1
|
Kubíková J, Reinig R, Salgania HK, Jeske M. LOTUS-domain proteins - developmental effectors from a molecular perspective. Biol Chem 2020; 402:7-23. [DOI: 10.1515/hsz-2020-0270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Abstract
The LOTUS domain (also known as OST-HTH) is a highly conserved protein domain found in a variety of bacteria and eukaryotes. In animals, the LOTUS domain is present in the proteins Oskar, TDRD5/Tejas, TDRD7/TRAP/Tapas, and MARF1/Limkain B1, all of which play essential roles in animal development, in particular during oogenesis and/or spermatogenesis. This review summarizes the diverse biological as well as molecular functions of LOTUS-domain proteins and discusses their roles as helicase effectors, post-transcriptional regulators, and critical cofactors of piRNA-mediated transcript silencing.
Collapse
Affiliation(s)
- Jana Kubíková
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Rebecca Reinig
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Harpreet Kaur Salgania
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| |
Collapse
|
2
|
Flora P, Wong-Deyrup SW, Martin ET, Palumbo RJ, Nasrallah M, Oligney A, Blatt P, Patel D, Fuchs G, Rangan P. Sequential Regulation of Maternal mRNAs through a Conserved cis-Acting Element in Their 3' UTRs. Cell Rep 2019; 25:3828-3843.e9. [PMID: 30590052 PMCID: PMC6328254 DOI: 10.1016/j.celrep.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/28/2018] [Accepted: 11/30/2018] [Indexed: 12/31/2022] Open
Abstract
Maternal mRNAs synthesized during oogenesis initiate the development of future generations. Some maternal mRNAs are either somatic or germline determinants and must be translationally repressed until embryogenesis. However, the translational repressors themselves are temporally regulated. We used polar granule component (pgc), a Drosophila maternal mRNA, to ask how maternal transcripts are repressed while the regulatory landscape is shifting. pgc, a germline determinant, is translationally regulated throughout oogenesis. We find that different conserved RNA-binding proteins bind a 10-nt sequence in the 3′ UTR of pgc mRNA to continuously repress translation at different stages of oogenesis. Pumilio binds to this sequence in undifferentiated and early-differentiating oocytes to block Pgc translation. After differentiation, Bruno levels increase, allowing Bruno to bind the same sequence and take over translational repression of pgc mRNA. We have identified a class of maternal mRNAs that are regulated similarly, including zelda, the activator of the zygotic genome. Flora et al. show that pgc, a germline determinant, is translationally regulated throughout oogenesis. Different conserved RBPs bind a 10-nt sequence in the 3′ UTR to continuously repress translation throughout oogenesis. This mode of regulation applies to a class of maternal mRNAs, including zelda, the activator of the zygotic genome.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Siu Wah Wong-Deyrup
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Elliot Todd Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Ryan J Palumbo
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Mohamad Nasrallah
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Andrew Oligney
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Patrick Blatt
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Dhruv Patel
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Gabriele Fuchs
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA.
| |
Collapse
|
3
|
Eagle WVI, Yeboah-Kordieh DK, Niepielko MG, Gavis ER. Distinct cis-acting elements mediate targeting and clustering of Drosophila polar granule mRNAs. Development 2018; 145:dev.164657. [PMID: 30333216 DOI: 10.1242/dev.164657] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022]
Abstract
Specification and development of Drosophila germ cells depend on molecular determinants within the germ plasm, a specialized cytoplasmic domain at the posterior of the embryo. Localization of numerous mRNAs to the germ plasm occurs by their incorporation, as single-transcript ribonucleoprotein (RNP) particles, into complex RNP granules called polar granules. Incorporation of mRNAs into polar granules is followed by recruitment of additional like transcripts to form discrete homotypic clusters. The cis-acting localization signals that target mRNAs to polar granules and promote homotypic clustering remain largely uncharacterized. Here, we show that the polar granule component (pgc) and germ cell-less (gcl) 3' untranslated regions contain complex localization signals comprising multiple, independently weak and partially functionally redundant localization elements (LEs). We demonstrate that targeting of pgc to polar granules and self-assembly into homotypic clusters are functionally separable processes mediated by distinct classes of LEs. We identify a sequence motif shared by other polar granule mRNAs that contributes to homotypic clustering. Our results suggest that mRNA localization signal complexity may be a feature required by the targeting and self-recruitment mechanism that drives germ plasm mRNA localization.
Collapse
Affiliation(s)
- Whitby V I Eagle
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | - Matthew G Niepielko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Carrami EM, Eckermann KN, Ahmed HMM, Sánchez C HM, Dippel S, Marshall JM, Wimmer EA. Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management. Proc Natl Acad Sci U S A 2018; 115:6189-6194. [PMID: 29844184 PMCID: PMC6004448 DOI: 10.1073/pnas.1713825115] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/07/2017] [Indexed: 11/18/2022] Open
Abstract
The use of a site-specific homing-based gene drive for insect pest control has long been discussed, but the easy design of such systems has become possible only with the recent establishment of CRISPR/Cas9 technology. In this respect, novel targets for insect pest management are provided by new discoveries regarding sex determination. Here, we present a model for a suppression gene drive designed to cause an all-male population collapse in an agricultural pest insect. To evaluate the molecular details of such a sex conversion-based suppression gene drive experimentally, we implemented this strategy in Drosophila melanogaster to serve as a safe model organism. We generated a Cas9-based homing gene-drive element targeting the transformer gene and showed its high efficiency for sex conversion from females to males. However, nonhomologous end joining increased the rate of mutagenesis at the target site, which resulted in the emergence of drive-resistant alleles and therefore curbed the gene drive. This confirms previous studies that simple homing CRISPR/Cas9 gene-drive designs will be ineffective. Nevertheless, by performing population dynamics simulations using the parameters we obtained in D. melanogaster and by adjusting the model for the agricultural pest Ceratitis capitata, we were able to identify adequate modifications that could be successfully applied for the management of wild Mediterranean fruit fly populations using our proposed sex conversion-based suppression gene-drive strategy.
Collapse
Affiliation(s)
- Eli M Carrami
- Department of Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | - Kolja N Eckermann
- Department of Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
- Molecular Cell Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Hassan M M Ahmed
- Department of Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | - Héctor M Sánchez C
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA 94720
| | - Stefan Dippel
- Department of Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA 94720
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany;
- Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Fastman Y, Assaraf S, Rose M, Milrot E, Basore K, Arasu BS, Desai SA, Elbaum M, Dzikowski R. An upstream open reading frame (uORF) signals for cellular localization of the virulence factor implicated in pregnancy associated malaria. Nucleic Acids Res 2018; 46:4919-4932. [PMID: 29554358 PMCID: PMC6007598 DOI: 10.1093/nar/gky178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
Plasmodium falciparum, the causative agent of the deadliest form of human malaria, alternates expression of variable antigens, encoded by members of a multi-copy gene family named var. In var2csa, the var gene implicated in pregnancy-associated malaria, translational repression is regulated by a unique upstream open reading frame (uORF) found only in its 5' UTR. Here, we report that this translated uORF significantly alters both transcription and posttranslational protein trafficking. The parasite can alter a protein's destination without any modifications to the protein itself, but instead by an element within the 5' UTR of the transcript. This uORF-dependent localization was confirmed by single molecule STORM imaging, followed by fusion of the uORF to a reporter gene which changes its cellular localization from cytoplasmic to ER-associated. These data point towards a novel regulatory role of uORF in protein trafficking, with important implications for the pathology of pregnancy-associated malaria.
Collapse
Affiliation(s)
- Yair Fastman
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel - Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Shany Assaraf
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel - Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Miriam Rose
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel - Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Elad Milrot
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Katherine Basore
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - B Sivanandam Arasu
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sanjay A Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Michael Elbaum
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel - Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
6
|
Control of Pem protein level by localized maternal factors for transcriptional regulation in the germline of the ascidian, Halocynthia roretzi. PLoS One 2018; 13:e0196500. [PMID: 29709000 PMCID: PMC5927453 DOI: 10.1371/journal.pone.0196500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/13/2018] [Indexed: 12/04/2022] Open
Abstract
Localized maternal mRNAs play important roles in embryogenesis, e.g. the establishment of embryonic axes and the developmental cell fate specification, in various animal species. In ascidians, a group of maternal mRNAs, called postplasmic/PEM RNAs, is localized to a subcellular structure, called the Centrosome-Attracting Body (CAB), which contains the ascidian germ plasm, and is inherited by the germline cells during embryogenesis. Posterior end mark (Pem), a postplasmic/PEM RNAs member, represses somatic gene expression in the germline during cleavage stages by inhibition of RNA polymerase II activity. However, the functions of other postplasmic/ PEM RNAs members in germline formation are largely unknown. In this study, we analyzed the functions of two postplasmic/PEM RNAs, Popk-1 and Zf-1, in transcriptional regulation in the germline cells. We show that Popk-1 contributes to transcriptional quiescence by controlling the size of the CAB and amount of Pem protein translated at the CAB. Our studies also indicated that zygotic expression of a germline gene starts around the onset of gastrulation and that the decrease of Pem protein is necessary and sufficient for the zygotic germline gene expression. Finally, further studies showed that the decrease of the Pem protein level is facilitated by Zf-1. Taken together, we propose that postplasmic/PEM RNAs such as Popk-1 and Zf-1 control the protein level of the transcriptional repressor Pem and regulate its transcriptional state in the ascidian germline.
Collapse
|
7
|
Abstract
A large body of evidence indicates that genome annotation pipelines have biased our view of coding sequences because they generally undersample small proteins and peptides. The recent development of genome-wide translation profiling reveals the prevalence of small/short open reading frames (smORFs or sORFs), which are scattered over all classes of transcripts, including both mRNAs and presumptive long noncoding RNAs. Proteomic approaches further confirm an unexpected variety of smORF-encoded peptides (SEPs), representing an overlooked reservoir of bioactive molecules. Indeed, functional studies in a broad range of species from yeast to humans demonstrate that SEPs can harbor key activities for the control of development, differentiation, and physiology. Here we summarize recent advances in the discovery and functional characterization of smORF/SEPs and discuss why these small players can no longer be ignored with regard to genome function.
Collapse
Affiliation(s)
- Serge Plaza
- Laboratoire de Recherches en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, 31326 Castanet Tolosan, France; .,CNRS, UMR5546, Laboratoire de Recherches en Sciences Végétales, 31326 Castanet Tolosan, France
| | - Gerben Menschaert
- Department of Mathematical Modeling, Statistics and Bioinformatics, University of Ghent, 9000 Gent, Belgium
| | - François Payre
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Université Paul Sabatier, 31062 Toulouse, France;
| |
Collapse
|
8
|
Cabrera-Quio LE, Herberg S, Pauli A. Decoding sORF translation - from small proteins to gene regulation. RNA Biol 2016; 13:1051-1059. [PMID: 27653973 DOI: 10.1080/15476286.2016.1218589] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Translation is best known as the fundamental mechanism by which the ribosome converts a sequence of nucleotides into a string of amino acids. Extensive research over many years has elucidated the key principles of translation, and the majority of translated regions were thought to be known. The recent discovery of wide-spread translation outside of annotated protein-coding open reading frames (ORFs) came therefore as a surprise, raising the intriguing possibility that these newly discovered translated regions might have unrecognized protein-coding or gene-regulatory functions. Here, we highlight recent findings that provide evidence that some of these newly discovered translated short ORFs (sORFs) encode functional, previously missed small proteins, while others have regulatory roles. Based on known examples we will also speculate about putative additional roles and the potentially much wider impact that these translated regions might have on cellular homeostasis and gene regulation.
Collapse
Affiliation(s)
| | - Sarah Herberg
- a The Research Institute of Molecular Pathology, Vienna Biocenter (VBC) , Vienna , Austria
| | - Andrea Pauli
- a The Research Institute of Molecular Pathology, Vienna Biocenter (VBC) , Vienna , Austria
| |
Collapse
|
9
|
Zanet J, Chanut-Delalande H, Plaza S, Payre F. Small Peptides as Newcomers in the Control of Drosophila Development. Curr Top Dev Biol 2016; 117:199-219. [PMID: 26969979 DOI: 10.1016/bs.ctdb.2015.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Throughout the last century, studies using the fruit fly have contributed to the discovery of many key genetic elements that control animal development. Recent work has shed light on an unexpectedly large number of RNAs that lack the classical hallmarks of protein-coding genes and are thus referred to as noncoding RNAs. However, there is mounting evidence that both mRNA and noncoding RNAs often contain small open reading frames (sORFs/smORFs), which can be translated into peptides. While genome-wide profiling supports a pervasive translation of these noncanonical sORF/smORF/SEP peptides, their functions remain poorly understood. Here, we review recent data obtained in Drosophila demonstrating the overlooked role of smORF peptides in the control of development and adult life. Focusing on a few smORF peptides whose functions have been elucidated recently, we discuss the importance of these newly identified regulatory molecules and how they act to regulate the building and function of the whole organism.
Collapse
Affiliation(s)
- J Zanet
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France
| | - H Chanut-Delalande
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France
| | - Serge Plaza
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France.
| | - Francios Payre
- Centre de Biologie du Développement, Université de Toulouse, UPS, Toulouse, France; Centre de Biologie du Développement, CNRS, UMR5547, Toulouse, France.
| |
Collapse
|
10
|
Abstract
Over the past decade, high-throughput studies have identified many novel transcripts. While their existence is undisputed, their coding potential and functionality have remained controversial. Recent computational approaches guided by ribosome profiling have indicated that translation is far more pervasive than anticipated and takes place on many transcripts previously assumed to be non-coding. Some of these newly discovered translated transcripts encode short, functional proteins that had been missed in prior screens. Other transcripts are translated, but it might be the process of translation rather than the resulting peptides that serves a function. Here, we review annotation studies in zebrafish to discuss the challenges of placing RNAs onto the continuum that ranges from functional protein-encoding mRNAs to potentially non-functional peptide-producing RNAs to non-coding RNAs. As highlighted by the discovery of the novel signaling peptide Apela/ELABELA/Toddler, accurate annotations can give rise to exciting opportunities to identify the functions of previously uncharacterized transcripts.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, MA, USA
| | - Eivind Valen
- Department of Molecular and Cellular Biology, Harvard University, MA, USA
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, MA, USA
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Abstract
Long non-coding RNAs have become the focus of considerable interest over the past few years. Intriguing novel functions have been reported for lincRNAs. Three recent papers identify lincRNAs that work in a more conventional way-encoding protein-in each case a small polypeptide with an interesting biological activity (Magny et al, 2013; Pauli et al, 2014), (Bazzini et al, 2014).
Collapse
|
12
|
Using Caenorhabditis to Explore the Evolution of the Germ Line. GERM CELL DEVELOPMENT IN C. ELEGANS 2013; 757:405-25. [DOI: 10.1007/978-1-4614-4015-4_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Kumano G, Takatori N, Negishi T, Takada T, Nishida H. A maternal factor unique to ascidians silences the germline via binding to P-TEFb and RNAP II regulation. Curr Biol 2011; 21:1308-13. [PMID: 21782435 DOI: 10.1016/j.cub.2011.06.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/19/2011] [Accepted: 06/21/2011] [Indexed: 12/11/2022]
Abstract
Suppression of zygotic transcription in early embryonic germline cells is tightly linked to their separation from the somatic lineage. Many invertebrate embryos utilize localized maternal factors that are successively inherited by the germline cells for silencing the germline. Germline quiescence has also been associated with the underphosphorylation of Ser2 of the C-terminal domain (CTD-Ser2) of RNA polymerase II [1-3]. Here, using the ascidian Halocynthia roretzi, we identified a first deuterostome example of a maternally localized factor, posterior end mark (PEM), which globally represses germline transcription. PEM knockdown resulted in ectopic transcription and ectopic phosphorylation of CTD-Ser2 in the germline. Overexpression of PEM abolished all transcription and led to the underphosphorylation of CTD-Ser2 in the somatic cells. PEM protein was reiteratively detected in the nucleus of the germline cells and coimmunoprecipitated with CDK9, a component of posterior transcription elongation factor b (P-TEFb). These results suggest that nonhomologous proteins, PEM and Pgc of Drosophila [3-5] and PIE-1 of C. elegans [1, 6, 7], repress germline gene expression through analogous functions: by keeping CTD-Ser2 underphosphorylated through binding to the P-TEFb complex. The present study is an interesting example of evolutionary constraint on how a mechanism of germline silencing can evolve in diverse animals.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Metazoan genomes encode an abundant collection of mRNA-like, long noncoding (lnc)RNAs. Although lncRNAs greatly expand the transcriptional repertoire, we have a limited understanding of how these RNAs contribute to developmental regulation. Here, we investigate the function of the Drosophila lncRNA called yellow-achaete intergenicRNA (yar). Comparative sequence analyses show that the yar gene is conserved in Drosophila species representing 40–60 million years of evolution, with one of the conserved sequence motifs encompassing the yar promoter. Further, the timing of yar expression in Drosophila virilis parallels that in D. melanogaster, suggesting that transcriptional regulation of yar is conserved. The function of yar was defined by generating null alleles. Flies lacking yar RNAs are viable and show no overt morphological defects, consistent with maintained transcriptional regulation of the adjacent yellow (y) and achaete (ac) genes. The location of yar within a neural gene cluster led to the investigation of effects of yar in behavioral assays. These studies demonstrated that loss of yar alters sleep regulation in the context of a normal circadian rhythm. Nighttime sleep was reduced and fragmented, with yar mutants displaying diminished sleep rebound following sleep deprivation. Importantly, these defects were rescued by a yar transgene. These data provide the first example of a lncRNA gene involved in Drosophila sleep regulation. We find that yar is a cytoplasmic lncRNA, suggesting that yar may regulate sleep by affecting stabilization or translational regulation of mRNAs. Such functions of lncRNAs may extend to vertebrates, as lncRNAs are abundant in neural tissues.
Collapse
|
15
|
Nakamura A, Shirae-Kurabayashi M, Hanyu-Nakamura K. Repression of early zygotic transcription in the germline. Curr Opin Cell Biol 2011; 22:709-14. [PMID: 20817425 DOI: 10.1016/j.ceb.2010.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
Germ cells, the progenitors of gametes, are often specified and segregated from somatic lineages early in embryogenesis. As germ cells are essential to create the next generation in sexually reproducing organisms, they must be prevented from differentiating inappropriately into somatic cells. In Drosophila and Caenorhabditis elegans embryos, this is governed by the transient and global repression of mRNA transcription. Furthermore, the inhibition of somatic transcriptional programs is also crucial for germ cell specification in the mouse. Therefore, the active repression of somatic transcriptional programs appears to be a common mechanism for launching the germline. In this review, we will discuss the mechanisms of transcriptional repression during germ cell specification and their interspecies similarities and differences.
Collapse
Affiliation(s)
- Akira Nakamura
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | | | | |
Collapse
|
16
|
Venkatarama T, Lai F, Luo X, Zhou Y, Newman K, King ML. Repression of zygotic gene expression in the Xenopus germline. Development 2010; 137:651-60. [PMID: 20110330 DOI: 10.1242/dev.038554] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Primordial germ cells (PGCs) in Xenopus are specified through the inheritance of germ plasm. During gastrulation, PGCs remain totipotent while surrounding cells in the vegetal mass become committed to endoderm through the action of the vegetal localized maternal transcription factor VegT. We find that although PGCs contain maternal VegT RNA, they do not express its downstream targets at the mid-blastula transition (MBT). Transcriptional repression in PGCs correlates with the failure to phosphorylate serine 2 in the carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (RNAPII). As serine 5 is phosphorylated, these results are consistent with a block after the initiation step but before the elongation step of RNAPII-based transcription. Repression of PGC gene expression occurs despite an apparently permissive chromatin environment. Phosphorylation of CTD-serine 2 and expression of zygotic mRNAs in PGCs are first detected at neurula, some 10 hours after MBT, indicating that transcription is significantly delayed in the germ cell lineage. Significantly, Oct-91, a POU subclass V transcription factor related to mammalian Oct3/4, is among the earliest zygotic transcripts detected in PGCs and is a likely mediator of pluripotency. Our findings suggest that PGCs are unable to respond to maternally inherited endoderm determinants because RNAPII activity is transiently blocked while these determinants are present. Our results in a vertebrate system further support the concept that one strategy used repeatedly during evolution for preserving the germline is RNAPII repression.
Collapse
Affiliation(s)
- Thiagarajan Venkatarama
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
17
|
Nakamura A, Seydoux G. Less is more: specification of the germline by transcriptional repression. Development 2009; 135:3817-27. [PMID: 18997110 DOI: 10.1242/dev.022434] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In animals, the germline is the only lineage that transmits genetic information to the next generation. Although the founder cells of this lineage are specified differently in invertebrates and vertebrates, recent studies have shown that germline specification in C. elegans, Drosophila and mouse depends on the global inhibition of mRNA transcription. Different strategies are used in each organism, but remarkably most target the same two processes: transcriptional elongation and chromatin remodeling. This convergence suggests that a repressed genome is essential to preserve the unique developmental potential of the germline.
Collapse
Affiliation(s)
- Akira Nakamura
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | | |
Collapse
|