche en Biologie et épidémiologie parasitaires, IFR48, Le Pharo, Marseille, France
| | - Jaranit Kaewkunwal
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - Thanyachai Sura
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Issarang Nuchprayoon
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Frederic Ariey
- Unité d'Epidémiologie Moléculaire, Institut Pasteur, Phnom Penh, Cambodia
| | - Laurence Baril
- Institut Pasteur de Dakar, Unité d'Epidémiologie, Dakar, Senegal
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | | | - Rick Paul
- Institut Pasteur de Dakar, Laboratoire d'Entomologie Médicale, Dakar, Senegal
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
- Institut Pasteur, Unité de Pathogénie Virale, Paris, France
| |
Collapse
|
35
|
Naka I, Nishida N, Patarapotikul J, Nuchnoi P, Tokunaga K, Hananantachai H, Tsuchiya N, Ohashi J. Identification of a haplotype block in the 5q31 cytokine gene cluster associated with the susceptibility to severe malaria. Malar J 2009; 8:232. [PMID: 19840389 PMCID: PMC2770543 DOI: 10.1186/1475-2875-8-232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/19/2009] [Indexed: 11/26/2022] Open
Abstract
Background It has been previously demonstrated that a single nucleotide polymorphism (SNP) in the IL13 promoter region, IL13 -1055T>C (rs1800925), was associated with susceptibility to severe malaria in Thais. In the present study, fine association mapping for a cytokine gene cluster including IL4, IL5, and IL13 on chromosome 5q31 was conducted using the same malaria subjects to refine the region containing a primary variant or a haplotype susceptible to severe malaria. Methods A total of 82 SNPs spanning 522 kb of the 5q31 region were analysed in 368 patients with Plasmodium falciparum malaria (203 mild malaria and 165 severe malaria patients). Results Only rs1881457 located in the promoter region of IL13, which is in linkage disequilibrium with rs1800925 (r2 = 0.73), showed a significant association with severe malaria after adjusting for multiple testing (P = 0.046 by permutation test). This SNP was in a haplotype block spanning 97 kb (from rs2069812 to rs2240032). The detected haplotype block contained the RAD50 gene and the promoter of IL13, but not the other genes. Conclusion A haplotype block in which a primary polymorphism associated with severe malaria is likely to be encoded was identified in Thai malaria patients.
Collapse
Affiliation(s)
- Izumi Naka
- Doctoral Programme in Life System Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Verra F, Mangano VD, Modiano D. Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies. Parasite Immunol 2009; 31:234-53. [PMID: 19388945 DOI: 10.1111/j.1365-3024.2009.01106.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum represents one of the strongest selective forces on the human genome. This stable and perennial pressure has contributed to the progressive accumulation in the exposed populations of genetic adaptations to malaria. Descriptive genetic epidemiology provides the initial step of a logical procedure of consequential phases spanning from the identification of genes involved in the resistance/susceptibility to diseases, to the determination of the underlying mechanisms and finally to the possible translation of the acquired knowledge in new control tools. In malaria, the rational development of this strategy is traditionally based on complementary interactions of heterogeneous disciplines going from epidemiology to vaccinology passing through genetics, pathogenesis and immunology. New tools including expression profile analysis and genome-wide association studies are recently available to explore the complex interactions of host-parasite co-evolution. Particularly, the combination of genome-wide association studies with large multi-centre initiatives can overcome the limits of previous results due to local population dynamics. Thus, we anticipate substantial advances in the interpretation and validation of the effects of genetic variation on malaria susceptibility, and thereby on molecular mechanisms of protective immune responses and pathogenesis.
Collapse
Affiliation(s)
- F Verra
- Department of Public Health, University of Rome La Sapienza, Rome, Italy.
| | | | | |
Collapse
|
37
|
Mangano VD, Clark TG, Auburn S, Campino S, Diakite M, Fry AE, Green A, Richardson A, Jallow M, Sisay-Joof F, Pinder M, Griffiths MJ, Newton C, Peshu N, Williams TN, Marsh K, Molyneux ME, Taylor TE, Modiano D, Kwiatkowski DP, Rockett KA. Lack of association of interferon regulatory factor 1 with severe malaria in affected child-parental trio studies across three African populations. PLoS One 2009; 4:e4206. [PMID: 19145247 PMCID: PMC2621088 DOI: 10.1371/journal.pone.0004206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/26/2008] [Indexed: 11/30/2022] Open
Abstract
Interferon Regulatory Factor 1 (IRF-1) is a member of the IRF family of transcription factors, which have key and diverse roles in the gene-regulatory networks of the immune system. IRF-1 has been described as a critical mediator of IFN-gamma signalling and as the major player in driving TH1 type responses. It is therefore likely to be crucial in both innate and adaptive responses against intracellular pathogens such as Plasmodium falciparum. Polymorphisms at the human IRF1 locus have been previously found to be associated with the ability to control P. falciparum infection in populations naturally exposed to malaria. In order to test whether genetic variation at the IRF1 locus also affects the risk of developing severe malaria, we performed a family-based test of association for 18 Single Nucleotide Polymorphisms (SNPs) across the gene in three African populations, using genotype data from 961 trios consisting of one affected child and his/her two parents (555 from The Gambia, 204 from Kenya and 202 from Malawi). No significant association with severe malaria or severe malaria subphenotypes (cerebral malaria and severe malaria anaemia) was observed for any of the SNPs/haplotypes tested in any of the study populations. Our results offer no evidence that the molecular pathways regulated by the transcription factor IRF-1 are involved in the immune-based pathogenesis of severe malaria.
Collapse
Affiliation(s)
- Valentina D Mangano
- Childhood Infection Group, The Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Phimpraphi W, Paul R, Witoonpanich B, Turbpaiboon C, Peerapittayamongkol C, Louicharoen C, Casademont I, Tungpradabkul S, Krudsood S, Kaewkunwal J, Sura T, Looareesuwan S, Singhasivanon P, Sakuntabhai A. Heritability of P. falciparum and P. vivax malaria in a Karen population in Thailand. PLoS One 2008; 3:e3887. [PMID: 19060954 PMCID: PMC2588340 DOI: 10.1371/journal.pone.0003887] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 11/12/2008] [Indexed: 11/18/2022] Open
Abstract
The majority of studies concerning malaria host genetics have focused on individual genes that confer protection against rather than susceptibility to malaria. Establishing the relative impact of genetic versus non-genetic factors on malaria infection and disease is essential to focus effort on key determinant factors. This relative contribution has rarely been evaluated for Plasmodium falciparum and almost never for Plasmodium vivax. We conducted a longitudinal cohort study in a Karen population of 3,484 individuals in a region of mesoendemic malaria, Thailand from 1998 to 2005. The number of P. falciparum and P. vivax clinical cases and the parasite density per person were determined. Statistical analyses were performed to account for the influence of environmental factors and the genetic heritability of the phenotypes was calculated using the pedigree-based variance components model. The genetic contribution to the number of clinical episodes resulting from P. falciparum and P. vivax were 10% and 19% respectively. There was also moderate genetic contribution to the maximum and overall parasite trophozoite density phenotypes for both P. falciparum (16%&16%) and P. vivax (15%&13%). These values, for P. falciparum, were similar to those previously observed in a region of much higher transmission intensity in Senegal, West Africa. Although environmental factors play an important role in acquiring an infection, genetics plays a determinant role in the outcome of an infection with either malaria parasite species prior to the development of immunity.
Collapse
Affiliation(s)
- Waraphon Phimpraphi
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - Richard Paul
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
| | - Bhee Witoonpanich
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chairat Turbpaiboon
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Chalisa Louicharoen
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
| | - Isabelle Casademont
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
| | - Sumalee Tungpradabkul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Srivicha Krudsood
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - Jaranit Kaewkunwal
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - Thanyachai Sura
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sornchai Looareesuwan
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand
| | - Anavaj Sakuntabhai
- Institut Pasteur, Laboratoire de la Génétique de la réponse aux infections chez l'homme, Paris, France
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
39
|
Miyairi I, DeVincenzo JP. Human genetic factors and respiratory syncytial virus disease severity. Clin Microbiol Rev 2008; 21:686-703. [PMID: 18854487 PMCID: PMC2570150 DOI: 10.1128/cmr.00017-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SUMMARY To explain the wide spectrum of disease severity caused by respiratory syncytial virus (RSV) and because of the limitations of animal models to fully parallel human RSV disease, study of genetic influences on human RSV disease severity has begun. Candidate gene approaches have demonstrated associations of severe RSV in healthy infants with genetic polymorphisms that may alter the innate ability of humans to control RSV (surfactants, Toll-like receptor 4, cell surface adhesion molecules, and others) and those that may control differences in proinflammatory responses or enhanced immunopathology (specific cytokines and their receptors). These studies are reviewed. They are valuable since an understanding of the direction of a polymorphism's effect can help construct a meaningful human RSV disease pathogenesis model. However, the direction, degree, and significance of the statistical association for any given gene are equivocal among studies, and the functional significance of specific polymorphisms is often not even known. Polymorphism frequency distribution differences associated with RSV infection arising from diversity in the genetic background of the population may be confounded further by multiple-hypothesis testing and publication bias, as well as the investigator's perceived importance of a particular pathogenic disease process. Such problems highlight the limitation of the candidate gene approach and the need for an unbiased large-scale genome-wide association study to evaluate this important disease.
Collapse
Affiliation(s)
- Isao Miyairi
- Department of Pediatrics, University of Tennessee, Memphis, Tennessee 38103, USA
| | | |
Collapse
|
40
|
Sirugo G, Hennig BJ, Adeyemo AA, Matimba A, Newport MJ, Ibrahim ME, Ryckman KK, Tacconelli A, Mariani-Costantini R, Novelli G, Soodyall H, Rotimi CN, Ramesar RS, Tishkoff SA, Williams SM. Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics. Hum Genet 2008; 123:557-98. [PMID: 18512079 DOI: 10.1007/s00439-008-0511-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 05/07/2008] [Indexed: 01/13/2023]
Abstract
Africa is the ultimate source of modern humans and as such harbors more genetic variation than any other continent. For this reason, studies of the patterns of genetic variation in African populations are crucial to understanding how genes affect phenotypic variation, including disease predisposition. In addition, the patterns of extant genetic variation in Africa are important for understanding how genetic variation affects infectious diseases that are a major problem in Africa, such as malaria, tuberculosis, schistosomiasis, and HIV/AIDS. Therefore, elucidating the role that genetic susceptibility to infectious diseases plays is critical to improving the health of people in Africa. It is also of note that recent and ongoing social and cultural changes in sub-Saharan Africa have increased the prevalence of non-communicable diseases that will also require genetic analyses to improve disease prevention and treatment. In this review we give special attention to many of the past and ongoing studies, emphasizing those in Sub-Saharan Africans that address the role of genetic variation in human disease.
Collapse
Affiliation(s)
- Giorgio Sirugo
- Medical Research Council Laboratories, Fajara, The Gambia, West Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|