1
|
Lee Y, Lee K. Pancreatic Diseases: Genetics and Modeling Using Human Pluripotent Stem Cells. Int J Stem Cells 2024; 17:253-269. [PMID: 38664226 PMCID: PMC11361847 DOI: 10.15283/ijsc24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 08/31/2024] Open
Abstract
Pancreas serves endocrine and exocrine functions in the body; thus, their pathology can cause a broad range of irreparable consequences. Endocrine functions include the production of hormones such as insulin and glucagon, while exocrine functions involve the secretion of digestive enzymes. Disruption of these functions can lead to conditions like diabetes mellitus and exocrine pancreatic insufficiency. Also, the symptoms and causality of pancreatic cancer very greatly depends on their origin: pancreatic ductal adenocarcinoma is one of the most fatal cancer; however, most of tumor derived from endocrine part of pancreas are benign. Pancreatitis, an inflammation of the pancreatic tissues, is caused by excessive alcohol consumption, the bile duct obstruction by gallstones, and the premature activation of digestive enzymes in the pancreas. Hereditary pancreatic diseases, such as maturity-onset diabetes of the young and hereditary pancreatitis, can be a candidate for disease modeling using human pluripotent stem cells (hPSCs), due to their strong genetic influence. hPSC-derived pancreatic differentiation has been established for cell replacement therapy for diabetic patients and is robustly used for disease modeling. The disease modeling platform that allows interactions between immune cells and pancreatic cells is necessary to perform in-depth investigation of disease pathogenesis.
Collapse
Affiliation(s)
- Yuri Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Kihyun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
2
|
Demcsák A, Sahin-Tóth M. Heterozygous Spink1 Deficiency Promotes Trypsin-dependent Chronic Pancreatitis in Mice. Cell Mol Gastroenterol Hepatol 2024; 18:101361. [PMID: 38768901 PMCID: PMC11292374 DOI: 10.1016/j.jcmgh.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND & AIMS Heterozygous SPINK1 mutations are strong risk factors for chronic pancreatitis in humans, yet heterozygous disruption of mouse Spink1 yielded no pancreatic phenotype. To resolve this contradiction, we used CRISPR/Cas9-mediated genome editing to generate heterozygous Spink1-deleted mice (Spink1-KOhet) in the C57BL/6N strain and studied the effect of this allele in trypsin-independent and trypsin-dependent pancreatitis models. METHODS We investigated severity of acute pancreatitis and progression to chronic pancreatitis in Spink1-KOhet mice after transient (10 injections) and prolonged (2 × 8 injections) cerulein hyperstimulation. We crossed Spink1-KOhet mice with T7D23A and T7D22N,K24R mice that carry strongly autoactivating trypsinogen mutants and exhibit spontaneous chronic pancreatitis. RESULTS Prolonged but not transient cerulein stimulation resulted in increased intrapancreatic trypsin activity and more severe acute pancreatitis in Spink1-KOhet mice relative to the C57BL/6N control strain. After the acute episode, Spink1-KOhet mice developed progressive disease with chronic pancreatitis-like features, whereas C57BL/6N mice recovered rapidly. Trypsinogen mutant mice carrying the Spink1-KOhet allele exhibited strikingly more severe chronic pancreatitis than the respective parent strains. CONCLUSIONS Heterozygous Spink1 deficiency caused more severe acute pancreatitis after prolonged cerulein stimulation and promoted chronic pancreatitis after the cerulein-induced acute episode, and in two strains of trypsinogen mutant mice with spontaneous disease. In contrast, acute pancreatitis induced with limited cerulein hyperstimulation was unaffected by heterozygous Spink1 deletion, in agreement with recent observations that trypsin activity does not mediate pathologic responses in this model. Taken together, the findings strongly support the notion that loss-of-function SPINK1 mutations in humans increase chronic pancreatitis risk in a trypsin-dependent manner.
Collapse
Affiliation(s)
- Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, California
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
3
|
Li Y, Khandia R, Papadakis M, Alexiou A, Simonov AN, Khan AA. An investigation of codon usage pattern analysis in pancreatitis associated genes. BMC Genom Data 2022; 23:81. [PMID: 36434531 PMCID: PMC9700901 DOI: 10.1186/s12863-022-01089-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Pancreatitis is an inflammatory disorder resulting from the autoactivation of trypsinogen in the pancreas. The genetic basis of the disease is an old phenomenon, and evidence is accumulating for the involvement of synonymous/non-synonymous codon variants in disease initiation and progression. RESULTS The present study envisaged a panel of 26 genes involved in pancreatitis for their codon choices, compositional analysis, relative dinucleotide frequency, nucleotide disproportion, protein physical properties, gene expression, codon bias, and interrelated of all these factors. In this set of genes, gene length was positively correlated with nucleotide skews and codon usage bias. Codon usage of any gene is dependent upon its AT and GC component; however, AGG, CGT, and CGA encoding for Arg, TCG for Ser, GTC for Val, and CCA for Pro were independent of nucleotide compositions. In addition, Codon GTC showed a correlation with protein properties, isoelectric point, instability index, and frequency of basic amino acids. We also investigated the effect of various evolutionary forces in shaping the codon usage choices of genes. CONCLUSIONS This study will enable us to gain insight into the molecular signatures associated with the disease that might help identify more potential genes contributing to enhanced risk for pancreatitis. All the genes associated with pancreatitis are generally associated with physiological function, and mutations causing loss of function, over or under expression leads to an ailment. Therefore, the present study attempts to envisage the molecular signature in a group of genes that lead to pancreatitis in case of malfunction.
Collapse
Affiliation(s)
- Yuanyang Li
- Third-Grade Pharmacological Laboratory On Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China ,grid.254148.e0000 0001 0033 6389College of Medical Science, China Three Gorges University, Yichang, China
| | - Rekha Khandia
- grid.411530.20000 0001 0694 3745Department of Biochemistry and Genetics, Barkatullah University, Bhopal, MP 462026 India
| | - Marios Papadakis
- grid.412581.b0000 0000 9024 6397Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia ,AFNP Med Austria, Vienna, Austria
| | | | - Azmat Ali Khan
- grid.56302.320000 0004 1773 5396Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
4
|
The Pancreas and Known Factors of Acute Pancreatitis. J Clin Med 2022; 11:jcm11195565. [PMID: 36233433 PMCID: PMC9571992 DOI: 10.3390/jcm11195565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatitis is regarded by clinicians as one of the most complicated and clinically challenging of all disorders affecting the abdomen. It is classified on the basis of clinical, morphological, and histological criteria. Causes of acute pancreatitis can easily be identified in 75–85% of patients. The main causes of acute, recurrent acute, and chronic pancreatitis are gallstone migration and alcohol abuse. Other causes are uncommon, controversial, or unexplained. For instance, cofactors of all forms of pancreatitis are pancreas divisum and hypertriglyceridemia. Another factor that should be considered is a complication of endoscopic retrograde cholangiopancreatography: post-endoscopic retrograde cholangiopancreatography acute pancreatitis. The aim of this study is to present the known risk factors for acute pancreatitis, beginning with an account of the morphology, physiology, and development of the pancreas.
Collapse
|
5
|
Nagel F, Palm GJ, Geist N, McDonnell TCR, Susemihl A, Girbardt B, Mayerle J, Lerch MM, Lammers M, Delcea M. Structural and Biophysical Insights into SPINK1 Bound to Human Cationic Trypsin. Int J Mol Sci 2022; 23:ijms23073468. [PMID: 35408828 PMCID: PMC8998336 DOI: 10.3390/ijms23073468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
(1) The serine protease inhibitor Kazal type 1 (SPINK1) inhibits trypsin activity in zymogen granules of pancreatic acinar cells. Several mutations in the SPINK1 gene are associated with acute recurrent pancreatitis (ARP) and chronic pancreatitis (CP). The most common variant is SPINK1 p.N34S. Although this mutation was identified two decades ago, the mechanism of action has remained elusive. (2) SPINK1 and human cationic trypsin (TRY1) were expressed in E. coli, and inhibitory activities were determined. Crystals of SPINK1-TRY1 complexes were grown by using the hanging-drop method, and phases were solved by molecular replacement. (3) Both SPINK1 variants show similar inhibitory behavior toward TRY1. The crystal structures are almost identical, with minor differences in the mutated loop. Both complexes show an unexpected rotamer conformation of the His63 residue in TRY1, which is a member of the catalytic triad. (4) The SPINK1 p.N34S mutation does not affect the inhibitory behavior or the overall structure of the protein. Therefore, the pathophysiological mechanism of action of the p.N34S variant cannot be explained mechanistically or structurally at the protein level. The observed histidine conformation is part of a mechanism for SPINK1 that can explain the exceptional proteolytic stability of this inhibitor.
Collapse
Affiliation(s)
- Felix Nagel
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
| | - Gottfried J. Palm
- Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (G.J.P.); (B.G.); (M.L.)
| | - Norman Geist
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
| | - Thomas C. R. McDonnell
- Biochemical Engineering Department, University College London, Bernard Katz, London WC1E 6BT, UK;
| | - Anne Susemihl
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
- Department of Hematology and Oncology, Internal Medicine C, University of Greifswald, 17489 Greifswald, Germany
| | - Britta Girbardt
- Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (G.J.P.); (B.G.); (M.L.)
| | - Julia Mayerle
- Department of Medicine II, University Hospital Munich, Ludwig-Maximillian University Munich, 81377 Munich, Germany;
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, 17489 Greifswald, Germany;
| | - Michael Lammers
- Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (G.J.P.); (B.G.); (M.L.)
| | - Mihaela Delcea
- Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany; (F.N.); (N.G.); (A.S.)
- Correspondence:
| |
Collapse
|
6
|
Xu F, Yang C, Tang M, Wang M, Cheng Z, Chen D, Chen X, Liu K. The Role of Gut Microbiota and Genetic Susceptibility in the Pathogenesis of Pancreatitis. Gut Liver 2021; 16:686-696. [PMID: 34911043 PMCID: PMC9474482 DOI: 10.5009/gnl210362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Pancreatitis is one of the most common inflammatory diseases of the pancreas caused by autodigestion induced by excessive premature protease activation. However, recognition of novel pathophysiological mechanisms remains a still challenge. Both genetic and environmental factors contribute to the pathogenesis of pancreatitis, and the gut microbiota is a potential source of an environmental effect. In recent years, several new frontiers in gut microbiota and genetic risk assessment research have emerged and improved the understanding of the disease. These investigations showed that the disease progression of pancreatitis could be regulated by the gut microbiome, either through a translocation influence or in a host immune response manner. Meanwhile, the onset of the disease is also associated with the heritage of a pathogenic mutation, and the disease progression could be modified by genetic risk factors. In this review, we focused on the recent advances in the role of gut microbiota in the pathogenesis of pancreatitis, and the genetic susceptibility in pancreatitis.
Collapse
Affiliation(s)
- Fumin Xu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chunmei Yang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingcheng Tang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ming Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhao Cheng
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Chronic pancreatitis for the clinician. Part 1: Etiology and diagnosis. Interdisciplinary position paper of the Societat Catalana de Digestologia and the Societat Catalana de Pàncrees. GASTROENTEROLOGIA Y HEPATOLOGIA 2021; 45:231-248. [PMID: 34157366 DOI: 10.1016/j.gastrohep.2021.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/13/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
|
8
|
Kulke M, Nagel F, Schulig L, Geist N, Gabor M, Mayerle J, M Lerch M, Link A, Delcea M. A Hypothesized Mechanism for Chronic Pancreatitis Caused by the N34S Mutation of Serine Protease Inhibitor Kazal-Type 1 Based on Conformational Studies. J Inflamm Res 2021; 14:2111-2119. [PMID: 34054303 PMCID: PMC8157096 DOI: 10.2147/jir.s304787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Although strongly related, the pathophysiological effect of the N34S mutation in the serine protease inhibitor Kazal type 1 (SPINK1) in chronic pancreatitis is still unknown. In this study, we investigate the conformational space of the human cationic trypsin-serine protease inhibitor complex. Methods Simulations with molecular dynamics, replica exchange, and transition pathway methods are used. Results Two main binding states of the inhibitor to the complex were found, which explicitly relate the influence of the mutation site to conformational changes in the active site of trypsin. Conclusion Based on our result, a hypothesis is formulated that explains the development of chronic pancreatitis through accelerated digestion of the mutant by trypsin.
Collapse
Affiliation(s)
- Martin Kulke
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Felix Nagel
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Norman Geist
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Marcel Gabor
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine II, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Markus M Lerch
- Department of Medicine a, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Mihaela Delcea
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
9
|
Genetic Risk Factors in Early-Onset Nonalcoholic Chronic Pancreatitis: An Update. Genes (Basel) 2021; 12:genes12050785. [PMID: 34065437 PMCID: PMC8160726 DOI: 10.3390/genes12050785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic pancreatitis (CP) is a progressive, irreversible inflammatory disorder of the pancreas, which results from interrelations between different genetic and environmental factors. Genetic variants are the primary cause of the disease in early-onset nonalcoholic CP patients. Novel CP-associated genes are continuously emerging from genetic studies on CP cohorts, providing important clues for distinct mechanisms involved in CP development. On the basis of functional studies, the genetic alterations have been sub-grouped into CP-driving pathological pathways. This review focuses on the concept of CP as a complex disease driven by multiple genetic factors. We will discuss only well-defined genetic risk factors and distinct functional pathways involved in CP development, especially in the context of the early-onset nonalcoholic CP group. The diagnostic implications of the genetic testing will be addressed as well.
Collapse
|
10
|
Scale and Scope of Gene-Alcohol Interactions in Chronic Pancreatitis: A Systematic Review. Genes (Basel) 2021; 12:genes12040471. [PMID: 33806082 PMCID: PMC8064432 DOI: 10.3390/genes12040471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Excessive alcohol consumption has long been known to be the primary cause of chronic pancreatitis (CP) but genetic risk factors have been increasingly identified over the past 25 years. The scale and scope of gene-alcohol interactions in CP nevertheless remain unclear. METHODS All studies that had obtained genetic variant data concurrently on alcoholic CP (ACP) patients, non-ACP (NACP) patients and normal controls were collated. Employing normal controls as a common baseline, paired ORACP and ORNACP (odds ratios associated with ACP and NACP, respectively) values were calculated and used to assess gene-alcohol interactions. RESULTS Thirteen variants involving PRSS1, SPINK1, CTRC, CLDN2, CPA1, CEL and CTRB1-CTRB2, and varying from very rare to common, were collated. Seven variants had an ORACP > ORNACP, which was regarded as an immediate indicator of gene-alcohol interactions in CP. Variants with an ORACP < ORNACP were also found to interact with alcohol consumption by virtue of their impact on age at first pancreatitis symptoms in ACP. CONCLUSIONS This study revealed evidence for extensive gene-alcohol interactions in CP. Our findings lend support to the hypothesis that alcohol affects the expression of genetically determined CP and highlight a predominant role of weak-effect variants in the development of ACP.
Collapse
|
11
|
Maatman TK, Zyromski NJ. In Brief. Curr Probl Surg 2021. [PMID: 32297552 DOI: 10.1016/j.cpsurg.2020.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
A high prevalence of genetic polymorphisms in idiopathic and alcohol-associated chronic pancreatitis patients in Ireland. HPB (Oxford) 2021; 23:231-237. [PMID: 32669225 DOI: 10.1016/j.hpb.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Individual genetic architecture is considered central to susceptibility and progression of disease in chronic pancreatitis. The study aimed to evaluate the presence of common pancreatic gene mutations in a defined cohort of idiopathic and alcohol-induced chronic pancreatitis patients in Ireland. METHODS The study comprised patients with idiopathic and alcohol-induced chronic pancreatitis and historic controls. Variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, cationic trypsinogen (PRSS1) gene and serine protease inhibitor kazal type-1 (SPINK1) gene, were assessed by Taqman© genotyping assay. RESULTS Of n = 126 patients and n = 167 controls, mutations were detected in 23 (20%) and in 10 (6%) respectively (P < 0.001). The majority of mutations found were in the SPINK1 gene variant N34S (13%) which increased disease risk almost six-fold (OR 5.9). Neither CFTR severe mutation (F508del) (P = 0.649) nor mild variant (R117H) (P = 0.327) were over-represented amongst patients compared to control subjects. PRSS1 variants were not detected in either patient or control subjects. CONCLUSION There was a significant prevalence of chronic pancreatitis-associated gene mutations in this well-phenotyped cohort. In patients with alcohol-related or idiopathic chronic pancreatitis, the possibility of genetic mutations in the SPINK 1 gene should be considered as a contributing aetiology factor.
Collapse
|
13
|
Seltsam K, Pentner C, Weigl F, Sutedjo S, Zimmer C, Beer S, Bugert P, Ewers M, Ruffert C, Michl P, Laumen H, Witt H, Rosendahl J. Sequencing of the complex CTRB1-CTRB2 locus in chronic pancreatitis. Pancreatology 2020; 20:1598-1603. [PMID: 33036922 DOI: 10.1016/j.pan.2020.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND /Objectives: A recent Genome-wide Association Study (GWAS) in alcoholic chronic pancreatitis (ACP) identified a novel association with the CTRB1-CTRB2 (chymotrypsinogen B1, B2) locus, linked to a 16.6 kb inversion that was confirmed in non-alcoholic chronic pancreatitis (NACP). Moreover, recent findings on the function of CTRB1 and CTRB2 suggest a protective role in pancreatitis development. The aim of the present study was to investigate the CTRB1-CTRB2 locus for rare genetic variants associated with chronic pancreatitis (CP). METHODS We analyzed 134 patients with ACP and 203 patients with NACP and compared them to up to 258 healthy controls. Genotyping was performed with polymerase chain reaction, followed by Sanger sequencing of all exons and the exon-intron-boundaries of CTRB1 and CTRB2. Finally, in silico analyses of the identified variants were conducted. RESULTS None of the seven rare missense variants or the single 5'-UTR variant in CTRB1 and CTRB2 was associated with ACP or NACP. In silico analysis predicted that variant p. Trp5Leu in CTRB1 and variant c.-4C > T in CTRB2 might alter protein expression and variants p. Asp222His in CTRB1 and p. Ala247Thr in CTRB2 might affect protein function. However, all of these variants were also described in public databases. CONCLUSIONS The present study did not reveal an association of rare variants in CTRB1 and CTRB2 with ACP or NACP. Although rare missense variants were almost exclusively found in patients, only four variants were predicted to affect protein expression or function. Thus, a major influence of rare variants in the CTRB1-CTRB2 locus on CP development is unlikely.
Collapse
Affiliation(s)
- Katharina Seltsam
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Carola Pentner
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Franziska Weigl
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Stella Sutedjo
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Constantin Zimmer
- Division of Gastroenterology, Medical Department II - Oncology, Gastroenterology, Hepatology, Pulmonology, Infectious Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Sebastian Beer
- Division of Gastroenterology, Medical Department II - Oncology, Gastroenterology, Hepatology, Pulmonology, Infectious Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg, Mannheim, Germany
| | - Maren Ewers
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Claudia Ruffert
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Helmut Laumen
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Heiko Witt
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany.
| |
Collapse
|
14
|
Jones TE, Bellin MD, Yadav D, Freeman ML, Schwarzenberg SJ, Slivka A, Chennat JS, Beilman GJ, Chinnakotla S, Pruett TL, Kirchner V, Humar A, Wijkstrom M, Zureikat AH, Nikiforova MN, Wald AI, Whitcomb DC, Singhi AD. The histopathology of SPINK1-associated chronic pancreatitis. Pancreatology 2020; 20:1648-1655. [PMID: 33097431 PMCID: PMC7704661 DOI: 10.1016/j.pan.2020.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 09/20/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The identification of genetic risk factors for chronic pancreatitis, such as PRSS1, CFTR and SPINK1, provides the opportunity to define key pathologic hallmarks and etiologic-specific changes. For example, pancreata from PRSS1 and CFTR patients exhibit progressive lipomatous atrophy without significant fibrosis. Considering the pathology of SPINK1-associated pancreatitis is ill-defined, we examined the pancreata of SPINK1 patients with chronic pancreatitis. METHODS Histologic sections after total pancreatectomy with islet autotransplantation and associated clinicopathologic data were collected from 28 patients with SPINK1 germline alterations. Clinical findings, germline data, anatomic anomalies and pathologic findings were descriptively evaluated. RESULTS Patients ranged in age from 5 to 48 years (median, 21.6 years) with abdominal pain between 2 and 25 years (median, 5.8 years). Most patients were SPINK1 heterozygous and 14 (50%) had co-occurring CFTR (n = 12) and CTRC (n = 2) mutations. Other pancreatitis risk factors included anatomic anomalies (n = 9) and tobacco use (n = 1). Overall, 24 (86%) patients had additional pancreatitis-associated germline alterations, SPINK1 homozygosity, anatomic anomalies or environmental factors. Examination of pancreata revealed a sequential pattern of exocrine parenchymal loss and replacement by prominent fibrosis, dependent on the duration of abdominal pain. No malignancies were identified, but low-grade pancreatic intraepithelial neoplasia was present for 2 cases. CONCLUSIONS Within this descriptive study, SPINK1-associated pancreatitis is characterized by parenchymal fibrosis and suggests divergent pathophysiologic mechanisms from PRSS1 and CFTR-associated pancreatitis. Moreover, SPINK1 patients frequently had additional etiologic factors that did not impact the development of pancreatic fibrosis and may implicate SPINK1 as a disease modifier gene.
Collapse
Affiliation(s)
- Terrell E Jones
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Melena D Bellin
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dhiraj Yadav
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martin L Freeman
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sarah J Schwarzenberg
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Adam Slivka
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jennifer S Chennat
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Gregory J Beilman
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Srinath Chinnakotla
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Timothy L Pruett
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Varvara Kirchner
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Abhinav Humar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Amer H Zureikat
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Marina N Nikiforova
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Abigail I Wald
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David C Whitcomb
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Masamune A, Kikuta K, Kume K, Hamada S, Tsuji I, Takeyama Y, Shimosegawa T, Okazaki K. Nationwide epidemiological survey of chronic pancreatitis in Japan: introduction and validation of the new Japanese diagnostic criteria 2019. J Gastroenterol 2020; 55:1062-1071. [PMID: 32676800 DOI: 10.1007/s00535-020-01704-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To provide updated clinico-epidemiological information on chronic pancreatitis (CP) in Japan. METHODS We conducted a two-stage nationwide epidemiological survey; the number of CP patients was estimated in the first-stage survey, and their clinical features were examined in the second-stage survey. We surveyed patients with CP who had visited hospitals in 2016 and were diagnosed according to the Japanese diagnostic criteria 2009 (DC2009). Furthermore, we validated the new Japanese diagnostic criteria (DC2019) in patients with early CP diagnosed according to DC2009. RESULTS The number of patients with definite/probable CP in 2016 was 56,520 (prevalence, 44.5 per 100,000 persons), and that of early CP was 4470 (prevalence, 3.5 per 100,000 persons). We obtained detailed clinical information of 2150 patients with definite/probable CP and 249 patients with early CP. Compared with the early CP cases, the definite/probable CP cases had higher proportions of male (4.8 vs. 1.3), alcohol-related etiology (72.0% vs. 45.8%), smoking history (69.6% vs. 41.0%), diabetes mellitus (42.3% vs. 19.3%), and past history of acute pancreatitis (AP) (50.4% vs. 22.1%). Among the patients with early CP diagnosed according to DC2009, 93 (37.3%) were diagnosed with early CP according to DC2019, but the diagnosis of the remaining 156 (62.7%) patients was downgraded. Alcohol-related etiology, smoking history, early disease onset, and past history of AP were associated with the maintenance of early CP diagnosis in DC2019. CONCLUSION We clarified the current status of CP in Japan. Further validation studies are warranted to clarify the diagnostic utility of DC2019.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Kazuhiro Kikuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Kiyoshi Kume
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Ichiro Tsuji
- Division of Epidemiology, Department of Public Health and Forensic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshifumi Takeyama
- Department of Surgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | | |
Collapse
|
16
|
Maatman TK, Zyromski NJ. Chronic Pancreatitis. Curr Probl Surg 2020; 58:100858. [PMID: 33663691 DOI: 10.1016/j.cpsurg.2020.100858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Thomas K Maatman
- Resident in General Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicholas J Zyromski
- Professor of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA..
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The aim was to review evidence about diabetes secondary to hereditary pancreatitis, seeking novel diagnostic and treatment features. RECENT FINDINGS Hereditary pancreatitis (HP) is an autosomal dominant condition, characterized by recurrent episodes of acute pancreatitis, progression to fibrosis, and chronic pancreatitis. Clinical presentation includes diabetes of the exocrine pancreas (DEP). HP prevalence ranges from 0.3 to 0.57 per 100,000 people, with up to 80% of these develop DEP. This condition often requires specific interventions: with regard to metabolic control, metformin is the first choice for those with mild DEP, and for those in advanced disease, insulin is considered the first-line therapy. Insulin analogues and insulin pump therapy are preferred due to the brittle glycemic pattern and risk of hypoglycemia. In case of exocrine insufficiency, pancreatic enzyme replacement therapy is recommended. Pancreatic polypeptide administration is a promising novel treatment feature. DEP due to HP appears to be a misdiagnosed condition. The requirement of specific management demonstrates the importance of this matter; therefore, appropriate recognition and classification are important.
Collapse
Affiliation(s)
- Gabriel Xavier Ramalho
- School of Medicine, Faculty of Education and Health Sciences, University Center of Brasilia (UniCEUB), Brasilia, Brazil
| | - Marcio Garrison Dytz
- School of Medicine, Faculty of Education and Health Sciences, University Center of Brasilia (UniCEUB), Brasilia, Brazil.
- Endocrinology Division, Department of Intern Medicine, Sobradinho Regional Hospital, Brasilia, Brazil.
- Endocrinology and Metabolism Medical Residency, Superior School of Health Sciences (ESCS), Brasilia, Brazil.
- Institute of Diabetes and Endocrinology of Brasilia, SHS Qd. 6 Cj. A Bl. E Sl 1119, Brasilia, DF, 70316-902, Brazil.
| |
Collapse
|
18
|
Tang XY, Zou WB, Yu FF, Wang L, Ru N, Zhu JH, Li ZS, Liao Z. Meta-analysis of the impact of the SPINK1 c.194 + 2T > C variant in chronic pancreatitis. Dig Liver Dis 2020; 52:143-148. [PMID: 31401021 DOI: 10.1016/j.dld.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The SPINK1 c.194 + 2T > C variant has been increasingly recognized as an important risk factor for chronic pancreatitis (CP). However, there is no clear agreement on its contribution to different ethnicities and CP etiologies. To address this issue, a meta-analysis of literature was performed. METHODS Studies addressing the presence of the SPINK1 c.194 + 2T > C variant in CP patients and controls were retrieved from the PubMed, EMBASE and Cochrane databases. Initial analysis included all CP patients, followed by subgroup analyses for East Asian and non-East Asian patients, and for idiopathic CP (ICP) and non-ICP. RESULTS A total of 13 studies were retrieved for analysis, comprising 2097 cases and 4019 controls. There were 126 cases (10.01%) carrying the SPINK1 c.194 + 2T > C variant in cases, while only two controls were carriers (0.05%). Overall, the variant was significantly associated with an increased risk of CP (OR = 25.73). In the subgroup, the variant was significantly associated with increased risk of CP in East Asians (OR = 73.16), and in non-East Asians (OR = 10.21). Further, the contribution of the variant in ICP (OR = 35.31) was found to be higher than in non-ICP (25.75). CONCLUSIONS The SPINK1 c.194 + 2T > C variant is a strong risk factor for CP, especially in East Asian patients with ICP.
Collapse
Affiliation(s)
- Xin-Ying Tang
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Fei-Fei Yu
- Medical Service Research Division, The Naval Medical Research Institute, Second Military Medical University, Shanghai, China
| | - Lei Wang
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Nan Ru
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jia-Hui Zhu
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Zhuan Liao
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| |
Collapse
|
19
|
van den Berg FF, Kempeneers MA, van Santvoort HC, Zwinderman AH, Issa Y, Boermeester MA. Meta-analysis and field synopsis of genetic variants associated with the risk and severity of acute pancreatitis. BJS Open 2019; 4:3-15. [PMID: 32011822 PMCID: PMC6996643 DOI: 10.1002/bjs5.50231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background Genetic risk factors can provide insight into susceptibility for acute pancreatitis (AP) and disease progression towards (infected) necrotizing pancreatitis and persistent organ failure. The aim of the study was to undertake a systematic review of the genetic evidence for AP. Methods Online databases (MEDLINE, Embase, BIOSIS, Web of Science, Cochrane Library) were searched to 8 February 2018. Studies that reported on genetic associations with AP susceptibility, severity and/or complications were eligible for inclusion. Meta‐analyses were performed of variants that were reported by at least two data sources. Venice criteria and Bayesian false‐discovery probability were applied to assess credibility. Results Ninety‐six studies reporting on 181 variants in 79 genes were identified. In agreement with previous meta‐analyses, credible associations were established for SPINK1 (odds ratio (OR) 2·87, 95 per cent c.i. 1·89 to 4·34), IL1B (OR 1·23, 1·06 to 1·42) and IL6 (OR 1·64, 1·15 to 2·32) and disease risk. In addition, two novel credible single‐nucleotide polymorphisms were identified in Asian populations: ALDH2 (OR 0·48, 0·36 to 0·64) and IL18 (OR 1·47, 1·18 to 1·82). Associations of variants in TNF, GSTP1 and CXCL8 genes with disease severity were identified, but were of low credibility. Conclusion Genetic risk factors in genes related to trypsin activation and innate immunity appear to be associated with susceptibility to and severity of AP.
Collapse
Affiliation(s)
- F F van den Berg
- Department of Surgery, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - M A Kempeneers
- Department of Surgery, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - H C van Santvoort
- Department of Surgery, St Antonius Hospital, Nieuwegein, the Netherlands.,Department of Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - A H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Y Issa
- Department of Surgery, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - M A Boermeester
- Department of Surgery, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
20
|
The impact of physiological stress conditions on protein structure and trypsin inhibition of serine protease inhibitor Kazal type 1 (SPINK1) and its N34S variant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140281. [PMID: 31525466 PMCID: PMC6905150 DOI: 10.1016/j.bbapap.2019.140281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
One of the most common mutations in the serine protease inhibitor Kazal type 1 (SPINK1) gene is the N34S variant which is strongly associated with chronic pancreatitis. Although it is assumed that N34S mutation constitutes a high-risk factor, the underlying pathologic mechanism is still unknown. In the present study, we investigated the impact of physiological stress factors on SPINK1 protein structure and trypsin inhibitor function using biophysical methods. Our circular dichroism spectroscopy data revealed differences in the secondary structure of SPINK1 and N34S mutant suggesting protein structural changes induced by the mutation as an impairment that could be disease-relevant. We further confirmed that both SPINK1 (KD of 0.15 ± 0.06 nM) and its N34S variant (KD of 0.08 ± 0.02 nM) have similar binding affinity and inhibitory effect towards trypsin as shown by surface plasmon resonance and trypsin inhibition assay studies, respectively. We found that stress conditions such as altered ion concentrations (i.e. potassium, calcium), temperature shifts, as well as environmental pH lead to insignificant differences in trypsin inhibition between SPINK1 and N34S mutant. However, we have shown that the environmental pH induces structural changes in both SPINK1 constructs in a different manner. Our findings suggest protein structural changes in the N34S variant as an impairment of SPINK1 and environmental pH shift as a trigger that could play a role in disease progression of pancreatitis.
Collapse
|
21
|
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 2019; 156:1951-1968.e1. [PMID: 30660731 PMCID: PMC6903413 DOI: 10.1053/j.gastro.2018.11.081] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Since the discovery of the first trypsinogen mutation in families with hereditary pancreatitis, pancreatic genetics has made rapid progress. The identification of mutations in genes involved in the digestive protease-antiprotease pathway has lent additional support to the notion that pancreatitis is a disease of autodigestion. Clinical and experimental observations have provided compelling evidence that premature intrapancreatic activation of digestive proteases is critical in pancreatitis onset. However, disease course and severity are mostly governed by inflammatory cells that drive local and systemic immune responses. In this article, we review the genetics, cell biology, and immunology of pancreatitis with a focus on protease activation pathways and other early events.
Collapse
Affiliation(s)
- Julia Mayerle
- Medical Department II, University Hospital, LMU, Munich, Germany,Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Hungary
| | - Georg Beyer
- Medical Department II, University Hospital, LMU, Munich, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| |
Collapse
|
22
|
Abstract
Pancreatic cancer is a devastating disease with poor prognosis in the modern era. Inflammatory processes have emerged as key mediators of pancreatic cancer development and progression. Recently, studies have been carried out to investigate the underlying mechanisms that contribute to tumorigenesis induced by inflammation. In this review, the role of inflammation in the initiation and progression of pancreatic cancer is discussed.
Collapse
Affiliation(s)
- Kamleshsingh Shadhu
- Pancreas Center of The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
- Pancreas Institute of Nanjing Medical University, Nanjing, P.R. China
- School of International Education of Nanjing Medical University, Nanjing, P.R. China
| | - Chunhua Xi
- Pancreas Center of The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
- Pancreas Institute of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Genetic mutations are the primary cause for acute recurrent (ARP) and chronic pancreatitis in children. Further, our medical approach for many diseases is changing from a one-drug therapy to more individualized therapeutic strategies. In respect to the therapeutic management of ARP/chronic pancreatitis, this entails an understanding of the individual, mainly genetic, risk factors that led to pancreatitis disease. RECENT FINDINGS New pancreatitis-associated genes are continuously emerging from increasingly large genetic cohort studies. Furthermore, newer research findings demonstrate that multiple genetic and nongenetic factors are required to increase the individual risk for developing ARP/chronic pancreatitis. Last, there is new exciting development towards targeted pancreatitis therapy in the future. SUMMARY This review introduces the current concept of ARP/chronic pancreatitis as a complex disease caused by multiple genetic and nongenetic factors. This warrants careful evaluation of these patients and ideally consultation of a pancreas expert to help understand individual genetic risk profiles and to provide more effective patient consultation.
Collapse
|
24
|
Rosendahl J, Kirsten H, Hegyi E, Kovacs P, Weiss FU, Laumen H, Lichtner P, Ruffert C, Chen JM, Masson E, Beer S, Zimmer C, Seltsam K, Algül H, Bühler F, Bruno MJ, Bugert P, Burkhardt R, Cavestro GM, Cichoz-Lach H, Farré A, Frank J, Gambaro G, Gimpfl S, Grallert H, Griesmann H, Grützmann R, Hellerbrand C, Hegyi P, Hollenbach M, Iordache S, Jurkowska G, Keim V, Kiefer F, Krug S, Landt O, Leo MD, Lerch MM, Lévy P, Löffler M, Löhr M, Ludwig M, Macek M, Malats N, Malecka-Panas E, Malerba G, Mann K, Mayerle J, Mohr S, te Morsche RHM, Motyka M, Mueller S, Müller T, Nöthen MM, Pedrazzoli S, Pereira SP, Peters A, Pfützer R, Real FX, Rebours V, Ridinger M, Rietschel M, Rösmann E, Saftoiu A, Schneider A, Schulz HU, Soranzo N, Soyka M, Simon P, Skipworth J, Stickel F, Strauch K, Stumvoll M, Testoni PA, Tönjes A, Werner L, Werner J, Wodarz N, Ziegler M, Masamune A, Mössner J, Férec C, Michl P, P H Drenth J, Witt H, Scholz M, Sahin-Tóth M. Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis. Gut 2018; 67:1855-1863. [PMID: 28754779 PMCID: PMC6145291 DOI: 10.1136/gutjnl-2017-314454] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/16/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Alcohol-related pancreatitis is associated with a disproportionately large number of hospitalisations among GI disorders. Despite its clinical importance, genetic susceptibility to alcoholic chronic pancreatitis (CP) is poorly characterised. To identify risk genes for alcoholic CP and to evaluate their relevance in non-alcoholic CP, we performed a genome-wide association study and functional characterisation of a new pancreatitis locus. DESIGN 1959 European alcoholic CP patients and population-based controls from the KORA, LIFE and INCIPE studies (n=4708) as well as chronic alcoholics from the GESGA consortium (n=1332) were screened with Illumina technology. For replication, three European cohorts comprising 1650 patients with non-alcoholic CP and 6695 controls originating from the same countries were used. RESULTS We replicated previously reported risk loci CLDN2-MORC4, CTRC, PRSS1-PRSS2 and SPINK1 in alcoholic CP patients. We identified CTRB1-CTRB2 (chymotrypsin B1 and B2) as a new risk locus with lead single-nucleotide polymorphism (SNP) rs8055167 (OR 1.35, 95% CI 1.23 to 1.6). We found that a 16.6 kb inversion in the CTRB1-CTRB2 locus was in linkage disequilibrium with the CP-associated SNPs and was best tagged by rs8048956. The association was replicated in three independent European non-alcoholic CP cohorts of 1650 patients and 6695 controls (OR 1.62, 95% CI 1.42 to 1.86). The inversion changes the expression ratio of the CTRB1 and CTRB2 isoforms and thereby affects protective trypsinogen degradation and ultimately pancreatitis risk. CONCLUSION An inversion in the CTRB1-CTRB2 locus modifies risk for alcoholic and non-alcoholic CP indicating that common pathomechanisms are involved in these inflammatory disorders.
Collapse
Affiliation(s)
- Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Eszter Hegyi
- Department of Molecular and Cell Biology, Center for Exocrine Disorders, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Peter Kovacs
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Frank Ulrich Weiss
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Helmut Laumen
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Claudia Ruffert
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1078; Etablissement Français du Sang (EFS) – Bretagne; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale; Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| | - Emmanuelle Masson
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1078; Etablissement Français du Sang (EFS) – Bretagne; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale; Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| | - Sebastian Beer
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Constantin Zimmer
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Katharina Seltsam
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Hana Algül
- Department of Gastroenterology, Technische Universität München (TUM), Munich, Germany
| | - Florence Bühler
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Marco J Bruno
- Department of Gastroenterology & Hepatology, Erasmus Medical Centre, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg, Mannheim, Germany
| | - Ralph Burkhardt
- LIFE- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Giulia Martina Cavestro
- Division of Gastroenterology and Gastrointestinal Endoscopy, Vita Salute San Raffaele University - San Raffaele Scientific Institute, Milan, Italy
| | - Halina Cichoz-Lach
- Department of Gastroenterology, Medical University of Lublin, Lublin, Poland
| | - Antoni Farré
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Giovanni Gambaro
- Division of Nephrology and Dialysis, Institute of Internal Medicine, Renal Program, Columbus-Gemelli University Hospital, Catholic University, Rome, Italy
| | - Sebastian Gimpfl
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Heidi Griesmann
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Robert Grützmann
- Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Chirurgische Klinik, Erlangen, Germany
| | - Claus Hellerbrand
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Péter Hegyi
- Institute for Translational Medicine and First Department of Internal Medicine, University of Pécs, Pécs, Hungary
- HAS-SZTE, Momentum Gastroenterology Multidisciplinary Research Group, Szeged, Hungary
| | - Marcus Hollenbach
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Sevastitia Iordache
- Department of Internal Medicine and Gastroenterology, University of Medicine and Pharmacy, Craiova, Romania
| | - Grazyna Jurkowska
- Department of Gastroenterology and Internal Medicine, Medical University Bialystok, Bialystok, Poland
| | - Volker Keim
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sebastian Krug
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | | | - Milena Di Leo
- Division of Gastroenterology and Gastrointestinal Endoscopy, Vita Salute San Raffaele University - San Raffaele Scientific Institute, Milan, Italy
| | - Markus M Lerch
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Philippe Lévy
- Pôle des Maladies de l’Appareil Digestif, Service de Gastroentérologie-Pancréatologie, Hôpital Beaujon, AP-HP, Clichy, France
| | - Markus Löffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Matthias Löhr
- Gastrocentrum, Karolinska Institutet CLINTEC, Stockholm, Sweden
| | - Maren Ludwig
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Milan Macek
- Department of Biology and Medical Genetics, University Hospital Motol and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nuria Malats
- Grupo de Epidemiología Genética y Molecular Programa de Genética del Cáncer Humano Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- CIBERONC, Spain
| | - Ewa Malecka-Panas
- Department of Digestive Tract Diseases, Medical University of Łódź, Łódź, Poland
| | - Giovanni Malerba
- Biology and Genetics, Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Karl Mann
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sonja Mohr
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Rene H M te Morsche
- Department of Gastroenterology and Hepatology, Radboud umc, Nijmegen, The Netherlands
| | - Marie Motyka
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Sebastian Mueller
- Department of Internal Medicine, Salem Medical Centre and Centre for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Thomas Müller
- Department of Pediatrics I, Medical University, Innsbruck, Austria
| | - Markus M Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Sergio Pedrazzoli
- Department of Medical and Surgical Sciences, IV Surgical Clinic, University of Padua, Padua, Italy
| | - Stephen P Pereira
- Division of Medicine, UCL Institute for Liver and Digestive Health, University College London, London, UK
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Roland Pfützer
- Clinic for Internal Medicine, Hospital Döbeln, Döbeln, Germany
| | - Francisco X Real
- CIBERONC, Spain
- Epithelial Carcinogenesis Group, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vinciane Rebours
- Pôle des Maladies de l’Appareil Digestif, Service de Gastroentérologie-Pancréatologie, Hôpital Beaujon, AP-HP, Clichy, France
| | - Monika Ridinger
- Department of Psychiatry, University of Regensburg, Regensburg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Eva Rösmann
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Adrian Saftoiu
- Department of Internal Medicine and Gastroenterology, University of Medicine and Pharmacy, Craiova, Romania
| | - Alexander Schneider
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical Faculty of Mannheim University of Heidelberg, Mannheim, Germany
| | - Hans-Ulrich Schulz
- Department of Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nicole Soranzo
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Michael Soyka
- Psychiatric Hospital, University of Munich, Munich, Germany
| | - Peter Simon
- Department of Internal Medicine A, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - James Skipworth
- Department of Surgery and Interventional Science, University College London, London, UK
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zürich, Zürich, Switzerland
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michael Stumvoll
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Internal Medicine, Neurology and Dermatology, Division of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Pier Alberto Testoni
- Division of Gastroenterology and Gastrointestinal Endoscopy, Vita Salute San Raffaele University - San Raffaele Scientific Institute, Milan, Italy
| | - Anke Tönjes
- Department of Internal Medicine, Neurology and Dermatology, Division of Endocrinology, University of Leipzig, Leipzig, Germany
| | - Lena Werner
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig Maximilian University, Munich, Germany
| | - Norbert Wodarz
- Department of Psychiatry, University of Regensburg, Regensburg, Germany
| | - Martin Ziegler
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, SendaiMiyagi, Japan
| | - Joachim Mössner
- Department of Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1078; Etablissement Français du Sang (EFS) – Bretagne; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale; Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| | - Patrick Michl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud umc, Nijmegen, The Netherlands
| | - Heiko Witt
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Paediatric Nutritional Medicine, Technische Universität München (TUM), Freising, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE- Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Center for Exocrine Disorders, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Genetic mutations in genes within and outside of the trypsin-dependent pathologic pathway have been found to be associated with chronic pancreatitis. This review highlights recent developments. RECENT FINDINGS CTRB1-CTRB2 has been identified as a new risk locus for chronic pancreatitis and the disease mechanism may involve trypsin degradation. Misfolding mutations in PRSS1, CPA1, and CEL, as well as environmental stress factors like tobacco and alcohol can trigger endoplasmic reticulum stress (ER-Stress). SUMMARY Protein misfolding as well as enzyme activity changes due to altered autoactivation, intracellular degradation, or enzyme inhibition represent the most important pathological mechanisms of chronic pancreatitis to date. Analysis of composite risk patterns by next-generation sequencing will help elucidate complex gene interactions and identify new potential therapeutic targets.
Collapse
|
26
|
Abstract
Recurrent acute pancreatitis (RAP) is a clinically significant problem globally. The etiology remains unclear in approximately 10% to 15% of patients despite a thorough workup. Data on natural history and efficacy of treatments are limited. We aimed to establish criteria for diagnosis, evaluate the causative factors, and arrive at a consensus on the appropriate workup and management of patients with RAP. The organizing committee was formed, and a set of questions was developed based on the current evidence, controversies, and topics that needed further research. After a vetting process, these topics were assigned to a group of experts from around the world with special interest in RAP. Data were presented as part of a workshop on RAP organized as a part of the annual meeting of the America Pancreatic Association. Pretest and Posttest questions were administered, and the responses were tabulated by the current Grades of Recommendation Assessment, Development and Evaluation system. The consensus guidelines were established in the format of a diagnostic algorithm. Several deficiencies were identified with respect to data on etiology, treatment efficacies, and areas that need immediate research.
Collapse
|
27
|
An immunocapture-LC-MS-based assay for serum SPINK1 allows simultaneous quantification and detection of SPINK1 variants. Anal Bioanal Chem 2018; 410:1679-1688. [PMID: 29318362 DOI: 10.1007/s00216-017-0803-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
Abstract
Pancreatic secretory trypsin inhibitor Kazal type 1 (SPINK1) is a 6420 Da peptide produced by the pancreas, but also by several other tissues and many tumors. Some mutations of the SPINK1 gene, like the one causing amino acid change N34S, have been shown to confer susceptibility to recurrent or chronic pancreatitis. Detection of such variants are therefore of clinical utility. So far SPINK1 variants have been determined by DNA techniques. We have developed and validated an immunocapture-liquid chromatography-mass spectrometric (IC-LC-MS) assay for the detection and quantification of serum SPINK1, N34S-SPINK1, and P55S-SPINK1. We compared this method with a time-resolved immunofluorometric assay (TR-IFMA) for serum samples and primer extension analysis of DNA samples. We used serum and DNA samples from patients with acute pancreatitis, renal cell carcinoma, or benign urological conditions. With the help of a zygosity score calculated from the respective peak areas using the formula wild-type (wt) SPINK1/(variant SPINK1 + wt SPINK1), we were able to correctly characterize the heterozygotes and homozygotes from the samples with DNA information. The score was then used to characterize the apparent zygosity of the samples with no DNA characterization. The IC-LC-MS method for SPINK1 was linear over the concentration range 0.5-1000 μg/L. The limit of quantitation (LOQ) was 0.5 μg/L. The IC-LC-MS and the TR-IFMA assays showed good correlation. The median zygosity score was 1.00 (95% CI 0.98-1.01, n = 11), 0.55 (95% CI 0.43-0.61, n = 14), and 0.05 (range 0.04-0.07, n = 3) for individuals found to be wt, heterozygous, and homozygous, respectively, for the N34S-SPINK1 variant by DNA analysis. When DNA samples are not available, this assay facilitates identification of the N34S- and P55S-SPINK1 variants also in archival serum samples.
Collapse
|
28
|
Abstract
OBJECTIVES This research was applied to case-control studies of the association between pancreatitis and SPINK1 gene to assess the joint evidence for the association, the influence of individual studies, and evidence for publication bias. METHODS MEDLINE and Embase were searched to identify longitudinal studies evaluating pancreatitis and SPINK1. Odds ratios (ORs) and 95% confidence interval (CI) were pooled using random-effect models and calculated using Carlin method. Publication bias was assessed using Egger et al's approach (A famous statistic method by Egger et al). Sensitivity, heterogeneity, and trim and fill analyses were conducted. RESULTS Based on the results, we found that (1) the results support for the association between pancreatitis and SPINK1, when analyzed totally and by subdivision (total [OR, 7.771; 95% CI, 5.232-11.543; P < 0.000]; European [OR,6.400; 95% CI, 4.346-9.426; P < 0.000]; Asian [OR, 11.823; 95% CI, 4.612-30.310; P < 0.000]; American [OR, 3.777; 95% CI, 1.596-8.939; P = 0.002]; mixed: [OR, 13.566; 95% CI, 2.322-79.252, P = 0.004]); (2) no evidence indicates that this association is accounted for by any one study, and no evidence indicates any publication bias exists. CONCLUSIONS The results indicated that SPINK1 gene, particularly the N34S mutation, has a genetic association with the development of pancreatitis.
Collapse
|
29
|
The Differential Role of Human Cationic Trypsinogen ( PRSS1) p.R122H Mutation in Hereditary and Nonhereditary Chronic Pancreatitis: A Systematic Review and Meta-Analysis. Gastroenterol Res Pract 2017; 2017:9505460. [PMID: 29118810 PMCID: PMC5651130 DOI: 10.1155/2017/9505460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/22/2017] [Accepted: 09/07/2017] [Indexed: 02/05/2023] Open
Abstract
Background Environmental factors and genetic mutations have been increasingly recognized as risk factors for chronic pancreatitis (CP). The PRSS1 p.R122H mutation was the first discovered to affect hereditary CP, with 80% penetrance. We performed here a systematic review and meta-analysis to evaluate the associations of PRSS1 p.R122H mutation with CP of diverse etiology. Methods The PubMed, EMBASE, and MEDLINE database were reviewed. The pooled odds ratio (OR) with 95% confidence intervals was used to evaluate the association of p.R122H mutation with CP. Initial analysis was conducted with all etiologies of CP, followed by a subgroup analysis for hereditary and nonhereditary CP, including alcoholic or idiopathic CP. Results A total of eight case-control studies (1733 cases and 2415 controls) were identified and included. Overall, PRSS1 p.R122H mutation was significantly associated with an increased risk of CP (OR = 4.78[1.13-20.20]). Further analysis showed p.R122H mutation strongly associated with the increased risk of hereditary CP (OR = 65.52[9.09-472.48]) but not with nonhereditary CP, both alcoholic and idiopathic CP. Conclusions Our study showing the differential role of p.R122H mutation in various etiologies of CP indicates that this complex disorder is likely influenced by multiple genetic factors as well as environmental factors.
Collapse
|
30
|
Patel J, Madan A, Gammon A, Sossenheimer M, Samadder NJ. Rare hereditary cause of chronic pancreatitis in a young male: SPINK1 mutation. Pan Afr Med J 2017; 28:110. [PMID: 29515728 PMCID: PMC5837166 DOI: 10.11604/pamj.2017.28.110.13854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 09/25/2017] [Indexed: 01/28/2023] Open
Abstract
Hereditary chronic pancreatitis associated with a mutation in the serine protease inhibitor, Kazal Type-1 (SPINK-1 gene) is extremely rare. The SPINK1 mutation results in trypsinogen activation which predisposes to chronic pancreatitis predominately when combined with CFTR gene mutations. It presents as either chronic or recurrent acute pancreatitis. Symptom control and management of complications is important. Active surveillance with cross-sectional imaging for pancreatic malignancy in individuals with hereditary pancreatitis is advocated due to individuals being high risk. We present an unusual case of a young male who initially presented with renal colic and was incidentally diagnosed with severe chronic pancreatitis on abdominal imaging, with genetic testing confirming a homozygous SPINK1 mutation.
Collapse
Affiliation(s)
- Janaki Patel
- Division of Gastroenterology, University of Utah, Salt Lake City, Utah, USA
| | - Arina Madan
- University of Birmingham Medical School, Edgbaston, Birmingham, B15 2TT, UK
| | - Amanda Gammon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | - Niloy Jewel Samadder
- Division of Gastroenterology,Hepatology and Nutrition, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
31
|
Abstract
Chronic pancreatitis is defined as a pathological fibro-inflammatory syndrome of the pancreas in individuals with genetic, environmental and/or other risk factors who develop persistent pathological responses to parenchymal injury or stress. Potential causes can include toxic factors (such as alcohol or smoking), metabolic abnormalities, idiopathic mechanisms, genetics, autoimmune responses and obstructive mechanisms. The pathophysiology of chronic pancreatitis is fairly complex and includes acinar cell injury, acinar stress responses, duct dysfunction, persistent or altered inflammation, and/or neuro-immune crosstalk, but these mechanisms are not completely understood. Chronic pancreatitis is characterized by ongoing inflammation of the pancreas that results in progressive loss of the endocrine and exocrine compartment owing to atrophy and/or replacement with fibrotic tissue. Functional consequences include recurrent or constant abdominal pain, diabetes mellitus (endocrine insufficiency) and maldigestion (exocrine insufficiency). Diagnosing early-stage chronic pancreatitis is challenging as changes are subtle, ill-defined and overlap those of other disorders. Later stages are characterized by variable fibrosis and calcification of the pancreatic parenchyma; dilatation, distortion and stricturing of the pancreatic ducts; pseudocysts; intrapancreatic bile duct stricturing; narrowing of the duodenum; and superior mesenteric, portal and/or splenic vein thrombosis. Treatment options comprise medical, radiological, endoscopic and surgical interventions, but evidence-based approaches are limited. This Primer highlights the major progress that has been made in understanding the pathophysiology, presentation, prevalence and management of chronic pancreatitis and its complications.
Collapse
|
32
|
Conwell DL, Banks PA, Sandhu BS, Sherman S, Al-Kaade S, Gardner TB, Anderson MA, Wilcox CM, Lewis MD, Muniraj T, Forsmark CE, Cote GA, Guda NM, Tian Y, Romagnuolo J, Wisniewski SR, Brand R, Gelrud A, Slivka A, Whitcomb DC, Yadav D. Validation of Demographics, Etiology, and Risk Factors for Chronic Pancreatitis in the USA: A Report of the North American Pancreas Study (NAPS) Group. Dig Dis Sci 2017; 62:2133-2140. [PMID: 28600657 PMCID: PMC6040886 DOI: 10.1007/s10620-017-4621-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/16/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND/OBJECTIVES Our aim was to validate recent epidemiologic trends and describe the distribution of TIGAR-O risk factors in chronic pancreatitis (CP) patients. METHODS The NAPS-2 Continuation and Validation (NAPS2-CV) study prospectively enrolled 521 CP patients from 13 US centers from 2008 to 2012. CP was defined by definitive changes in imaging, endoscopy, or histology. Data were analyzed after stratification by demographic factors, physician-defined etiology, participating center, and TIGAR-O risk factors. RESULTS Demographics and physician-defined etiology in the NAPS2-CV study were similar to the original NAPS2 study. Mean age was 53 years (IQR 43, 62) with 55% males and 87% white. Overall, alcohol was the single most common etiology (46%) followed by idiopathic etiology (24%). Alcohol etiology was significantly more common in males, middle-aged (35-65 years), and non-whites. Females and elderly (≥65 years) were more likely to have idiopathic etiology, while younger patients (<35 years) to have genetic etiology. Variability in etiology was noted by participating centers (e.g., alcohol etiology ranged from 27 to 67% among centers enrolling ≥25 patients). Smoking was the most commonly identified (59%) risk factor followed by alcohol (53%), idiopathic (30%), obstructive (19%), and hyperlipidemia (13%). The presence of multiple TIGAR-O risk factors was common, with 1, 2, ≥3 risk factors observed in 27.6, 47.6, and 23.6% of the cohort, respectively. CONCLUSION Our data validate the current epidemiologic trends in CP. Alcohol remains the most common physician-defined etiology, while smoking was the most commonly identified TIGAR-O risk factor. Identification of multiple risk factors suggests CP to be a complex disease.
Collapse
Affiliation(s)
- Darwin L Conwell
- Brigham and Women's Hospital, Boston, MA, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | | | - Bimaljit S Sandhu
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Stuart Sherman
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samer Al-Kaade
- Saint Louis University School of Medicine, St. Louis, MO, USA
| | | | | | - C Mel Wilcox
- University of Alabama at Birmingham Hospital, Birmingham, AL, USA
| | | | | | | | - Gregory A Cote
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nalini M Guda
- University of Wisconsin School of Medicine, Milwaukee, WI, USA
| | - Ye Tian
- Department of Epidemiology, University of Pittsburg Graduate School of Public Health, Pittsburgh, PA, USA
| | | | - Stephen R Wisniewski
- Department of Epidemiology, University of Pittsburg Graduate School of Public Health, Pittsburgh, PA, USA
| | - Randall Brand
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Andres Gelrud
- University of Chicago School of Medicine, Chicago, IL, USA
| | - Adam Slivka
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Dhiraj Yadav
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Abstract
Genetic investigations have provided unique insight into the mechanism of chronic pancreatitis in humans and firmly established that uncontrolled trypsin activity is a central pathogenic factor. Mutations in the PRSS1, SPINK1, and CTRC genes promote increased activation of trypsinogen to trypsin by stimulation of autoactivation or by impairing protective trypsinogen degradation and/or trypsin inhibition. Here we review key genetic and biochemical features of the trypsin-dependent pathological pathway in chronic pancreatitis.
Collapse
Affiliation(s)
- Eszter Hegyi
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Evans-433, Boston, MA, 02118, USA
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Evans-433, Boston, MA, 02118, USA.
| |
Collapse
|
34
|
Epidemiology of Recurrent Acute and Chronic Pancreatitis: Similarities and Differences. Dig Dis Sci 2017; 62:1683-1691. [PMID: 28281168 PMCID: PMC5478431 DOI: 10.1007/s10620-017-4510-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 02/21/2017] [Indexed: 02/06/2023]
Abstract
Emerging data in the past few years suggest that acute, recurrent acute (RAP), and chronic pancreatitis (CP) represent a disease continuum. This review discusses the similarities and differences in the epidemiology of RAP and CP. RAP is a high-risk group, comprised of individuals at varying risk of progression. The premise is that RAP is an intermediary stage in the pathogenesis of CP, and a subset of RAP patients during their natural course transition to CP. Although many clinical factors have been identified, accurately predicting the probability of disease course in individual patients remains difficult. Future studies should focus on providing more precise estimates of the risk of disease transition in a cohort of patients, quantification of clinical events during the natural course of disease, and discovery of biomarkers of the different stages of the disease continuum. Availability of clinically relevant endpoints and linked biomarkers will allow more accurate prediction of the natural course of disease over intermediate- or long-term-based characteristics of an individual patient. These endpoints will also provide objective measures for use in clinical trials of interventions that aim to alter the natural course of disease.
Collapse
|
35
|
Boulling A, Masson E, Zou WB, Paliwal S, Wu H, Issarapu P, Bhaskar S, Génin E, Cooper DN, Li ZS, Chandak GR, Liao Z, Chen JM, Férec C. Identification of a functional enhancer variant within the chronic pancreatitis-associated SPINK1 c.101A>G (p.Asn34Ser)-containing haplotype. Hum Mutat 2017; 38:1014-1024. [PMID: 28556356 DOI: 10.1002/humu.23269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/05/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
The haplotype harboring the SPINK1 c.101A>G (p.Asn34Ser) variant (also known as rs17107315:T>C) represents the most important heritable risk factor for idiopathic chronic pancreatitis identified to date. The causal variant contained within this risk haplotype has however remained stubbornly elusive. Herein, we set out to resolve this enigma by employing a hypothesis-driven approach. First, we searched for variants in strong linkage disequilibrium (LD) with rs17107315:T>C using HaploReg v4.1. Second, we identified two candidate SNPs by visual inspection of sequences spanning all 25 SNPs found to be in LD with rs17107315:T>C, guided by prior knowledge of pancreas-specific transcription factors and their cognate binding sites. Third, employing a novel cis-regulatory module (CRM)-guided approach to further filter the two candidate SNPs yielded a solitary candidate causal variant. Finally, combining data from phylogenetic conservation and chromatin accessibility, cotransfection transactivation experiments, and population genetic studies, we suggest that rs142703147:C>A, which disrupts a PTF1L-binding site within an evolutionarily conserved HNF1A-PTF1L CRM located ∼4 kb upstream of the SPINK1 promoter, contributes to the aforementioned chronic pancreatitis risk haplotype. Further studies are required not only to improve the characterization of this functional SNP but also to identify other functional components that might contribute to this high-risk haplotype.
Collapse
Affiliation(s)
- Arnaud Boulling
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Emmanuelle Masson
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Sumit Paliwal
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Hao Wu
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Prachand Issarapu
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Seema Bhaskar
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Emmanuelle Génin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| |
Collapse
|
36
|
Zator Z, Whitcomb DC. Insights into the genetic risk factors for the development of pancreatic disease. Therap Adv Gastroenterol 2017; 10:323-336. [PMID: 28246549 PMCID: PMC5305020 DOI: 10.1177/1756283x16684687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/28/2016] [Indexed: 02/04/2023] Open
Abstract
Diseases of the exocrine pancreas such as recurrent acute pancreatitis (RAP), chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) represent syndromes defined according to traditional clinicopathologic criteria. The failure of traditional approaches to identify primary mechanisms underlying these progressive disorders illustrates a greater problem of failure of the germ theory of disease for complex disorders. Multiple genetic discoveries and new complex disease models force consideration of a new paradigm of 'precision medicine', requiring a new mechanistic definition of CP. Recognizing the advances in understanding complex gene and environment interactions, as well as the development of new strategies that limit or prevent the development of devastating end-stage diseases of the pancreas may lead to substantial improvements in patient care.
Collapse
Affiliation(s)
- Zachary Zator
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
37
|
Dytz MG, Marcelino PAH, de Castro Santos O, Zajdenverg L, Conceição FL, Ortiga-Carvalho TM, Rodacki M. Clinical aspects of pancreatogenic diabetes secondary to hereditary pancreatitis. Diabetol Metab Syndr 2017; 9:4. [PMID: 28101143 PMCID: PMC5237278 DOI: 10.1186/s13098-017-0203-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 01/07/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hereditary pancreatitis is a rare inherited form of pancreatitis, characterized by recurrent episodes of acute pancreatitis with early onset and/or chronic pancreatitis, and presenting brittle diabetes, composed of episodes of nonketotic hyperglycemia and severe hypoglycemia. The existing literature regarding this form of diabetes is scarce. In this report, clinical features of pancreatogenic diabetes secondary to hereditary pancreatitis are presented along with recommendations for appropriate medical treatment. RESULTS Clinical data from five patients of a family with pancreatogenic diabetes secondary to hereditary pancreatitis were analyzed. The average time between hereditary pancreatitis and diabetes diagnosis was 80 ± 24 months (range: 60-180 months) with a mean age of 25.6 ± 14.7 years (range: 8-42 years), four patients used antidiabetic agents for 46 ± 45 months and all progressed to insulin therapy with a mean dose of 0.71 ± 0.63 IU/kg (range: 0.3-1.76 IU/kg). The glycemic control had a high variability with average capillary blood glucose of 217.00 ± 69.44 mg/dl (range: 145-306 mg/dl) and the average HbA1c was 9.9 ± 1.9% (range: 7.6-11.6%). No ketoacidosis episodes occurred and there were several episodes of hospitalization for severe hypoglycemia. CONCLUSIONS Diabetes mellitus secondary to hereditary pancreatitis presents with early onset, diverse clinical presentation and with extremely labile glycemic control. Diabetes treatment varies according to the presentation and insulin is frequently necessary for glycemic control.
Collapse
Affiliation(s)
- Marcio Garrison Dytz
- Endocrinology Section, Department of Internal Medicine, Medical School, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratory of Translational Endocrinology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Diabetes and Nutrology Section, Department of Internal Medicine, Medical School, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Endocrinology Section, Hospital Universitário Clementino Fraga Filho, Rua Rodolpho Paulo Rocco 255, Ilha do Fundão, Rio de Janeiro, RJ 21941-913 Brazil
| | - Pedro Arthur Hamamoto Marcelino
- Diabetes and Nutrology Section, Department of Internal Medicine, Medical School, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Olga de Castro Santos
- Endocrinology Section, Department of Internal Medicine, Medical School, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Lenita Zajdenverg
- Diabetes and Nutrology Section, Department of Internal Medicine, Medical School, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Flavia Lucia Conceição
- Endocrinology Section, Department of Internal Medicine, Medical School, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tânia Maria Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Melanie Rodacki
- Diabetes and Nutrology Section, Department of Internal Medicine, Medical School, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Frequency of Tabagism and N34S and P55S Mutations of Serine Peptidase Inhibitor, Kazal Type 1 (SPINK1) and R254W Mutation of Chymotrypsin C (CTRC) in Patients With Chronic Pancreatitis and Controls. Pancreas 2016; 45:1330-5. [PMID: 27253233 DOI: 10.1097/mpa.0000000000000650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study aimed to investigate the association between chronic pancreatitis and smoking or genetic mutations. METHODS The study sample comprised 148 patients with chronic pancreatitis, 110 chronic alcoholic subjects without pancreatic disease, and 297 volunteer blood donors. RESULTS Of the patients with chronic pancreatitis, 74% had alcoholic etiology and 26% had idiopathic pancreatitis. The frequency of smoking was 91.4% in patients with alcoholic pancreatitis, higher than 73.3% in alcoholic subjects without pancreatitis (P < 0.01). The difference in smoking frequency was not significant between the patients with idiopathic pancreatitis and blood donors. The N34S mutation of serine peptidase inhibitor, Kazal type 1 (SPINK1) was found in 2.7% of patients with chronic alcoholic pancreatitis, in 5.3% of patients with idiopathic pancreatitis, and in 0.4% of blood donors (P = 0.02). The P55S mutation of SPINK1 was found in 2.7% of patients with alcoholic pancreatitis and in 0.7% of blood donors (P = 0.12). The R254W mutation of chymotrypsin C was found in 0.9% of patients with alcoholic pancreatitis, in 0.9% of chronic alcoholic subjects without pancreatitis, and in 0.4% of blood donors (P = 0.75). In all cases, the mutations were heterozygous. CONCLUSIONS Smoking and the N34S mutation of SPINK1 were positively correlated with chronic pancreatitis.
Collapse
|
39
|
Association Analysis of PRSS1-PRSS2 and CLDN2-MORC4 Variants in Nonalcoholic Chronic Pancreatitis Using Tropical Calcific Pancreatitis as Model. Pancreas 2016; 45:1153-7. [PMID: 26784911 DOI: 10.1097/mpa.0000000000000608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Association of PRSS1-PRSS2 (rs10273639) and CLDN2-MORC4 (rs12688220 and rs7057398) variants with alcohol-related chronic pancreatitis (CP) is established but with nonalcoholic CP is unclear. We addressed this inconsistency using tropical calcific pancreatitis (TCP) as model. METHODS We sequenced 5'-UTR of PRSS1 and genotyped CLDN2-MORC4 variants in 555 patients with TCP and 801 controls and performed association analysis. Gene-gene interaction between PRSS1 and CLDN2-MORC4 variants and with p.Asn34Ser SPINK1 and p.Leu26Val CTSB was also evaluated. RESULTS We observed significant association of rs10273639/rs4726576 in PRSS1-PRSS2 (odds ratio [OR] = 0.72; P = 3.50 × 10) and CLDN2-MORC4 variants, rs12688220 (OR = 1.54; P = 1.22 × 10) and rs7057398 (OR = 1.50; P = 1.22 × 10) with TCP. Patients carrying p.Asn34Ser SPINK1 were significantly younger than those with rs4726576 risk genotype (30.0 vs 38.0 years; P = 0.015) and those carrying both were even younger (22.0 years; P = 0.001). Presence of risk allele at rs12688220 in patients carrying p.Asn34Ser SPINK1 delayed the age of onset (32.0 vs 24.0 years; P = 0.013). CONCLUSIONS Our study establishes strong association of PRSS1-PRSS2 and CLDN2-MORC4 variants with TCP and thus with nonalcoholic CP. These variants independently interact with p.Asn34Ser SPINK1 and influence the age of onset in TCP. However, latter results need to be replicated in other cohorts.
Collapse
|
40
|
Dai LN, Chen YW, Yan WH, Lu LN, Tao YJ, Cai W. Hereditary pancreatitis of 3 Chinese children: Case report and literature review. Medicine (Baltimore) 2016; 95:e4604. [PMID: 27603351 PMCID: PMC5023873 DOI: 10.1097/md.0000000000004604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Hereditary pancreatitis (HP) is quite rare and is distinguished by incomplete penetrance presentation as early-onset relapsing pancreatitis, usually beginning in childhood. HP is now known to be commonly relevant to mutations in the PRSS1 (gene-encoding cationic trypsinogen), SPINK1 (serine protease inhibitor, Kazal type 1), CFTR (cystic fibrosis), carboxypeptidase A1 (CPA1), and chymotrypsin C (CTRC) genes as reported in some Caucasian studies. HP has a variable spectrum of severity and may develop complications. METHODS & RESULTS We describe the clinical course of 3 preschool children, hospitalized with postprandial abdominal pain, whose laboratory tests showed high serum amylase. Similar episodes of abdominal pain led to readmission, and the patients recovered quickly after using symptomatic therapy. The condition of the first boy, who developed a pancreatic tail pseudocyst and splenic infarction, was especially complicated. The boy underwent 2 endoscopic retrograde cholangiopancreatographies and stenting, along with a surgical procedure that completely relieved his symptoms for 3 months. The 3 patients and their parents were given genetic testing. All of the patients carried 1 or more gene mutations inherited from their mothers, fathers, or both parents; however, none of the parents were affected. CONCLUSION For children with repeated pancreatitis, clinicians should consider HP in the differential diagnosis. It is reliable to perform gene sequencing on suspicious patients and their parents. Multidisciplinary and comprehensive treatment should be recommended to manage HP and its complications. Cholangiopancreatography and stenting is a relatively minimally invasive approach when compared with surgery and can be tried as an early intervention. Surgical procedures should be reserved for patients with complications.
Collapse
Affiliation(s)
- Li-Na Dai
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying-Wei Chen
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei-Hui Yan
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Li-Na Lu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yi-Jing Tao
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Correspondence: Wei Cai, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China (e-mail: )
| |
Collapse
|
41
|
Abstract
Hereditary pancreatitis (HP) is a rare cause of acute, recurrent acute, and chronic pancreatitis. It may present similarly to other causes of acute and chronic pancreatitis, and often there has been a protracted evaluation prior to the diagnosis of HP. Since it was first described in 1952, multiple genetic defects that affect the action of digestive enzymes in the pancreas have been implicated. The most common mutations involve the PRSS1, CFTR, SPINK1, and CTRC genes. New mutations in these genes and previously unrecognized mutations in other genes are being discovered due to the increasing use of next-generation genomic sequencing. While the inheritance pathways of these genetic mutations may be variable and complex, sometimes involving coinheritance of other mutations, the clinical presentation of patients tends to be similar. Interactions with environmental triggers often play a role. Patients tend to present at an early age (prior to the second decade of life) and have a significantly increased risk for the development of pancreatic adenocarcinoma. Patients with HP may develop sequelae of chronic pancreatitis such as strictures and fluid collections as well as exocrine and endocrine insufficiency. Management of patients with HP involves avoidance of environmental triggers, surveillance for pancreatic adenocarcinoma, medical therapy for endocrine and exocrine insufficiency, pain management, and endoscopic or surgical treatment for complications. Care for affected patients should be individualized, with an emphasis on early diagnosis and multidisciplinary involvement to develop a comprehensive treatment strategy.
Collapse
Affiliation(s)
- Kara L Raphael
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Field F Willingham
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
42
|
Abstract
Chronic pancreatitis describes a wide spectrum of fibro-inflammatory disorders of the exocrine pancreas that includes calcifying, obstructive, and steroid-responsive forms. Use of the term chronic pancreatitis without qualification generally refers to calcifying chronic pancreatitis. Epidemiology is poorly defined, but incidence worldwide seems to be on the rise. Smoking, drinking alcohol, and genetic predisposition are the major risk factors for chronic calcifying pancreatitis. In this Seminar, we discuss the clinical features, diagnosis, and management of chronic calcifying pancreatitis, focusing on pain management, the role of endoscopic and surgical intervention, and the use of pancreatic enzyme-replacement therapy. Management of patients is often challenging and necessitates a multidisciplinary approach.
Collapse
Affiliation(s)
- Shounak Majumder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Suresh T Chari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
43
|
Abstract
OBJECTIVES Serine protease inhibitor Kazal type 1 (SPINK1) provides an important line of defense against premature trypsinogen activation within the pancreas. Our aim was to identify pathogenic SPINK1 promoter variants associated with chronic pancreatitis (CP). METHODS One hundred CP patients (cases) and 100 controls with no pancreatic disease from the Hungarian National Pancreas Registry were enrolled. Direct sequencing of SPINK1 promoter region was performed. Functional characterization of variants was carried out using luciferase reporter gene assay. RESULTS Two common polymorphisms (c.-253T>C and c.-807C>T) were found in both cases and controls. Variant c.253T>C was enriched in cases relative to controls (odds ratio, 2.1; 95% confidence interval, 1.2-3.8; P = 0.015). Variant c.-215G>A was detected in 3 of 100 cases; always linked with the pathogenic variant c.194+2T>C. Novel promoter variants c.-14G>A, c.-108G>T, and c.-246A>G were identified in 1 case each. Functional analysis showed decreased promoter activity for variants c.-14G>A (80%), c.-108G>T (31%), and c.-246A>G (47%) whereas activity of variant c.-215G>A was increased (201%) and variant c.-253T>C was unchanged compared with wild type. CONCLUSIONS The common promoter variant c.-253T>C was associated with CP in this cohort. Two of 3 newly identified SPINK1 promoter variants seem to exhibit significant functional defects and should be considered potential risk factors for CP.
Collapse
|
44
|
Avanthi SU, Ravi Kanth VV, Agarwal J, Lakhtakia S, Gangineni K, Rao GV, Reddy DN, Talukdar R. Association of claudin2 and PRSS1-PRSS2 polymorphisms with idiopathic recurrent acute and chronic pancreatitis: A case-control study from India. J Gastroenterol Hepatol 2015; 30:1796-801. [PMID: 26110235 DOI: 10.1111/jgh.13029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 01/27/2023]
Abstract
BACKGROUND Gene polymorphisms, including those recently described in the claudin2 gene, have been implicated in recurrent acute (RAP) and chronic pancreatitis (CP). In India, RAP and CP have been associated with SPINK1 polymorphism. In this study, we evaluated the association of claudin2 and PRSS1-PRSS2 polymorphisms with idiopathic RAP and CP. METHODS We included 101 prospectively followed patients with documented idiopathic RAP (IRAP) and 96 patients who presented with idiopathic chronic pancreatitis (ICP) without previous history of AP. Controls were 156 unrelated individuals undergoing master health check or with non-specific symptoms. All the samples were genotyped for the SNPs rs7057398 in the claudin2 (CLDN2) gene and rs10273639 in the PRSS1 gene on Realtime polymerase chain reaction platform. Clinical data pertaining to patient and disease characteristics were recorded. RESULTS Claudin2 and PRSS1 polymorphisms were seen in a significantly higher proportion of female patients (P = 0.01 and 0.039, respectively). Thirty-three (32.7%) patients with IRAP developed features of early CP during follow-up (mean [95% confidence interval, CI] duration of 11.3 [8.9-13.7] months). Female patients with claudin2 (rs7057398) CC genotype were at significantly higher risk for IRAP (odds ratio [OR] [95% CI] 6.75 [1.82-23.67]; P = 0.004) and progression from IRAP to CP (OR [95% CI] 7.05 [1.51-33.01]; P = 0.007). CT genotype of PRSS1 (rs10273639) was associated IRAP (OR [95% CI] 2.59 [1.1-6.13]; P = 0.030), and both CT and CC genotypes with ICP in women (OR [95% CI] 2.86 [1.12-7.31]; P = 0.033 and 3.73 [1.03-13.59]; P = 0.048, respectively). CONCLUSION In this study, we have demonstrated the association of claudin2 (rs7057398) polymorphism with IRAP and progression of IRAP to CP, and PRSS1 (rs10273639) polymorphism with IRAP and ICP.
Collapse
Affiliation(s)
| | | | - Jaya Agarwal
- Asian Institute of Gastroenterology, Hyderabad, India
| | | | | | | | | | - Rupjyoti Talukdar
- Asian Healthcare Foundation, Hyderabad, India.,Asian Institute of Gastroenterology, Hyderabad, India
| |
Collapse
|
45
|
Sun C, Liu MY, Liu XG, Hu LH, Xia T, Liao Z, Li ZS. Serine Protease Inhibitor Kazal Type 1 (SPINK1) c.194+2T > C Mutation May Predict Long-term Outcome of Endoscopic Treatments in Idiopathic Chronic Pancreatitis. Medicine (Baltimore) 2015; 94:e2046. [PMID: 26632706 PMCID: PMC5058975 DOI: 10.1097/md.0000000000002046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endoscopic interventional is a commonly used treatment method for idiopathic chronic pancreatitis. Serine protease inhibitor Kazal type 1 (SPINK1) 194+2T>C mutation is most frequently observed in Chinese pancreatitis patients and influences the clinical course of idiopathic chronic pancreatitis patients. We conducted this study to determine the impacts of this mutation on the outcome of endoscopic treatments.In this study, we enrolled 423 patients. Among them, 101 idiopathic chronic pancreatitis patients without other relevant mutations had a successful endoscopic procedure and completed follow-up. Clinical characteristics including Izbicki pain score, exocrine and endocrine function, were evaluated. Genetic sequencing was conducted to detect SPINK1 194+2T>C mutations.The c.194+2T>C mutation was found in 58 (57.43%) patients. Factors relevant to pain relief are c.194+2T>C mutation (P = 0.011), severe pain before treatment (P = 0.005), and necessary subsequent endoscopic treatments (P < 0.001). More patients with the intronic mutation had deteriorated endocrine function (P = 0.001) relative to those patients without the mutation.Patients carrying the c.194+2T>C mutation were less likely to achieve pain relief through endoscopic treatments. They also have a higher risk of endocrine function deterioration. SPINK1 c.194+2T>C mutation may be applied as a pretreatment predictor in idiopathic chronic pancreatitis patients.
Collapse
Affiliation(s)
- Chang Sun
- From the Department of Gastroenterology, Changhai Hospital, Second Military Medical University (CS, M-YL, L-HH, TX, ZL, Z-SL); and Changhai Hospital, Second Military Medical University Shanghai, China (X-GL)
| | | | | | | | | | | | | |
Collapse
|
46
|
Dytz MG, Mendes de Melo J, de Castro Santos O, da Silva Santos ID, Rodacki M, Conceição FL, Ortiga-Carvalho TM. Hereditary Pancreatitis Associated With the N29T Mutation of the PRSS1 Gene in a Brazilian Family: A Case-Control Study. Medicine (Baltimore) 2015; 94:e1508. [PMID: 26376395 PMCID: PMC4635809 DOI: 10.1097/md.0000000000001508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hereditary pancreatitis (HP) is an autosomal-dominant disease with incomplete penetrance manifesting as early-onset chronic relapsing pancreatitis. A mutation in the PRSS1 gene is present in greater than 70% of HP kindreds and leads to a gain-of-function characterized by the increased autocatalytic conversion of trypsinogen to active trypsin, promoting autodigestion and damage to acinar cells. Other genetic defects observed in the pathogenic mechanism of pancreatitis include mutations in the genes encoding SPINK1, CTRC, and CPA1. There are few reports of HP in Latin America, and no families have been investigated in Brazil. A case-control observational study was conducted at Clementino Fraga Filho University Hospital in Brazil. Patients with suspected HP and healthy controls were enrolled in this study, and a detailed questionnaire was administered to patients with HP. PRSS1 and SPINK1 genes were analyzed by DNA sequencing, and a family that fit the HP diagnostic criteria was identified. The neutral polymorphism c.88-352A > G in the SPINK1 gene was found to be prevalent in the individuals studied, but no important alterations were found in this gene. Ten out of 16 individuals in this family carried the N29T mutation in the PRSS1 gene, with 2 clinically unaffected mutation carriers. The median age of HP onset was 6 years. Pancreatic exocrine failure occurred in 6 patients, 5 of whom also had diabetes mellitus. Surgical procedures were performed on 3 affected members, and no cases of pancreatic cancer have been reported thus far. This study identified the first PRSS1 gene mutation in a Brazilian family with HP.
Collapse
Affiliation(s)
- Marcio Garrison Dytz
- From the Department of Endocrinology, Clementino Fraga Filho University Hospital (MGD, OdCS, FLC); Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho (MGD, JMdM, IDdSS, TMO-C); and Department of Diabetes and Nutrology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil (MR)
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Despite decades of scientific and clinical research, pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy. The clinical and pathologic features of PDAC, specifically the known environmental and genetic risk factors, are reviewed here with special emphasis on the hereditary pancreatic cancer (HPC) syndromes. For these latter conditions, strategies are described for their identification, for primary and secondary prevention in unaffected carriers, and for disease management in affected carriers. Nascent steps have been made toward personalized medicine based on the rational use of screening, tumor subtyping, and targeted therapies; these have been guided by growing knowledge of HPC syndromes in PDAC.
Collapse
Affiliation(s)
- Ashton A Connor
- Division of General Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- Division of General Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Genetic susceptibility factors for alcohol-induced chronic pancreatitis. Pancreatology 2015; 15:S23-31. [PMID: 26149858 DOI: 10.1016/j.pan.2015.05.476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/10/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Abstract
Chronic pancreatitis is a progressive inflammatory disease of the pancreas and frequently associated with immoderate alcohol consumption. Since only a small proportion of alcoholics eventually develop chronic pancreatitis genetic susceptibility factors have long been suspected to contribute to the pathogenesis of the disease. Smaller studies in ethnically defined populations have found that not only polymorphism in proteins involved in the metabolism of ethanol, such as Alcohol Dehydrogenase and Aldehyde Dehydrogenase, can confer a risk for developing chronic pancreatitis but also mutations that had previously been reported in association with idiopathic pancreatitis, such as SPINK1 mutations. In a much broader approach employing genome wide search strategies the NAPS study found that polymorphisms in the Trypsin locus (PRSS1 rs10273639), and the Claudin 2 locus (CLDN2-RIPPLY1-MORC4 locus rs7057398 and rs12688220) confer an increased risk of developing alcohol-induced pancreatitis. These results from North America have now been confirmed by a European consortium. In another genome wide approach polymorphisms in the genes encoding Fucosyltransferase 2 (FUT2) non-secretor status and blood group B were not only found in association with higher serum lipase levels in healthy volunteers but also to more than double the risk for developing alcohol-associated chronic pancreatitis. These novel genetic associations will allow to investigate the pathophysiological and biochemical basis of alcohol-induced chronic pancreatitis on a cellular level and in much more detail than previously possible.
Collapse
|
49
|
Derikx MHM, Geisz A, Kereszturi É, Sahin-Tóth M. Functional significance of SPINK1 promoter variants in chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G779-84. [PMID: 25792561 PMCID: PMC4421017 DOI: 10.1152/ajpgi.00022.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/11/2015] [Indexed: 01/31/2023]
Abstract
Chronic pancreatitis is a progressive inflammatory disorder of the pancreas, which often develops as a result of genetic predisposition. Some of the most frequently identified risk factors affect the serine protease inhibitor Kazal type 1 (SPINK1) gene, which encodes a trypsin inhibitor responsible for protecting the pancreas from premature trypsinogen activation. Recent genetic and functional studies indicated that promoter variants in the SPINK1 gene might contribute to disease risk in carriers. Here, we investigated the functional effects of 17 SPINK1 promoter variants using luciferase reporter gene expression assay in four different cell lines, including three pancreatic acinar cell lines (rat AR42J with or without dexamethasone-induced differentiation and mouse 266-6) and human embryonic kidney 293T cells. We found that most variants caused relatively small changes in promoter activity. Surprisingly, however, we observed significant variations in the effects of the promoter variants in the different cell lines. Only four variants exhibited consistently reduced promoter activity in all acinar cell lines, confirming previous reports that variants c.-108G>T, c.-142T>C, and c.-147A>G are risk factors for chronic pancreatitis and identifying c.-52G>T as a novel risk variant. In contrast, variant c.-215G>A, which is linked with the disease-associated splice-site mutation c.194 + 2T>C, caused increased promoter activity, which may mitigate the overall effect of the pathogenic haplotype. Our study lends further support to the notion that sequence evaluation of the SPINK1 promoter region in patients with chronic pancreatitis is justified as part of the etiological investigation.
Collapse
Affiliation(s)
- Monique H. M. Derikx
- 1Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts; ,2Department of Gastroenterology and Hepatology, Radboud UMC, Nijmegen, The Netherlands
| | - Andrea Geisz
- 1Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| | - Éva Kereszturi
- 1Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| |
Collapse
|
50
|
The genetic predisposition and its impact on the diabetes mellitus development in patients with alcoholic chronic pancreatitis. Gastroenterol Res Pract 2015; 2015:309156. [PMID: 25838820 PMCID: PMC4369946 DOI: 10.1155/2015/309156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/04/2015] [Indexed: 12/24/2022] Open
Abstract
The most common cause of chronic pancreatitis (CP) is alcohol abuse. The aim of the present study was to identify patients with genetic predisposition to CP abusing alcohol. The question posed was whether CP manifests at a younger age and diabetes mellitus develops earlier in individuals with genetic predisposition. The study encompassed 79 patients with alcoholic chronic pancreatitis (ACP) and control group (100 persons). The following mutations were determined: R122H and N29I of PRSS1 and N34S of SPINK1 as well as E366K and E288V of SERPINA 1. No R122H and N291 mutations were observed in the group of ACP patients and in controls. Moreover, there was no E288V mutation. In 79 ACP patients, six SPINK 1 (N34S/wt) mutations were observed. In the control group, one heterozygous SPINK 1N34S gene mutation was found (P = 0.0238). Two PiZ mutations were identified in patients with ACP and one analogical mutation in controls. Amongst patients with ACP as well as SPINK1 and PiZ mutations, the onset of disease was observed earlier and developed earlier. The prevalence of SPINK1 mutation is higher in patients with ACP than in healthy populations. This mutation together with the effects of alcohol accelerates the development of ACP and of diabetes mellitus.
Collapse
|