1
|
McAllister CT, Ronk AM, Stenzel MJ, Kirby JR, Bretl DJ. The NmpRSTU multi-component signaling system of Myxococcus xanthus regulates expression of an oxygen utilization regulon. J Bacteriol 2025; 207:e0028024. [PMID: 39868781 PMCID: PMC11841059 DOI: 10.1128/jb.00280-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 01/28/2025] Open
Abstract
Myxococcus xanthus has numerous two-component signaling systems (TCSs), many of which regulate the complex social behaviors of this soil bacterium. A subset of TCSs consists of NtrC-like response regulators (RRs) and their cognate histidine sensor kinases (SKs). We have previously demonstrated that a multi-component, phosphorelay TCS named NmpRSTU plays a role in M. xanthus social motility. NmpRSTU was discovered through a screen that identified mutations in nmp genes that restored Type-IV pili-dependent motility to a nonmotile strain. The Nmp pathway begins with the SK NmpU, which is predicted to be active in the presence of oxygen. NmpU phosphorylates another SK, NmpS, a hybrid kinase containing an RR domain and a HisKA-CA domain. These two kinases work in a reciprocal fashion: when NmpU is active, NmpS is inactive, and vice versa. Finally, the phosphorelay culminates in NmpS phosphorylating the NtrC-like RR NmpR. To better understand the role of NmpRSTU in M. xanthus physiology, we determined the NmpR regulon by combining in silico predictions of the NmpR consensus binding sequence with in vitro electromobility shift assays (EMSAs) and in vivo transcriptional reporters. We identified several NmpR-dependent, upregulated genes likely to be important in oxygen utilization. Additionally, we demonstrate NmpRSTU plays a role in fruiting body development, suggesting a role for oxygen sensing in this behavior. We propose that NmpRSTU senses oxygen-limiting conditions, and NmpR upregulates genes associated with optimal utilization of that oxygen. This may be necessary for M. xanthus physiology and behaviors in the highly dynamic soil where oxygen concentrations vary dramatically. IMPORTANCE Bacteria use two-component signaling systems (TCSs) to respond to a multitude of environmental signals and subsequently regulate complex cellular physiology and behaviors. Myxococcus xanthus is a ubiquitous soil bacterium that encodes numerous two-component systems to respond to the conditions of its soil environment and coordinate multicellular behaviors such as coordinated motility, microbial predation, fruiting body development, and sporulation. To better understand how this bacterium uses a two-component system that has been linked to the sensing of oxygen concentrations, NmpRSTU, we determined the gene regulatory network of this system. We identified several genes regulated by NmpR that are likely important in oxygen utilization and for the M. xanthus response to varied oxygen concentrations in the dynamic soil environment.
Collapse
Affiliation(s)
- Colin T. McAllister
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison M. Ronk
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Mason J. Stenzel
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - John R. Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daniel J. Bretl
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| |
Collapse
|
2
|
Keffer JL, Zhou N, Rushworth DD, Yu Y, Chan CS. Microbial magnetite oxidation via MtoAB porin-multiheme cytochrome complex in Sideroxydans lithotrophicus ES-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.20.614158. [PMID: 39345469 PMCID: PMC11429942 DOI: 10.1101/2024.09.20.614158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Most of Earth's iron is mineral-bound, but it is unclear how and to what extent iron-oxidizing microbes can use solid minerals as electron donors. A prime candidate for studying mineral-oxidizing growth and pathways is Sideroxydans lithotrophicus ES-1, a robust, facultative iron oxidizer with multiple possible iron oxidation mechanisms. These include Cyc2 and Mto pathways plus other multiheme cytochromes and cupredoxins, and so we posit that the mechanisms may correspond to different Fe(II) sources. Here, S. lithotrophicus ES-1 was grown on dissolved Fe(II)-citrate and magnetite. S. lithotrophicus ES-1 oxidized all dissolved Fe 2+ released from magnetite, and continued to build biomass when only solid Fe(II) remained, suggesting it can utilize magnetite as a solid electron donor. Quantitative proteomic analyses of S. lithotrophicus ES-1 grown on these substrates revealed global proteome remodeling in response to electron donor and growth state and uncovered potential proteins and metabolic pathways involved in the oxidation of solid magnetite. While the Cyc2 iron oxidases were highly expressed on both dissolved and solid substrates, MtoA was only detected during growth on solid magnetite, suggesting this protein helps catalyze oxidation of solid minerals in S. lithotrophicus ES-1. A set of cupredoxin domain-containing proteins were also specifically expressed during solid iron oxidation. This work demonstrated the iron oxidizer S. lithotrophicus ES-1 utilized additional extracellular electron transfer pathways when growing on solid mineral electron donors compared to dissolved Fe(II). Importance Mineral-bound iron could be a vast source of energy to iron-oxidizing bacteria, but there is limited physiological evidence of this metabolism, and it has been unknown whether the mechanisms of solid and dissolved Fe(II) oxidation are distinct. In iron-reducing bacteria, multiheme cytochromes can facilitate iron mineral reduction, and here, we link a multiheme cytochrome-based pathway to mineral oxidation, expanding the known functionality of multiheme cytochromes. Given the growing recognition of microbial oxidation of minerals and cathodes, increasing our understanding of these mechanisms will allow us to recognize and trace the activities of mineral-oxidizing microbes. This work shows how solid iron minerals can promote microbial growth, which if widespread, could be a major agent of geologic weathering and mineral-fueled nutrient cycling in sediments, aquifers, and rock-hosted environments.
Collapse
|
3
|
Wasmund K, Singleton C, Dahl Dueholm MK, Wagner M, Nielsen PH. The predicted secreted proteome of activated sludge microorganisms indicates distinct nutrient niches. mSystems 2024; 9:e0030124. [PMID: 39254351 PMCID: PMC11495043 DOI: 10.1128/msystems.00301-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
In wastewater treatment plants (WWTPs), complex microbial communities process diverse chemical compounds from sewage. Secreted proteins are critical because many are the first to interact with or degrade external (macro)molecules. To better understand microbial functions in WWTPs, we predicted secreted proteomes of WWTP microbiota from more than 1,000 high-quality metagenome-assembled genomes (MAGs) from 23 Danish WWTPs with biological nutrient removal. Focus was placed on examining secreted catabolic exoenzymes that target major classes of macromolecules. We demonstrate that Bacteroidota has a high potential to digest complex polysaccharides, but also proteins and nucleic acids. Poorly understood activated sludge members of Acidobacteriota and Gemmatimonadota also have high capacities for extracellular polysaccharide digestion. Secreted nucleases are encoded by 61% of MAGs indicating an importance for extracellular DNA and/or RNA digestion in WWTPs. Secreted lipases were the least common macromolecule-targeting enzymes predicted, encoded mainly by Gammaproteobacteria and Myxococcota. In contrast, diverse taxa encode extracellular peptidases, indicating that proteins are widely used nutrients. Diverse secreted multi-heme cytochromes suggest capabilities for extracellular electron transfer by various taxa, including some Bacteroidota that encode undescribed cytochromes with >100 heme-binding motifs. Myxococcota have exceptionally large secreted protein complements, probably related to predatory lifestyles and/or complex cell cycles. Many Gammaproteobacteria MAGs (mostly former Betaproteobacteria) encode few or no secreted hydrolases, but many periplasmic substrate-binding proteins and ABC- and TRAP-transporters, suggesting they are mostly sustained by small molecules. Together, this study provides a comprehensive overview of how WWTPs microorganisms interact with the environment, providing new insights into their functioning and niche partitioning.IMPORTANCEWastewater treatment plants (WWTPs) are critical biotechnological systems that clean wastewater, allowing the water to reenter the environment and limit eutrophication and pollution. They are also increasingly important for the recovery of resources. They function primarily by the activity of microorganisms, which act as a "living sponge," taking up and transforming nutrients, organic material, and pollutants. Despite much research, many microorganisms in WWTPs are uncultivated and poorly characterized, limiting our understanding of their functioning. Here, we analyzed a large collection of high-quality metagenome-assembled genomes from WWTPs for encoded secreted enzymes and proteins, with special emphasis on those used to degrade organic material. This analysis showed highly distinct secreted proteome profiles among different major phylogenetic groups of microorganisms, thereby providing new insights into how different groups function and co-exist in activated sludge. This knowledge will contribute to a better understanding of how to efficiently manage and exploit WWTP microbiomes.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
4
|
Liu C, Chen X, Wang S, Luo Y, Du W, Yin Y, Guo H. A field study of a novel permeable-reactive-biobarrier to remediate chlorinated hydrocarbons contaminated groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124042. [PMID: 38679128 DOI: 10.1016/j.envpol.2024.124042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Chlorinated hydrocarbons (CHs) pose significant health risks due to their suspected carcinogenicity, necessitating urgent remediation efforts. While the combination of zero-valent iron (Fe0) and microbial action shows promise in mitigating CH contamination, field studies on this approach are scarce. We devised a novel three-layer permeable reactive barrier (PRB) material incorporating Fe0 and coconut shell biochar, effectively implemented at a typical CH-contaminated site. Field monitoring data revealed conducive conditions for reductive dechlorination of CHs, characterized by low oxygen levels and a relatively neutral pH in the groundwater. The engineered PRB material consistently released organic carbon and iron, fostering the proliferation of CH-dechlorinating bacteria. Over a 250-day operational period, the pilot-scale PRB demonstrated remarkable efficacy in CH removal, achieving removal efficiencies ranging from 21.9% to 99.6% for various CH compounds. Initially, CHs were predominantly eliminated through adsorption and iron-mediated reductive dechlorination. However, microbial reductive dechlorination emerged as the predominant mechanism for sustained and long-term CHs removal. These findings underscore the economic viability and effectiveness of our approach in treating CH-contaminated groundwater, offering promising prospects for broader application in environmental remediation efforts.
Collapse
Affiliation(s)
- Cuicui Liu
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Xiaohui Chen
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Shui Wang
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China.
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Wenchao Du
- School of the Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Portela PC, Shipps CC, Shen C, Srikanth V, Salgueiro CA, Malvankar NS. Widespread extracellular electron transfer pathways for charging microbial cytochrome OmcS nanowires via periplasmic cytochromes PpcABCDE. Nat Commun 2024; 15:2434. [PMID: 38509081 PMCID: PMC10954620 DOI: 10.1038/s41467-024-46192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Extracellular electron transfer (EET) via microbial nanowires drives globally-important environmental processes and biotechnological applications for bioenergy, bioremediation, and bioelectronics. Due to highly-redundant and complex EET pathways, it is unclear how microbes wire electrons rapidly (>106 s-1) from the inner-membrane through outer-surface nanowires directly to an external environment despite a crowded periplasm and slow (<105 s-1) electron diffusion among periplasmic cytochromes. Here, we show that Geobacter sulfurreducens periplasmic cytochromes PpcABCDE inject electrons directly into OmcS nanowires by binding transiently with differing efficiencies, with the least-abundant cytochrome (PpcC) showing the highest efficiency. Remarkably, this defined nanowire-charging pathway is evolutionarily conserved in phylogenetically-diverse bacteria capable of EET. OmcS heme reduction potentials are within 200 mV of each other, with a midpoint 82 mV-higher than reported previously. This could explain efficient EET over micrometres at ultrafast (<200 fs) rates with negligible energy loss. Engineering this minimal nanowire-charging pathway may yield microbial chassis with improved performance.
Collapse
Affiliation(s)
- Pilar C Portela
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Catharine C Shipps
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Cong Shen
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vishok Srikanth
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Carlos A Salgueiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| | - Nikhil S Malvankar
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Tang R, Yang S, Narsing Rao MP, Xie CJ, Han S, Yang QE, Rensing C, Liu GH, Yuan Y, Zhou SG. Three Fe(III)-reducing and nitrogen-fixing bacteria, Anaeromyxobacter terrae sp. nov., Anaeromyxobacter oryzisoli sp. nov. and Anaeromyxobacter soli sp. nov., isolated from paddy soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 38323900 DOI: 10.1099/ijsem.0.006268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Three microaerophilic bacterial strains, designated SG22T, SG63T and SG29T were isolated from paddy soils in PR China. Cells of these strains were Gram-staining-negative and long rod-shaped. SG22T, SG63T and SG29T showed the highest 16S rRNA gene sequence similarities with the members of the genus Anaeromyxobacter. The results of phylogenetic and phylogenomic analysis also indicated that these strains clustered with members of the genus Anaeromyxobacter. The main respiratory menaquinone of SG22T, SG63T and SG29T was MK-8 and the major fatty acids were iso-C15 : 0, iso-C17 : 0 and C16 : 0. SG22T, SG29T and SG63T not only possessed iron reduction ability but also harboured genes (nifHDK) encoding nitrogenase. The genomic DNA G+C contents of SG22T, SG63T and SG29T ranged from 73.3 to 73.5 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values between SG22T, SG63T and SG29T and the closely related species of the genus Anaeromyxobacter were lower than the cut-off values (dDDH 70 % and ANI 95-96 %) for prokaryotic species delineation. On the basis of these results, strains SG22T, SG63T and SG29T represent three novel species within the genus Anaeromyxobacter, for which the names Anaeromyxobacter terrae sp. nov., Anaeromyxobacter oryzisoli sp. nov. and Anaeromyxobacter soli sp. nov., are proposed. The type strains are SG22T (= GDMCC 1.3185T = JCM 35581T), SG63T (= GDMCC 1.2914T = JCM 35124T) and SG29T (= GDMCC 1.2911T = JCM 35123T).
Collapse
Affiliation(s)
- Rong Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, Talca 3460000, Chile
| | - Cheng-Jie Xie
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qiu-E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Guo-Hong Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
7
|
Kurashita H, Hatamoto M, Tomita S, Yamaguchi T, Narihiro T, Kuroda K. Comprehensive Insights into Potential Metabolic Functions of Myxococcota in Activated Sludge Systems. Microbes Environ 2024; 39:ME24068. [PMID: 39756957 PMCID: PMC11821767 DOI: 10.1264/jsme2.me24068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 01/07/2025] Open
Abstract
Myxobacteria, belonging to the phylum Myxococcota, are ubiquitous in soil, marine, and other environments. A recent metagenomic sequencing ana-lysis showed that Myxococcota are predominant in activated sludge systems; however, their metabolic traits remain unclear. In the present study, we exami-ned the potential biological functions of 46 metagenomic bins of Myxococcota reconstructed from activated sludge samples from four municipal sewage treatment plants. The results obtained showed that most Myxococcota bins had an almost complete set of genes associated with glycolysis and the TCA cycle. The Palsa-1104 and Polyangiales bins contained the glycoside hydrolase GH5 and peptidase M23, which are presumably involved in lysis of the cell wall and cellular cytoplasm, suggesting that some Myxococcota from activated sludge prey on other microorganisms. The cell contact-dependent predatory functions of Myxococcus xanthus are conserved in the family Myxococcaceae, but not in other families. Two bins belonging to Palsa-1104 had phototrophic gene clusters, indicating the potential for heterotrophic and autotrophic metabolism by these microbes. In assessments of the social behavior of Myxococcota in activated sludge, the FruA gene and C-signal gene, which are involved in the regulation of fruiting body formation, were lacking in Myxococcota bins, suggesting their inability to form fruiting bodies. In addition, multiple bins of Myxococcota had novel secondary metabolite biosynthesis gene clusters that may be used for the predation of other bacteria in activated sludge. Our metagenome-based ana-lyses provide novel insights into the microbial interactions associated with Myxococcota in activated sludge ecosystems.
Collapse
Affiliation(s)
- Hazuki Kurashita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062–8517 Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603–1 Kamitomioka, Nagaoka, Niigata, 940–2188 Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603–1 Kamitomioka, Nagaoka, Niigata, 940–2188 Japan
| | - Shun Tomita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062–8517 Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603–1 Kamitomioka, Nagaoka, Niigata, 940–2188 Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062–8517 Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603–1 Kamitomioka, Nagaoka, Niigata, 940–2188 Japan
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062–8517 Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603–1 Kamitomioka, Nagaoka, Niigata, 940–2188 Japan
| |
Collapse
|
8
|
Anaeromyxobacter oryzae sp. nov., Anaeromyxobacter diazotrophicus sp. nov. and Anaeromyxobacter paludicola sp. nov., isolated from paddy soils. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three bacterial strains (Red232T, Red267T and Red630T) were isolated from paddy soils sampled in Japan. Cells of these strains were Gram-stain-negative, facultative anaerobic, long rod-shaped with monotrichous flagella or pilus-like structures for motility, and formed red colonies on agar plates. Phylogenetic trees based on 16S rRNA gene and multiple single-copy gene sequences showed that the three strains formed a cluster with the type strains of
Anaeromyxobacter
species, independent from any other strain genera. Similarity values of the 16S rRNA gene sequences and genomes among the three isolated strains and the type strain of
Anaeromyxobacter
,
Anaeromyxobacter dehalogenans
2CP-1T, were 95.4–97.4% for 16S rRNA gene sequence, 75.3–79.5% for average nucleotide identity, 19.6–21.7% for digital DNA–DNA hybridization and 64.1–72.6% for average amino acid identity, all of which are below the species delineation thresholds. Nitrogenase genes were observed in the genomes of the three novel strains, but not in
A. dehalogenans
2CP-1T. Moreover, multiple genomic, physiological and chemotaxonomic features supported the discrimination between these three strains. Based on the evidence in this study, the three isolates represent three novel independent species for which the following names are proposed: Anaeromyxobacter oryzae sp. nov., Anaeromyxobacter diazotrophicus sp. nov. and Anaeromyxobacter paludicola sp. nov. The type strains are Red232T (=NBRC 114074T=MCCC 1K03954T), Red267T (=NBRC 114075T=MCCC 1K04211T), and Red630T (=NBRC 114076T=MCCC 1K03957T), respectively.
Collapse
|
9
|
Pérez J, Contreras-Moreno FJ, Muñoz-Dorado J, Moraleda-Muñoz A. Development versus predation: Transcriptomic changes during the lifecycle of Myxococcus xanthus. Front Microbiol 2022; 13:1004476. [PMID: 36225384 PMCID: PMC9548883 DOI: 10.3389/fmicb.2022.1004476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Myxococcus xanthus is a multicellular bacterium with a complex lifecycle. It is a soil-dwelling predator that preys on a wide variety of microorganisms by using a group and collaborative epibiotic strategy. In the absence of nutrients this myxobacterium enters in a unique developmental program by using sophisticated and complex regulatory systems where more than 1,400 genes are transcriptional regulated to guide the community to aggregate into macroscopic fruiting bodies filled of environmentally resistant myxospores. Herein, we analyze the predatosome of M. xanthus, that is, the transcriptomic changes that the predator undergoes when encounters a prey. This study has been carried out using as a prey Sinorhizobium meliloti, a nitrogen fixing bacteria very important for the fertility of soils. The transcriptional changes include upregulation of genes that help the cells to detect, kill, lyse, and consume the prey, but also downregulation of genes not required for the predatory process. Our results have shown that, as expected, many genes encoding hydrolytic enzymes and enzymes involved in biosynthesis of secondary metabolites increase their expression levels. Moreover, it has been found that the predator modifies its lipid composition and overproduces siderophores to take up iron. Comparison with developmental transcriptome reveals that M. xanthus downregulates the expression of a significant number of genes coding for regulatory elements, many of which have been demonstrated to be key elements during development. This study shows for the first time a global view of the M. xanthus lifecycle from a transcriptome perspective.
Collapse
|
10
|
Mahajan S, Agashe D. Evolutionary jumps in bacterial GC content. G3 (BETHESDA, MD.) 2022; 12:jkac108. [PMID: 35579351 PMCID: PMC9339322 DOI: 10.1093/g3journal/jkac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Genomic GC (Guanine-Cytosine) content is a fundamental molecular trait linked with many key genomic features such as codon and amino acid use. Across bacteria, GC content is surprisingly diverse and has been studied for many decades; yet its evolution remains incompletely understood. Since it is difficult to observe GC content evolve on laboratory time scales, phylogenetic comparative approaches are instrumental; but this dimension is rarely studied systematically in the case of bacterial GC content. We applied phylogenetic comparative models to analyze GC content evolution in multiple bacterial groups across 2 major bacterial phyla. We find that GC content diversifies via a combination of gradual evolution and evolutionary "jumps." Surprisingly, unlike prior reports that solely focused on reductions in GC, we found a comparable number of jumps with both increased and decreased GC content. Overall, many of the identified jumps occur in lineages beyond the well-studied peculiar examples of endosymbiotic and AT-rich marine bacteria and do not support the predicted role of oxygen dependence. Our analysis of rapid and large shifts in GC content thus identifies new clades and novel contexts to further understand the ecological and evolutionary drivers of this important genomic trait.
Collapse
Affiliation(s)
- Saurabh Mahajan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
- Atria University, Bengaluru 560024, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
11
|
Zhu X, Wang X, Li N, Wang Q, Liao C. Bioelectrochemical system for dehalogenation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118519. [PMID: 34793908 DOI: 10.1016/j.envpol.2021.118519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Halogenated organic compounds are persistent pollutants, whose persistent contamination and rapid spread seriously threaten human health and the safety of ecosystems. It is difficult to remove them completely by traditional physicochemical techniques. In-situ remediation utilizing bioelectrochemical technology represents a promising strategy for degradation of halogenated organic compounds, which can be achieved through potential modulation. In this review, we summarize the reactor configuration of microbial electrochemical dehalogenation systems and relevant organohalide-respiring bacteria. We also highlight the mechanisms of electrode potential regulation of microbial dehalogenation and the role of extracellular electron transfer in dehalogenation process, and further discuss the application of bioelectrochemical technology in bioremediation of halogenated organic compounds. Therefore, this review summarizes the status of research on microbial electrochemical dehalogenation systems from macroscopic to microscopic levels, providing theoretical support for the development of rapid and efficient in situ bioremediation technologies for halogenated organic compounds contaminated sites, as well as insights for the removal of refractory fluorides.
Collapse
Affiliation(s)
- Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Qi Wang
- Beijing Construction Engineering Group Environmental Remediation Co. Ltd. and National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
12
|
Genomes of Novel Myxococcota Reveal Severely Curtailed Machineries for Predation and Cellular Differentiation. Appl Environ Microbiol 2021; 87:e0170621. [PMID: 34524899 DOI: 10.1128/aem.01706-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cultured Myxococcota are predominantly aerobic soil inhabitants, characterized by their highly coordinated predation and cellular differentiation capacities. Little is currently known regarding yet-uncultured Myxococcota from anaerobic, nonsoil habitats. We analyzed genomes representing one novel order (o__JAFGXQ01) and one novel family (f__JAFGIB01) in the Myxococcota from an anoxic freshwater spring (Zodletone Spring) in Oklahoma, USA. Compared to their soil counterparts, anaerobic Myxococcota possess smaller genomes and a smaller number of genes encoding biosynthetic gene clusters (BGCs), peptidases, one- and two-component signal transduction systems, and transcriptional regulators. Detailed analysis of 13 distinct pathways/processes crucial to predation and cellular differentiation revealed severely curtailed machineries, with the notable absence of homologs for key transcription factors (e.g., FruA and MrpC), outer membrane exchange receptor (TraA), and the majority of sporulation-specific and A-motility-specific genes. Further, machine learning approaches based on a set of 634 genes informative of social lifestyle predicted a nonsocial behavior for Zodletone Myxococcota. Metabolically, Zodletone Myxococcota genomes lacked aerobic respiratory capacities but carried genes suggestive of fermentation, dissimilatory nitrite reduction, and dissimilatory sulfate-reduction (in f_JAFGIB01) for energy acquisition. We propose that predation and cellular differentiation represent a niche adaptation strategy that evolved circa 500 million years ago (Mya) in response to the rise of soil as a distinct habitat on Earth. IMPORTANCE The phylum Myxococcota is a phylogenetically coherent bacterial lineage that exhibits unique social traits. Cultured Myxococcota are predominantly aerobic soil-dwelling microorganisms that are capable of predation and fruiting body formation. However, multiple yet-uncultured lineages within the Myxococcota have been encountered in a wide range of nonsoil, predominantly anaerobic habitats, and the metabolic capabilities, physiological preferences, and capacity of social behavior of such lineages remain unclear. Here, we analyzed genomes recovered from a metagenomic analysis of an anoxic freshwater spring in Oklahoma, USA, that represent novel, yet-uncultured, orders and families in the Myxococcota. The genomes appear to lack the characteristic hallmarks for social behavior encountered in Myxococcota genomes and displayed a significantly smaller genome size and a smaller number of genes encoding biosynthetic gene clusters, peptidases, signal transduction systems, and transcriptional regulators. Such perceived lack of social capacity was confirmed through detailed comparative genomic analysis of 13 pathways associated with Myxococcota social behavior, as well as the implementation of machine learning approaches to predict social behavior based on genome composition. Metabolically, these novel Myxococcota are predicted to be strict anaerobes, utilizing fermentation, nitrate reduction, and dissimilarity sulfate reduction for energy acquisition. Our results highlight the broad patterns of metabolic diversity within the yet-uncultured Myxococcota and suggest that the evolution of predation and fruiting body formation in the Myxococcota has occurred in response to soil formation as a distinct habitat on Earth.
Collapse
|
13
|
Myxobacterial Genomics and Post-Genomics: A Review of Genome Biology, Genome Sequences and Related 'Omics Studies. Microorganisms 2021; 9:microorganisms9102143. [PMID: 34683464 PMCID: PMC8538405 DOI: 10.3390/microorganisms9102143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
Myxobacteria are fascinating and complex microbes. They prey upon other members of the soil microbiome by secreting antimicrobial proteins and metabolites, and will undergo multicellular development if starved. The genome sequence of the model myxobacterium Myxococcus xanthus DK1622 was published in 2006 and 15 years later, 163 myxobacterial genome sequences have now been made public. This explosion in genomic data has enabled comparative genomics analyses to be performed across the taxon, providing important insights into myxobacterial gene conservation and evolution. The availability of myxobacterial genome sequences has allowed system-wide functional genomic investigations into entire classes of genes. It has also enabled post-genomic technologies to be applied to myxobacteria, including transcriptome analyses (microarrays and RNA-seq), proteome studies (gel-based and gel-free), investigations into protein–DNA interactions (ChIP-seq) and metabolism. Here, we review myxobacterial genome sequencing, and summarise the insights into myxobacterial biology that have emerged as a result. We also outline the application of functional genomics and post-genomic approaches in myxobacterial research, highlighting important findings to emerge from seminal studies. The review also provides a comprehensive guide to the genomic datasets available in mid-2021 for myxobacteria (including 24 genomes that we have sequenced and which are described here for the first time).
Collapse
|
14
|
Santos-Medellín C, Liechty Z, Edwards J, Nguyen B, Huang B, Weimer BC, Sundaresan V. Prolonged drought imparts lasting compositional changes to the rice root microbiome. NATURE PLANTS 2021; 7:1065-1077. [PMID: 34294907 DOI: 10.1038/s41477-021-00967-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Microbial symbioses can mitigate drought stress in crops but harnessing these beneficial interactions will require an in-depth understanding of root microbiome responses to drought cycles. Here, by detailed temporal characterization of root-associated microbiomes of rice plants during drought stress and recovery, we find that endosphere communities remained compositionally altered after rewatering, with prolonged droughts leading to decreased resilience. Several endospheric Actinobacteria were significantly enriched during drought and for weeks after rewatering. Notably, the most abundant endosphere taxon during this period was a Streptomyces, and a corresponding isolate promoted root growth. Additionally, drought stress disrupted the temporal dynamics of late-colonizing microorganisms, permanently altering the normal successional trends of root microbiota. These findings reveal that severe drought results in enduring impacts on rice root microbiomes, including enrichment of taxonomic groups that could shape the recovery response of the host, and have implications relevant to drought protection strategies using root microbiota.
Collapse
Affiliation(s)
- Christian Santos-Medellín
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Zachary Liechty
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Joseph Edwards
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Bao Nguyen
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Microbiology and Environmental Toxicology Department, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Bihua Huang
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California, Davis, Davis, CA, USA
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California, Davis, Davis, CA, USA.
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
15
|
Shrivastava A, Sharma RK. Myxobacteria and their products: current trends and future perspectives in industrial applications. Folia Microbiol (Praha) 2021; 66:483-507. [PMID: 34060028 DOI: 10.1007/s12223-021-00875-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
Myxobacteria belong to a group of bacteria that are known for their well-developed communication system and synchronized or coordinated movement. This typical behavior of myxobacteria is mediated through secondary metabolites. They are capable of producing secondary metabolites belonging to several chemical classes with unique and wide spectrum of bioactivities. It is predominantly significant that myxobacteria specialize in mechanisms of action that are very rare with other producers. Most of the metabolites have been explored for their medical and pharmaceutical values while a lot of them are still unexplored. This review is an attempt to understand the role of potential metabolites produced by myxobacteria in different applications. Different myxobacterial metabolites have demonstrated antibacterial, antifungal, and antiviral properties along with cytotoxic activity against various cell lines. Beside their metabolites, these myxobacteria have also been discussed for better exploitation and implementation in different industrial sectors.
Collapse
Affiliation(s)
- Akansha Shrivastava
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, Jaipur, India
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, Jaipur, India.
| |
Collapse
|
16
|
Chen H, Zheng C, Qiao Y, Du S, Li W, Zhang X, Zhao Z, Cao C, Zhang W. Long-term organic and inorganic fertilization alters the diazotrophic abundance, community structure, and co-occurrence patterns in a vertisol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142441. [PMID: 33097271 DOI: 10.1016/j.scitotenv.2020.142441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Diazotrophs play a critical role in converting air-inactive nitrogen to bio-available nitrogen. Assessing the influences of different fertilization regimes on diazotrophs is essential for a better understanding of their maintenance of soil fertility and agricultural sustainability. In this study, we targeted the nifH gene to investigate the effects of different long-term fertilization on the diazotrophic community in a vertisol, using real-time quantitative polymerase chain reaction (PCR) and MiSeq sequencing. Five fertilization regimes were tested: no fertilizer (CK), chemical nitrogen, phosphorus, and potassium fertilizer (NPK), organic fertilizer (O), chemical NPK plus organic fertilizer with an equivalent application rate of nitrogen (NPKO), and chemical NPK plus organic fertilizer with a high application rate of nitrogen (HNPKO). Our results showed that fertilization significantly affected the diazotrophic activity, abundance and composition. NPK tended to reduce the activity, abundance, operational taxonomic units (OTU)-richness and alpha-diversity of the diazotrophs, while O had the opposite effect. The effects of inorganic and organic fertilization on the diazotrophs depended on the N application rate, showing that the diazotrophic activity, abundance, and alpha-diversity in NPKO were higher than that of HNPKO. For the diazotrophic community structure, CK, O, and NPKO were grouped and separated from NPK and HNPKO. The diazotrophic community structure strongly correlated with the soil pH, electrical conductivity (EC), total carbon content (TC), and total nitrogen content (TN), among which pH was the major factor shaping the diazotrophic community structure. Different network patterns were observed between the long-term organic and non-organic fertilizers, suggesting that the organic amendment resulted in a more complicated diazotrophic community than the non-organic amendments. Rhizobium was the most important hub connecting members in the community. These results indicated that organic amendments are beneficial to diazotrophic activity, abundance, OTU richness, alpha-diversity, and the diazotrophic communities' potential interactions, which may enhance biological nitrogen fixation in vertisols.
Collapse
Affiliation(s)
- Huan Chen
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengyan Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqiang Qiao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shizhou Du
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wei Li
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangqian Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhu Zhao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Chengfu Cao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Weijian Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
17
|
Molecular characterization of bacteria and archaea in a bioaugmented zero-water exchange shrimp pond. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractIn the zero-water exchange shrimp culture pond maintained with the application of indigenous bioaugmentor, low levels of total ammonia–nitrogen were reported, indicating the relevance of indigenous microbial communities. Sediments (0–5 cm layer) were sampled from the pond (85th day) and the bacterial and archaeal communities; specifically, the ammonia oxidizers (ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and anaerobic ammonia-oxidizing bacteria) in the sediment metagenome of the pond were analysed using the 16S rRNA and functional genes. Bacterial and archaeal 16S rRNA genes showed the relative abundance of Delta-Proteobacteria and Bacteroidetes groups performing sulphur respiration and organic matter degradation, archaeal groups of anaerobic sulphur respiring Crenarchaeotae, and chemolithoautotrophic ammonia oxidizers belonging to Thaumarchaeota. The presence of these diverse bacterial and archaeal communities denotes their significant roles in the cycling the carbon, nitrogen, and sulphur thereby bringing out efficient bioremediation in the bioaugmented zero-water exchange shrimp culture pond. Similarly, the functional gene-specific study showed the predominance of Nitrosomonas sp. (ammonia-oxidizing bacteria), Nitrosopumilus maritimus (ammonia-oxidizing archaea), and Candidatus Kuenenia (anaerobic ammonia-oxidizing bacteria) in the system, which points to their importance in the removal of accumulated ammonia. Thus, this study paves the way for understanding the microbial communities, specifically the ammonia oxidizers responsible for maintaining healthy and optimal environmental conditions in the bioaugmented zero-water exchange shrimp culture pond.
Collapse
|
18
|
Diazotrophic Anaeromyxobacter Isolates from Soils. Appl Environ Microbiol 2020; 86:AEM.00956-20. [PMID: 32532868 DOI: 10.1128/aem.00956-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/04/2020] [Indexed: 11/20/2022] Open
Abstract
Biological nitrogen fixation is an essential reaction in a major pathway for supplying nitrogen to terrestrial environments. Previous culture-independent analyses based on soil DNA/RNA/protein sequencing could globally detect the nitrogenase genes/proteins of Anaeromyxobacter (in the class Deltaproteobacteria), commonly distributed in soil environments and predominant in paddy soils; this suggests the importance of Anaeromyxobacter in nitrogen fixation in soil environments. However, direct experimental evidence is lacking; there has been no research on the genetic background and ability of Anaeromyxobacter to fix nitrogen. Therefore, we verified the diazotrophy of Anaeromyxobacter based on both genomic and culture-dependent analyses using Anaeromyxobacter sp. strains PSR-1 and Red267 isolated from soils. Based on the comparison of nif gene clusters, strains PSR-1 and Red267 as well as strains Fw109-5, K, and diazotrophic Geobacter and Pelobacter in the class Deltaproteobacteria contain the minimum set of genes for nitrogenase (nifBHDKEN). These results imply that Anaeromyxobacter species have the ability to fix nitrogen. In fact, Anaeromyxobacter PSR-1 and Red267 exhibited N2-dependent growth and acetylene reduction activity (ARA) in vitro Transcriptional activity of the nif gene was also detected when both strains were cultured with N2 gas as a sole nitrogen source, indicating that Anaeromyxobacter can fix and assimilate N2 gas by nitrogenase. In addition, PSR-1- or Red267-inoculated soil showed ARA activity and the growth of the inoculated strains on the basis of RNA-based analysis, demonstrating that Anaeromyxobacter can fix nitrogen in the paddy soil environment. Our study provides novel insights into the pivotal environmental function, i.e., nitrogen fixation, of Anaeromyxobacter, which is a common soil bacterium.IMPORTANCE Anaeromyxobacter is globally distributed in soil environments, especially predominant in paddy soils. Current studies based on environmental DNA/RNA analyses frequently detect gene fragments encoding nitrogenase of Anaeromyxobacter from various soil environments. Although the importance of Anaeromyxobacter as a diazotroph in nature has been suggested by culture-independent studies, there has been no solid evidence and validation from genomic and culture-based analyses that Anaeromyxobacter fixes nitrogen. This study demonstrates that Anaeromyxobacter harboring nitrogenase genes exhibits diazotrophic ability; moreover, N2-dependent growth was demonstrated in vitro and in the soil environment. Our findings indicate that nitrogen fixation is important for Anaeromyxobacter to survive under nitrogen-deficient environments and provide a novel insight into the environmental function of Anaeromyxobacter, which is a common bacterium in soils.
Collapse
|
19
|
Islam ST, Vergara Alvarez I, Saïdi F, Guiseppi A, Vinogradov E, Sharma G, Espinosa L, Morrone C, Brasseur G, Guillemot JF, Benarouche A, Bridot JL, Ravicoularamin G, Cagna A, Gauthier C, Singer M, Fierobe HP, Mignot T, Mauriello EMF. Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion. PLoS Biol 2020; 18:e3000728. [PMID: 32516311 PMCID: PMC7310880 DOI: 10.1371/journal.pbio.3000728] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/23/2020] [Accepted: 05/21/2020] [Indexed: 11/21/2022] Open
Abstract
The development of multicellularity is a key evolutionary transition allowing for differentiation of physiological functions across a cell population that confers survival benefits; among unicellular bacteria, this can lead to complex developmental behaviors and the formation of higher-order community structures. Herein, we demonstrate that in the social δ-proteobacterium Myxococcus xanthus, the secretion of a novel biosurfactant polysaccharide (BPS) is spatially modulated within communities, mediating swarm migration as well as the formation of multicellular swarm biofilms and fruiting bodies. BPS is a type IV pilus (T4P)-inhibited acidic polymer built of randomly acetylated β-linked tetrasaccharide repeats. Both BPS and exopolysaccharide (EPS) are produced by dedicated Wzx/Wzy-dependent polysaccharide-assembly pathways distinct from that responsible for spore-coat assembly. While EPS is preferentially produced at the lower-density swarm periphery, BPS production is favored in the higher-density swarm interior; this is consistent with the former being known to stimulate T4P retraction needed for community expansion and a function for the latter in promoting initial cell dispersal. Together, these data reveal the central role of secreted polysaccharides in the intricate behaviors coordinating bacterial multicellularity. A study of the social bacterium Myxococcus xanthus reveals that the bacteria preferentially secrete specific polysaccharides within distinct zones of a swarm to facilitate spreading across a surface.
Collapse
Affiliation(s)
- Salim T. Islam
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Québec, Canada
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail: (STI); (EMFM)
| | - Israel Vergara Alvarez
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Fares Saïdi
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Québec, Canada
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Annick Guiseppi
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Evgeny Vinogradov
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Gaurav Sharma
- Department of Microbiology and Molecular Genetics, University of California–Davis, Davis, California, United States of America
- Institute of Bioinformatics and Applied Biotechnology, Electronic City, Bengaluru, Karnataka, India
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Castrese Morrone
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Gael Brasseur
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | | | | | | | - Gokulakrishnan Ravicoularamin
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
| | - Alain Cagna
- Teclis Scientific, Civrieux d’Azergue, France
| | - Charles Gauthier
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California–Davis, Davis, California, United States of America
| | - Henri-Pierre Fierobe
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Emilia M. F. Mauriello
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail: (STI); (EMFM)
| |
Collapse
|
20
|
Leng Y, Colston R, Soares A. Understanding the biochemical characteristics of struvite bio-mineralising microorganisms and their future in nutrient recovery. CHEMOSPHERE 2020; 247:125799. [PMID: 31951952 DOI: 10.1016/j.chemosphere.2019.125799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
The biochemical properties of selected microorganisms (Bacillus pumilus, Brevibacterium antiquum, Myxococcus xanthus, Halobacterium salinarum and Idiomarina loihiensis), known for their ability to produce struvite through biomineralisation, were investigated. All five microorganisms grew at mesophilic temperature ranges (22-34 °C), produced urease (except I. loihiensis) and used bovine serum albumin as a carbon source. I. loihiensis was characterised as a facultative anaerobe able to use O2 and NO3 as an electron acceptor. A growth rate of 0.15 1/h was estimated for I. loihiensis at pH 8.0 and NaCl 3.5% w/v. The growth rates for the other microorganisms tested were 0.14-0.43 1/h at pH 7-7.3 and NaCl ≤1% w/v. All the microorganisms produced struvite, as identified by morphological and X-ray Powder Diffraction (XRD) analysis, under aerobic conditions. The biological struvite yield was between 1.5 and 1.7 g/L of media, the ortho-phosphate removal and recovery were 55-76% and 46-54%, respectively, the Mg2+ removal and recovery was 92-98% and 83-95%, respectively. Large crystals (>300 μm) were observed, with coffin-lid and long-bar shapes being the dominant morphology of biological struvite crystals. The characterisation of the biochemical properties of the studied microorganisms is critical for reactor and process design, as well as operational conditions, to promote phosphorus recovery from waste streams.
Collapse
Affiliation(s)
- Yirong Leng
- Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Robert Colston
- Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Ana Soares
- Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK.
| |
Collapse
|
21
|
Xu Y, Liu J, Cai W, Feng J, Lu Z, Wang H, Franks AE, Tang C, He Y, Xu J. Dynamic processes in conjunction with microbial response to disclose the biochar effect on pentachlorophenol degradation under both aerobic and anaerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121503. [PMID: 31708286 DOI: 10.1016/j.jhazmat.2019.121503] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/05/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Organochlorines are critical soil contaminants and the use of biochar has recently shown potential to improve soil remediation. However, little is known about biochar-microbe interactions nor the impact on environmental processes such as the immobilization and biodegradation of organochlorine compounds. In this study, we performed microcosm experiments to elucidate how biochar affected the biodegradation and sequestration of pentachlorophenol (PCP). Our results showed that the amendment of biochar markedly inhibited PCP biodegradation due to a strong sorption affinity for PCP under both aerobic and anaerobic conditions. Notably, the inhibitory effect was relatively weaker under anaerobic conditions than under aerobic conditions. The addition of biochar can dramatically shift the bacterial community diversity in the PCP-spiked soils. Under aerobic conditions, biochar significantly stimulated the growth of PCP-degrading bacteria Bacillus and Sphingomonas, but reduced the opportunities for microbes to contact with PCP directly. Under anaerobic conditions, the non-strict organohalide-respiring bacteria Desulfovibrio, Anaeromyxobacter, Geobacter and Desulfomonile were the main drivers of PCP transformation. Our results imply that the use of biochar as a soil remediation strategy for organochlorine compounds should be cautious.
Collapse
Affiliation(s)
- Yan Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jiaqi Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Wenshan Cai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jiayin Feng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Zhijiang Lu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Victoria, 3086, Australia; Centre for Future Landscapes, La Trobe University, Victoria 3086, Australia
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Victoria, 3086, Australia
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| |
Collapse
|
22
|
Whitfield DL, Sharma G, Smaldone GT, Singer M. Peripheral rods: a specialized developmental cell type in Myxococcus xanthus. Genomics 2019; 112:1588-1597. [PMID: 31605730 DOI: 10.1016/j.ygeno.2019.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023]
Abstract
In response to nutrient deprivation, the ubiquitous Gram-negative soil bacterium Myxococcus xanthus undergoes a well-characterized developmental response, resulting in the formation of a multicellular fruiting body. The center of the fruiting body consists of myxospores; surrounding this structure are rod-shaped peripheral cells. Unlike spores, the peripheral rods are a metabolically active cell type that inhabits nutrient-deprived environments. The survival characteristics exhibited by peripheral rods, protection from oxidative stress and heat shock, are common survival characteristics exhibited by cells in stationary phase including modifications to morphology and metabolism. Vegetative M. xanthus cells undergo a number of physiological changes during the transition into stationary phase similar to other proteobacteria. In M. xanthus, stationary-phase cells are not considered a component of the developmental response and occur when cells are grown on nutrient-rich plates or in dispersed aqueous media. However, this cell type is not routinely studied and little of its physiology is known. Similarities between these two stress-induced cell types led to the question of whether peripheral rods are actually a distinct developmental cell type or simply cells in stationary phase. In this study, we examine the transcriptome of peripheral rods and its relationship to development. This work demonstrates that peripheral rods are in fact a distinct developmentally differentiated cell type. Although peripheral rods and stationary phase cells display similar characteristics, each transcriptomic pattern is unique and quite different from that of any other M. xanthus cell type.
Collapse
Affiliation(s)
- Damion L Whitfield
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
| | - Gaurav Sharma
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Gregory T Smaldone
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Mitchell Singer
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
| |
Collapse
|
23
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
24
|
Arkhipova OV, Biryukova EN, Abashina TN, Khokhlova GV, Ashin VV, Mikoulinskaia GV. Methacrylate-Reducing Activity of Anaerobic Bacteria Anaeromyxobacter dehalogenans and Denitrovibrio acetiphilus. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719020024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Türkowsky D, Jehmlich N, Diekert G, Adrian L, von Bergen M, Goris T. An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiol Ecol 2019; 94:4830072. [PMID: 29390082 DOI: 10.1093/femsec/fiy013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Organohalide respiration (OHR) is a crucial process in the global halogen cycle and of interest for bioremediation. However, investigations on OHR are hampered by the restricted genetic accessibility and the poor growth yields of many organohalide-respiring bacteria (OHRB). Therefore, genomics, transcriptomics and proteomics are often used to investigate OHRB. In general, these gene expression studies are more useful when the data of the different 'omics' approaches are integrated and compared among a wide range of cultivation conditions and ideally involve several closely related OHRB. Despite the availability of a couple of proteomic and transcriptomic datasets dealing with OHRB, such approaches are currently not covered in reviews. Therefore, we here present an integrative and comparative overview of omics studies performed with the OHRB Sulfurospirillum multivorans, Dehalococcoides mccartyi, Desulfitobacterium spp. and Dehalobacter restrictus. Genes, transcripts, proteins and the regulatory and biochemical processes involved in OHR are discussed, and a comprehensive view on the unusual metabolism of D. mccartyi, which is one of the few bacteria possibly using a quinone-independent respiratory chain, is provided. Several 'omics'-derived theories on OHRB, e.g. the organohalide-respiratory chain, hydrogen metabolism, corrinoid biosynthesis or one-carbon metabolism are critically discussed on the basis of this integrative approach.
Collapse
Affiliation(s)
- Dominique Türkowsky
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, Germany
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
26
|
A Highly Polymorphic Receptor Governs Many Distinct Self-Recognition Types within the Myxococcales Order. mBio 2019; 10:mBio.02751-18. [PMID: 30755513 PMCID: PMC6372800 DOI: 10.1128/mbio.02751-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Many biological species distinguish self from nonself by using different mechanisms. Higher animals recognize close kin via complex processes that often involve the five senses, cognition, and learning, whereas some microbes achieve self-recognition simply through the activity of a single genetic locus. Here we describe a single locus, traA, in myxobacteria that governs cell-cell recognition within natural populations. We found that traA is widespread across the order Myxococcales. TraA is highly polymorphic among diverse myxobacterial isolates, and such polymorphisms determine selectivity in self-recognition. Through bioinformatic and experimental analyses, we showed that traA governs many distinct recognition groups within Myxococcales. This report provides an example in which a single locus influences social recognition across a wide phylogenetic range of natural populations. Self-recognition underlies sociality in many group-living organisms. In bacteria, cells use various strategies to recognize kin to form social groups and, in some cases, to transition into multicellular life. One strategy relies on a single genetic locus that encodes a variable phenotypic tag (“greenbeard”) for recognizing other tag bearers. Previously, we discovered a polymorphic cell surface receptor called TraA that directs self-identification through homotypic interactions in the social bacterium Myxococcus xanthus. Recognition by TraA leads to cellular resource sharing in a process called outer membrane exchange (OME). A second gene in the traA operon, traB, is also required for OME but is not involved in recognition. Our prior studies of TraA identified only six recognition groups among closely related M. xanthus isolates. Here we hypothesize that the number of traA polymorphisms and, consequently, the diversity of recognition in wild isolates are much greater. To test this hypothesis, we expand the scope of TraA characterization to the order Myxococcales. From genomic sequences within the three suborders of Myxococcales, we identified 90 traA orthologs. Sequence analyses and functional characterization of traAB loci suggest that OME is well maintained among diverse myxobacterial taxonomic groups. Importantly, TraA orthologs are highly polymorphic within their variable domain, the region that confers selectivity in self-recognition. We experimentally defined 10 distinct recognition groups and, based on phylogenetic and experimental analyses, predicted >60 recognition groups among the 90 traA alleles. Taken together, our findings revealed a widespread greenbeard locus that mediates the diversity of self-recognition across the order Myxococcales.
Collapse
|
27
|
In silico characterization of a novel putative aerotaxis chemosensory system in the myxobacterium, Corallococcus coralloides. BMC Genomics 2018; 19:757. [PMID: 30340510 PMCID: PMC6194562 DOI: 10.1186/s12864-018-5151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
Background An efficient signal transduction system allows a bacterium to sense environmental cues and then to respond positively or negatively to those signals; this process is referred to as taxis. In addition to external cues, the internal metabolic state of any bacterium plays a major role in determining its ability to reside and thrive in its current environment. Similar to external signaling molecules, cytoplasmic signals are also sensed by methyl-accepting chemotaxis proteins (MCPs) via diverse ligand binding domains. Myxobacteria are complex soil-dwelling social microbes that can perform a variety of physiologic and metabolic activities ranging from gliding motility, sporulation, biofilm formation, carotenoid and secondary metabolite biosynthesis, predation, and slime secretion. To live such complex lifestyles, they have evolved efficient signal transduction systems with numerous one- and two-component regulatory system along with a large array of chemosensory systems to perceive and integrate both external and internal cues. Results Here we report the in silico characterization of a putative energy taxis cluster, Cc-5, which is present in only one amongst 34 known and sequenced myxobacterial genomes, Corallococcus coralloides. In addition, we propose that this energy taxis cluster is involved in oxygen sensing, suggesting that C. coralloides can sense (either directly or indirectly) and then respond to changing concentrations of molecular oxygen. Conclusions This hypothesis is based on the presence of a unique MCP encoded in this gene cluster that contains two different oxygen-binding sensor domains, PAS and globin. In addition, the two monooxygenases encoded in this cluster may contribute to aerobic respiration via ubiquinone biosynthesis, which is part of the cytochrome bc1 complex. Finally, we suggest that this cluster was acquired from Actinobacteria, Gammaproteobacteria or Cyanobacteria. Overall, this in silico study has identified a potentially innovative and evolved mechanism of energy taxis in only one of the myxobacteria, C. coralloides. Electronic supplementary material The online version of this article (10.1186/s12864-018-5151-6) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Bretl DJ, Ladd KM, Atkinson SN, Müller S, Kirby JR. Suppressor mutations reveal an NtrC-like response regulator, NmpR, for modulation of Type-IV Pili-dependent motility in Myxococcus xanthus. PLoS Genet 2018; 14:e1007714. [PMID: 30346960 PMCID: PMC6211767 DOI: 10.1371/journal.pgen.1007714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/01/2018] [Accepted: 09/26/2018] [Indexed: 12/03/2022] Open
Abstract
Two-component signaling systems (TCS) regulate bacterial responses to environmental signals through the process of protein phosphorylation. Specifically, sensor histidine kinases (SK) recognize signals and propagate the response via phosphorylation of a cognate response regulator (RR) that functions to initiate transcription of specific genes. Signaling within a single TCS is remarkably specific and cross-talk between TCS is limited. However, regulation of the flow of information through complex signaling networks that include closely related TCS remains largely unknown. Additionally, many bacteria utilize multi-component signaling networks which provide additional genetic and biochemical interactions that must be regulated for signaling fidelity, input and output specificity, and phosphorylation kinetics. Here we describe the characterization of an NtrC-like RR that participates in regulation of Type-IV pilus-dependent motility of Myxococcus xanthus and is thus named NmpR, NtrC Modulator of Pili Regulator. A complex multi-component signaling system including NmpR was revealed by suppressor mutations that restored motility to cells lacking PilR, an evolutionarily conserved RR required for expression of pilA encoding the major Type-IV pilus monomer found in many bacterial species. The system contains at least four signaling proteins: a SK with a protoglobin sensor domain (NmpU), a hybrid SK (NmpS), a phospho-sink protein (NmpT), and an NtrC-like RR (NmpR). We demonstrate that ΔpilR bypass suppressor mutations affect regulation of the NmpRSTU multi-component system, such that NmpR activation is capable of restoring expression of pilA in the absence of PilR. Our findings indicate that pilus gene expression in M. xanthus is regulated by an extended network of TCS which interact to refine control of pilus function.
Collapse
Affiliation(s)
- Daniel J. Bretl
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Kayla M. Ladd
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Samantha N. Atkinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Department of Bioinformatics, University of Iowa, Iowa City, Iowa, United States of America
| | - Susanne Müller
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - John R. Kirby
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
29
|
Jochum LM, Schreiber L, Marshall IPG, Jørgensen BB, Schramm A, Kjeldsen KU. Single-Cell Genomics Reveals a Diverse Metabolic Potential of Uncultivated Desulfatiglans-Related Deltaproteobacteria Widely Distributed in Marine Sediment. Front Microbiol 2018; 9:2038. [PMID: 30233524 PMCID: PMC6129605 DOI: 10.3389/fmicb.2018.02038] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Desulfatiglans-related organisms comprise one of the most abundant deltaproteobacterial lineages in marine sediments where they occur throughout the sediment column in a gradient of increasing sulfate and organic carbon limitation with depth. Characterized Desulfatiglans isolates are dissimilatory sulfate reducers able to grow by degrading aromatic hydrocarbons. The ecophysiology of environmental Desulfatiglans-populations is poorly understood, however, possibly utilization of aromatic compounds may explain their predominance in marine subsurface sediments. We sequenced and analyzed seven Desulfatiglans-related single-cell genomes (SAGs) from Aarhus Bay sediments to characterize their metabolic potential with regard to aromatic compound degradation and energy metabolism. The average genome assembly size was 1.3 Mbp and completeness estimates ranged between 20 and 50%. Five of the SAGs (group 1) originated from the sulfate-rich surface part of the sediment while two (group 2) originated from sulfate-depleted subsurface sediment. Based on 16S rRNA gene amplicon sequencing group 2 SAGs represent the more frequent types of Desulfatiglans-populations in Aarhus Bay sediments. Genes indicative of aromatic compound degradation could be identified in both groups, but the two groups were metabolically distinct with regard to energy conservation. Group 1 SAGs carry a full set of genes for dissimilatory sulfate reduction, whereas the group 2 SAGs lacked any genetic evidence for sulfate reduction. The latter may be due to incompleteness of the SAGs, but as alternative energy metabolisms group 2 SAGs carry the genetic potential for growth by acetogenesis and fermentation. Group 1 SAGs encoded reductive dehalogenase genes, allowing them to access organohalides and possibly conserve energy by their reduction. Both groups possess sulfatases unlike their cultured relatives allowing them to utilize sulfate esters as source of organic carbon and sulfate. In conclusion, the uncultivated marine Desulfatiglans populations are metabolically diverse, likely reflecting different strategies for coping with energy and sulfate limitation in the subsurface seabed.
Collapse
Affiliation(s)
- Lara M Jochum
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lars Schreiber
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Ian P G Marshall
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bo B Jørgensen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper U Kjeldsen
- Center for Geomicrobiology, Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Sharma G, Burrows LL, Singer M. Diversity and Evolution of Myxobacterial Type IV Pilus Systems. Front Microbiol 2018; 9:1630. [PMID: 30072980 PMCID: PMC6060248 DOI: 10.3389/fmicb.2018.01630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
Type IV pili (T4P) are surface-exposed protein fibers that play key roles in the bacterial life cycle via surface attachment/adhesion, biofilm formation, motility, and development. The order Myxococcales (myxobacteria) are members of the class Deltaproteobacteria and known for their large genome size and complex social behaviors, including gliding motility, fruiting body formation, biofilm production, and prey hunting. Myxococcus xanthus, the best-characterized member of the order, relies on the appropriate expression of 17 type IVa (T4aP) genes organized in a single cluster plus additional genes (distributed throughout the genome) for social motility and development. Here, we compared T4aP genes organization within the myxobacteria to understand their evolutionary origins and diversity. We found that T4aP genes are organized as large clusters in suborder Cystobacterineae, whereas in other two suborders Sorangiineae and Nannocystineae, these genes are dispersed throughout the genome. Based on the genomic organization, the phylogeny of conserved proteins, and synteny studies among 28 myxobacterial and 66 Proteobacterial genomes, we propose an evolutionary model for the origin of myxobacterial T4aP genes independently from other orders in class Deltaproteobacteria. Considering a major role for T4P, this study further proposes the origins and evolution of social motility in myxobacteria and provides a foundation for understanding how complex-behavioral traits, such as gliding motility, multicellular development, etc., might have evolved in this diverse group of complex organisms.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences and the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| |
Collapse
|
31
|
El-Sayed WS. Characterization of a Highly Enriched Microbial Consortium Reductively Dechlorinating 2,3-Dichlorophenol and 2,4,6-Trichlorophenol and the Corresponding cprA Genes from River Sediment. Pol J Microbiol 2018; 65:341-352. [PMID: 29334051 DOI: 10.5604/17331331.1215613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anaerobic reductive dechlorination of 2,3-dichlorophenol (2,3DCP) and 2,4,6-trichlorophenol (2,4,6TCP) was investigated in microcosms from River Nile sediment. A stable sediment-free anaerobic microbial consortium reductively dechlorinating 2,3DCP and 2,4,6TCP was established. Defined sediment-free cultures showing stable dechlorination were restricted to ortho chlorine when enriched with hydrogen as the electron donor, acetate as the carbon source, and either 2,3-DCP or 2,4,6-TCP as electron acceptors. When acetate, formate, or pyruvate were used as electron donors, dechlorination activity was lost. Only lactate can replace dihydrogen as an electron donor. However, the dechlorination potential was decreased after successive transfers. To reveal chlororespiring species, the microbial community structure of chlorophenol-reductive dechlorinating enrichment cultures was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Eight dominant bacteria were detected in the dechlorinating microcosms including members of the genera Citrobacter, Geobacter, Pseudomonas, Desulfitobacterium, Desulfovibrio and Clostridium. Highly enriched dechlorinating cultures were dominated by four bacterial species belonging to the genera Pseudomonas, Desulfitobacterium, and Clostridium. Desulfitobacterium represented the major fraction in DGGE profiles indicating its importance in dechlorination activity, which was further confirmed by its absence resulting in complete loss of dechlorination. Reductive dechlorination was confirmed by the stoichiometric dechlorination of 2,3DCP and 2,4,6TCP to metabolites with less chloride groups and by the detection of chlorophenol RD cprA gene fragments in dechlorinating cultures. PCR amplified cprA gene fragments were cloned and sequenced and found to cluster with the cprA/pceA type genes of Dehalobacter restrictus.
Collapse
Affiliation(s)
- Wael S El-Sayed
- Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, KSA; Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
32
|
Adam PS, Borrel G, Gribaldo S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc Natl Acad Sci U S A 2018; 115:E1166-E1173. [PMID: 29358391 PMCID: PMC5819426 DOI: 10.1073/pnas.1716667115] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) is a five-subunit enzyme complex responsible for the carbonyl branch of the Wood-Ljungdahl (WL) pathway, considered one of the most ancient metabolisms for anaerobic carbon fixation, but its origin and evolutionary history have been unclear. While traditionally associated with methanogens and acetogens, the presence of CODH/ACS homologs has been reported in a large number of uncultured anaerobic lineages. Here, we have carried out an exhaustive phylogenomic study of CODH/ACS in over 6,400 archaeal and bacterial genomes. The identification of complete and likely functional CODH/ACS complexes in these genomes significantly expands its distribution in microbial lineages. The CODH/ACS complex displays astounding conservation and vertical inheritance over geological times. Rare intradomain and interdomain transfer events might tie into important functional transitions, including the acquisition of CODH/ACS in some archaeal methanogens not known to fix carbon, the tinkering of the complex in a clade of model bacterial acetogens, or emergence of archaeal-bacterial hybrid complexes. Once these transfers were clearly identified, our results allowed us to infer the presence of a CODH/ACS complex with at least four subunits in the last universal common ancestor (LUCA). Different scenarios on the possible role of ancestral CODH/ACS are discussed. Despite common assumptions, all are equally compatible with an autotrophic, mixotrophic, or heterotrophic LUCA. Functional characterization of CODH/ACS from a larger spectrum of bacterial and archaeal lineages and detailed evolutionary analysis of the WL methyl branch will help resolve this issue.
Collapse
Affiliation(s)
- Panagiotis S Adam
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, 75015 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Guillaume Borrel
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Simonetta Gribaldo
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, 75015 Paris, France;
| |
Collapse
|
33
|
Denitrification by Anaeromyxobacter dehalogenans, a Common Soil Bacterium Lacking the Nitrite Reductase Genes nirS and nirK. Appl Environ Microbiol 2018; 84:AEM.01985-17. [PMID: 29196287 DOI: 10.1128/aem.01985-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022] Open
Abstract
The versatile soil bacterium Anaeromyxobacter dehalogenans lacks the hallmark denitrification genes nirS and nirK (encoding NO2 -→NO reductases) and couples growth to NO3 - reduction to NH4 + (respiratory ammonification) and to N2O reduction to N2 A. dehalogenans also grows by reducing Fe(III) to Fe(II), which chemically reacts with NO2 - to form N2O (i.e., chemodenitrification). Following the addition of 100 μmol of NO3 - or NO2 - to Fe(III)-grown axenic cultures of A. dehalogenans, 54 (±7) μmol and 113 (±2) μmol N2O-N, respectively, were produced and subsequently consumed. The conversion of NO3 - to N2 in the presence of Fe(II) through linked biotic-abiotic reactions represents an unrecognized ecophysiology of A. dehalogenans The new findings demonstrate that the assessment of gene content alone is insufficient to predict microbial denitrification potential and N loss (i.e., the formation of gaseous N products). A survey of complete bacterial genomes in the NCBI Reference Sequence database coupled with available physiological information revealed that organisms lacking nirS or nirK but with Fe(III) reduction potential and genes for NO3 - and N2O reduction are not rare, indicating that NO3 - reduction to N2 through linked biotic-abiotic reactions is not limited to A. dehalogenans Considering the ubiquity of iron in soils and sediments and the broad distribution of dissimilatory Fe(III) and NO3 - reducers, denitrification independent of NO-forming NO2 - reductases (through combined biotic-abiotic reactions) may have substantial contributions to N loss and N2O flux.IMPORTANCE Current attempts to gauge N loss from soils rely on the quantitative measurement of nirK and nirS genes and/or transcripts. In the presence of iron, the common soil bacterium Anaeromyxobacter dehalogenans is capable of denitrification and the production of N2 without the key denitrification genes nirK and nirS Such chemodenitrifiers denitrify through combined biotic and abiotic reactions and have potentially large contributions to N loss to the atmosphere and fill a heretofore unrecognized ecological niche in soil ecosystems. The findings emphasize that the comprehensive understanding of N flux and the accurate assessment of denitrification potential can be achieved only when integrated studies of interlinked biogeochemical cycles are performed.
Collapse
|
34
|
Quandt EM, Traverse CC, Ochman H. Local genic base composition impacts protein production and cellular fitness. PeerJ 2018; 6:e4286. [PMID: 29362699 PMCID: PMC5774297 DOI: 10.7717/peerj.4286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/01/2018] [Indexed: 01/25/2023] Open
Abstract
The maintenance of a G + C content that is higher than the mutational input to a genome provides support for the view that selection serves to increase G + C contents in bacteria. Recent experimental evidence from Escherichia coli demonstrated that selection for increasing G + C content operates at the level of translation, but the precise mechanism by which this occurs is unknown. To determine the substrate of selection, we asked whether selection on G + C content acts across all sites within a gene or is confined to particular genic regions or nucleotide positions. We systematically altered the G + C contents of the GFP gene and assayed its effects on the fitness of strains harboring each variant. Fitness differences were attributable to the base compositional variation in the terminal portion of the gene, suggesting a connection to the folding of a specific protein feature. Variants containing sequence features that are thought to result in rapid translation, such as low G + C content and high levels of codon adaptation, displayed highly reduced growth rates. Taken together, our results show that purifying selection acting against A and T mutations most likely results from their tendency to increase the rate of translation, which can perturb the dynamics of protein folding.
Collapse
Affiliation(s)
- Erik M Quandt
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Charles C Traverse
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
35
|
Kato S, Shibuya T, Takaki Y, Hirai M, Nunoura T, Suzuki K. Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits. Environ Microbiol 2018; 20:862-877. [DOI: 10.1111/1462-2920.14032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/08/2017] [Accepted: 12/13/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Shingo Kato
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Takazo Shibuya
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Department of Subsurface Geobiological Analysis and Research; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Takuro Nunoura
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Katsuhiko Suzuki
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| |
Collapse
|
36
|
Sharma G, Subramanian S. Unravelling the Complete Genome of Archangium gephyra DSM 2261T and Evolutionary Insights into Myxobacterial Chitinases. Genome Biol Evol 2018; 9:1304-1311. [PMID: 28379546 PMCID: PMC5441343 DOI: 10.1093/gbe/evx066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2017] [Indexed: 11/24/2022] Open
Abstract
Family Cystobacteraceae is a group of eubacteria within order Myxococcales and class Deltaproteobacteria that includes more than 20 species belonging to 6 genera, that is, Angiococcus, Archangium, Cystobacter, Hyalangium, Melittangium, and Stigmatella. Earlier these members have been classified based on chitin degrading efficiency such as Cystobacter fuscus and Stigmatella aurantiaca, which are efficient chitin degraders, C. violaceus a partial chitin degrader and Archangium gephyra a chitin nondegrader. Here we report the 12.5 Mbp complete genome of A. gephyra DSM 2261T and compare it with four available genomes within the family Cystobacteraceae. Phylogeny and DNA–DNA hybridization studies reveal that A. gephyra is closest to Angiococcus disciformis, C. violaceus and C. ferrugineus, which are partial chitin degraders of the family Cystobacteraceae. Homology studies reveal the conservation of approximately half of the proteins in these genomes, with about 15% unique proteins in each genome. The total carbohydrate-active enzymes (CAZome) analysis reveals the presence of one GH18 chitinase in the A. gephyra genome whereas eight copies are present in C. fuscus and S. aurantiaca. Evolutionary studies of myxobacterial GH18 chitinases reveal that most of them are likely related to Terrabacteria and Proteobacteria whereas the Archangium GH18 homolog shares maximum similarity with those of chitin nondegrading Acidobacteria.
Collapse
Affiliation(s)
- Gaurav Sharma
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Srikrishna Subramanian
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| |
Collapse
|
37
|
Abstract
The mutational process in bacteria is biased toward A and T, and most species are GC-rich relative to the mutational input to their genome. It has been proposed that the shift in base composition is an adaptive process-that natural selection operates to increase GC-contents-and there is experimental evidence that bacterial strains with GC-rich versions of genes have higher growth rates than those strains with AT-rich versions expressing identical proteins. Alternatively, a nonadaptive process, GC-biased gene conversion (gBGC), could also increase the GC-content of DNA due to the mechanistic bias of gene conversion events during recombination. To determine what role recombination plays in the base composition of bacterial genomes, we compared the spectrum of nucleotide polymorphisms introduced by recombination in all microbial species represented by large numbers of sequenced strains. We found that recombinant alleles are consistently biased toward A and T, and that the magnitude of AT-bias introduced by recombination is similar to that of mutations. These results indicate that recombination alone, without the intervention of selection, is unlikely to counteract the AT-enrichment of bacterial genomes.
Collapse
Affiliation(s)
- Louis-Marie Bobay
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| |
Collapse
|
38
|
Complete Genome Sequence of the Fruiting Myxobacterium Melittangium boletus DSM 14713. GENOME ANNOUNCEMENTS 2017; 5:5/45/e01262-17. [PMID: 29122879 PMCID: PMC5679812 DOI: 10.1128/genomea.01262-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of spore-filled fruiting bodies in response to starvation represents a hallmark of many members of the order Myxococcales. Here, we present the complete 9.9-Mb genome of the fruiting type strain Melittangium boletus DSM 14713, the first member of this genus to have its genome sequenced.
Collapse
|
39
|
Draft Genome Sequence of the Fruiting Myxobacterium Nannocystis exedens DSM 71. GENOME ANNOUNCEMENTS 2017; 5:5/43/e01227-17. [PMID: 29074673 PMCID: PMC5658511 DOI: 10.1128/genomea.01227-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In response to starvation, members of the order Myxococcales form morphologically very different fruiting bodies. To determine whether fruiting myxobacteria share a common genetic program that leads to fruiting body formation, we sequenced and assembled the genome of Nannocystis exedens DSM 71 as two contigs with a total GC content of 72%.
Collapse
|
40
|
Whole-Genome Sequence of the Fruiting Myxobacterium Cystobacter fuscus DSM 52655. GENOME ANNOUNCEMENTS 2017; 5:5/43/e01196-17. [PMID: 29074667 PMCID: PMC5658505 DOI: 10.1128/genomea.01196-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among myxobacteria, the genus Cystobacter is known not only for fruiting body formation but also for formation of secondary metabolites, such as cystobactamids and cystothiazols. Here, we present the complete genome sequence of the Cystobacter fuscus strain DSM 52655, which comprises 12,349,744 bp and 9,836 putative protein-coding sequences.
Collapse
|
41
|
Mutator genomes decay, despite sustained fitness gains, in a long-term experiment with bacteria. Proc Natl Acad Sci U S A 2017; 114:E9026-E9035. [PMID: 29073099 DOI: 10.1073/pnas.1705887114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the extreme variation among bacterial genomes remains an unsolved challenge in evolutionary biology, despite long-standing debate about the relative importance of natural selection, mutation, and random drift. A potentially important confounding factor is the variation in mutation rates between lineages and over evolutionary history, which has been documented in several species. Mutation accumulation experiments have shown that hypermutability can erode genomes over short timescales. These results, however, were obtained under conditions of extremely weak selection, casting doubt on their general relevance. Here, we circumvent this limitation by analyzing genomes from mutator populations that arose during a long-term experiment with Escherichia coli, in which populations have been adaptively evolving for >50,000 generations. We develop an analytical framework to quantify the relative contributions of mutation and selection in shaping genomic characteristics, and we validate it using genomes evolved under regimes of high mutation rates with weak selection (mutation accumulation experiments) and low mutation rates with strong selection (natural isolates). Our results show that, despite sustained adaptive evolution in the long-term experiment, the signature of selection is much weaker than that of mutational biases in mutator genomes. This finding suggests that relatively brief periods of hypermutability can play an outsized role in shaping extant bacterial genomes. Overall, these results highlight the importance of genomic draft, in which strong linkage limits the ability of selection to purge deleterious mutations. These insights are also relevant to other biological systems evolving under strong linkage and high mutation rates, including viruses and cancer cells.
Collapse
|
42
|
Complete Genome Sequence of the Fruiting Myxobacterium Myxococcus macrosporus Strain DSM 14697, Generated by PacBio Sequencing. GENOME ANNOUNCEMENTS 2017; 5:5/40/e01127-17. [PMID: 28983009 PMCID: PMC5629066 DOI: 10.1128/genomea.01127-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the Myxococcales order initiate a developmental program in response to starvation that culminates in formation of spore-filled fruiting bodies. To investigate the genetic basis for fruiting body formation, we present the complete 8.9-Mb genome sequence of Myxococcus macrosporus strain DSM 14697, generated using the PacBio sequencing platform.
Collapse
|
43
|
Bobay LM, Ochman H. The Evolution of Bacterial Genome Architecture. Front Genet 2017; 8:72. [PMID: 28611826 PMCID: PMC5447742 DOI: 10.3389/fgene.2017.00072] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/12/2017] [Indexed: 11/15/2022] Open
Abstract
The genome architecture of bacteria and eukaryotes evolves in opposite directions when subject to genetic drift, a difference that can be ascribed to the fact that bacteria exhibit a mutational bias that deletes superfluous sequences, whereas eukaryotes are biased toward large insertions. Expansion of eukaryotic genomes occurs through the addition of non-functional sequences, such as repetitive sequences and transposable elements, whereas variation in bacterial genome size is largely due to the acquisition and loss of functional accessory genes. These properties create the situation in which eukaryotes with very similar numbers of genes can have vastly different genome sizes, while in bacteria, gene number scales linearly with genome size. Some bacterial genomes, however, particularly those of species that undergo bottlenecks due to recent association with hosts, accumulate pseudogenes and mobile elements, conferring them a low gene content relative to their genome size. These non-functional sequences are gradually eroded and eliminated after long-term association with hosts, with the result that obligate symbionts have the smallest genomes of any cellular organism. The architecture of bacterial genomes is shaped by complex and diverse processes, but for most bacterial species, genome size is governed by a non-adaptive process, i.e., genetic drift coupled with a mutational bias toward deletions. Thus, bacteria with small effective population sizes typically have the smallest genomes. Some marine bacteria counter this near-universal trend: despite having immense population sizes, selection, not drift, acts to reduce genome size in response to metabolic constraints in their nutrient-limited environment.
Collapse
Affiliation(s)
- Louis-Marie Bobay
- Department of Integrative Biology, University of Texas, AustinTX, United States
| | - Howard Ochman
- Department of Integrative Biology, University of Texas, AustinTX, United States
| |
Collapse
|
44
|
Thoetkiattikul H, Mhuantong W, Pinyakong O, Wisawapipat W, Yamazoe A, Fujita N, Eurwilaichitr L, Champreda V. Culture-independent study of bacterial communities in tropical river sediment. Biosci Biotechnol Biochem 2017; 81:200-209. [DOI: 10.1080/09168451.2016.1234927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Ubiquitous microbial communities in river sediments actively govern organic matter decomposition, nutrient recycling, and remediation of toxic compounds. In this study, prokaryotic diversity in two major rivers in central Thailand, the Chao Phraya (CP) and the Tha Chin (TC) distributary was investigated. Significant differences in sediment physicochemical properties, particularly silt content, were noted between the two rivers. Tagged 16S rRNA sequencing on a 454 platform showed that the sediment microbiomes were dominated by Gammaproteobacteria and sulfur/sulfate reducing Deltaproteobacteria, represented by orders Desulfobacteriales and Desulfluromonadales together with organic degraders Betaproteobacteria (orders Burkholderiales and Rhodocyclales) together with the co-existence of Bacteroidetes predominated by Sphingobacteriales. Enrichment of specific bacterial orders was found in the clayey CP and silt-rich TC sediments, including various genera with known metabolic capability on decomposition of organic matter and xenobiotic compounds. The data represent one of the pioneered works revealing heterogeneity of bacteria in river sediments in the tropics.
Collapse
Affiliation(s)
- Honglada Thoetkiattikul
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Onruthai Pinyakong
- Faculty of Science, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Worachart Wisawapipat
- Faculty of Agriculture, Department of Soil Science, Kasetsart University, Bangkok, Thailand
| | - Atsushi Yamazoe
- Biological Resource Center (BRC), National Institute of Technology and Evaluation (NITE), Tokyo, Japan
| | - Nobuyuki Fujita
- Biological Resource Center (BRC), National Institute of Technology and Evaluation (NITE), Tokyo, Japan
| | - Lily Eurwilaichitr
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Verawat Champreda
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| |
Collapse
|
45
|
Affiliation(s)
- Silke C. Wenzel
- Saarland University; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University Campus, Building E8.1 66123 Saarbrücken Germany
| | - Rolf Müller
- Saarland University; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University Campus, Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
46
|
Abstract
Outer membrane vesicles (OMVs) are produced from the outer membrane (OM) of myxobacterial cells and are found in large quantities within myxobacterial biofilms. It has been proposed that OMVs are involved in several of the social behaviors exhibited by the myxobacteria, including motility and predation. Proteomic data suggest that specific proteins are either selectively incorporated into or excluded from myxobacterial OMVs, as observed for OMVs of other organisms. Hydrolases are found in large numbers in OMVs, which then transport them to target bacteria. Fusion of OMVs with the OM of Gram-negative cells, or lysis of OMVs next to Gram-positive bacteria, is thought to deliver hydrolases to target cells, causing their lysis. The model myxobacterium Myxococcus xanthus is a predator of other bacteria, and OMVs are likely employed as predatory agents by this organism. The transfer of motility proteins between cells of M. xanthus has been documented, and OMV-mediated transfer provides a convenient mechanism to explain this phenomenon. This review describes the general principles of OMV biology, provides an overview of myxobacterial behavior, summarizes what is currently known about myxobacterial OMVs, and discusses the potential involvement of OMVs in many features of the myxobacterial life-cycle.
Collapse
Affiliation(s)
- David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom.
| |
Collapse
|
47
|
A New Comparative-Genomics Approach for Defining Phenotype-Specific Indicators Reveals Specific Genetic Markers in Predatory Bacteria. PLoS One 2015; 10:e0142933. [PMID: 26569499 PMCID: PMC4646340 DOI: 10.1371/journal.pone.0142933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/28/2015] [Indexed: 01/23/2023] Open
Abstract
Predatory bacteria seek and consume other live bacteria. Although belonging to taxonomically diverse groups, relatively few bacterial predator species are known. Consequently, it is difficult to assess the impact of predation within the bacterial realm. As no genetic signatures distinguishing them from non-predatory bacteria are known, genomic resources cannot be exploited to uncover novel predators. In order to identify genes specific to predatory bacteria, we developed a bioinformatic tool called DiffGene. This tool automatically identifies marker genes that are specific to phenotypic or taxonomic groups, by mapping the complete gene content of all available fully-sequenced genomes for the presence/absence of each gene in each genome. A putative ‘predator region’ of ~60 amino acids in the tryptophan 2,3-dioxygenase (TDO) protein was found to probably be a predator-specific marker. This region is found in all known obligate predator and a few facultative predator genomes, and is absent from most facultative predators and all non-predatory bacteria. We designed PCR primers that uniquely amplify a ~180bp-long sequence within the predators’ TDO gene, and validated them in monocultures as well as in metagenetic analysis of environmental wastewater samples. This marker, in addition to its usage in predator identification and phylogenetics, may finally permit reliable enumeration and cataloguing of predatory bacteria from environmental samples, as well as uncovering novel predators.
Collapse
|
48
|
Whitworth DE. Genome-wide analysis of myxobacterial two-component systems: genome relatedness and evolutionary changes. BMC Genomics 2015; 16:780. [PMID: 26463047 PMCID: PMC4603909 DOI: 10.1186/s12864-015-2018-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Two-component systems (TCSs) are abundant prokaryotic signaling pathways, whose evolution is of particular importance because of their role in bacterial pathogenicity. Comparative genomics can provide important insights into the evolution of these genes, but inferences are dependent on the relatedness of the compared genomes. This study investigated the relationship between evolutionary distance and TCS evolution in myxobacterial genomes, of which there are several sequenced examples, of varying relatedness, and which encode large numbers of TCSs. METHODS Myxobacterial TCS gene sets were compared, orthologues defined, and changes in TCS properties such as gene organisation, domain architecture and size identified. RESULTS Genome relatedness/evolutionary distance was found to have a large effect on the apparent frequency of evolutionary events affecting TCS genes, but not on the relative dominance of different types of mutations. Large (≥1 gene) indels were the most common changes, often giving rise to gene organisation changes. Smaller indels were also common, sometimes changing domain architecture, and/or leading to pseudogene formation. Individuality of myxobacterial TCS gene sets seems primarily due to lineage specific gene loss. However, there is also evidence of extensive acquisition of genes by lateral transfer, with gene duplication also creating new TCS genes. CONCLUSIONS This study provides catalogues of myxobacterial TCS gene sets and their orthology relationships, benchmarked against genome relatedness. It also provides insights into the relationship between evolutionary distance and the inference of TCS estudies of TCS evolution beyond the myxobacteriavolution, which may be important for studies of TCS evolutiThe online version of this articleon beyond the myxobacteria.
Collapse
Affiliation(s)
- David E Whitworth
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Ceredigion, SY23 3DD, UK.
| |
Collapse
|
49
|
Jugder BE, Ertan H, Lee M, Manefield M, Marquis CP. Reductive Dehalogenases Come of Age in Biological Destruction of Organohalides. Trends Biotechnol 2015; 33:595-610. [DOI: 10.1016/j.tibtech.2015.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 11/28/2022]
|
50
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|