1
|
Hou X, Shi W, Luo W, Luo Y, Huang X, Li J, Ji N, Chen Q. FUS::DDIT3 Fusion Protein in the Development of Myxoid Liposarcoma and Possible Implications for Therapy. Biomolecules 2024; 14:1297. [PMID: 39456230 PMCID: PMC11506083 DOI: 10.3390/biom14101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The FUS::DDIT3 fusion protein, formed by the chromosomal translocation t (12;16) (q13;p11), is found in over 90% of myxoid liposarcoma (MLS) cases and is a crucial protein in its development. Many studies have explored the role of FUS::DDIT3 in MLS, and the prevailing view is that FUS::DDIT3 inhibits adipocyte differentiation and promotes MLS growth and invasive migration by functioning as an aberrant transcription factor that affects gene expression and regulates its downstream molecules. As fusion proteins are gradually showing their potential as targets for precision cancer therapy, FUS::DDIT3 has also been investigated as a therapeutic target. Drugs that target FUS::DDIT3 and its downstream molecules for treating MLS are widely utilized in both clinical practice and experimental studies, and some of them have demonstrated promising results. This article reviews the findings of relevant research, providing an overview of the oncogenic mechanisms of the FUS::DDIT3 fusion protein in MLS, as well as recent advancements in its therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.H.); (W.S.); (W.L.); (Y.L.); (X.H.); (J.L.); (Q.C.)
| | | |
Collapse
|
2
|
Kulsange SE, Sharma M, Sonawane B, Jaiswal MR, Kulkarni MJ, Santhakumari B. SWATH-MS reveals that bisphenol A and its analogs regulate pathways leading to disruption in insulin signaling and fatty acid metabolism. Food Chem Toxicol 2024; 188:114667. [PMID: 38653447 DOI: 10.1016/j.fct.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.
Collapse
Affiliation(s)
- Shabda E Kulsange
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monika Sharma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Babasaheb Sonawane
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera R Jaiswal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - B Santhakumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Centre for Material Characterization, CSIR-National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
3
|
Benavides-Huerto MA, Páramo-Figueroa L, Moreno-Páramo D, Lagunas-Rangel FA. Primary Orbital Myxoid Liposarcoma. Med Sci (Basel) 2023; 11:72. [PMID: 37987327 PMCID: PMC10660850 DOI: 10.3390/medsci11040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Although liposarcoma is the most prevalent soft tissue sarcoma in adults, head and neck liposarcomas are rare and account for less than 5% of all liposarcomas. The primary orbital location is even more exceptional, with fewer than 100 cases documented in the medical literature. Given the scarcity of cases of orbital liposarcoma and the limited familiarity of physicians and pathologists with this pathology, there is an increased risk of non-diagnosis or misdiagnosis, which may lead to inappropriate patient management. To address these challenges, we present a case of primary orbital myxoid liposarcoma and subsequently discuss the primary findings of this case based on the evidence documented in the medical literature. This comprehensive text is designed to serve as a valuable resource for healthcare professionals and pathologists, with the goal of promoting both clinical suspicion and accurate diagnosis and treatment of this rare condition in future cases.
Collapse
Affiliation(s)
| | | | | | - Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
- Department of Surgical Sciences, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
4
|
Oikawa K, Kuroda M, Ehata S. Suppression of antitumor cytokine IL‑24 by PRG4 and PAI‑1 may promote myxoid liposarcoma cell survival. Biomed Rep 2023; 19:60. [PMID: 37614985 PMCID: PMC10442737 DOI: 10.3892/br.2023.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/27/2023] [Indexed: 08/25/2023] Open
Abstract
Suppression of the antitumor cytokine interleukin-24 (IL-24) is critical for the survival of myxoid liposarcoma (MLS) cells. It has been previously demonstrated by the authors that an MLS-specific chimeric oncoprotein, translocated in liposarcoma-CCAAT/enhancer-binding protein homologous protein (TLS-CHOP), supresses IL24 mRNA expression via induction of proteoglycan 4 (PRG4) to sustain MLS cell proliferation. However, IL-24 has also been revealed to be suppressed by the ubiquitin-proteasome system in human ovarian and lung cancer cells. Therefore, the aim of the present study was to elucidate the mechanism of IL-24 suppression in MLS cells. The results revealed that the proteasome inhibitor, MG-132, induced cell death in MLS cells in vitro; this effect was reduced following IL-24 knockdown. This indicated that proteasomal degradation of IL-24 may be an important process for MLS cell survival. In addition, it was also previously revealed by the authors that knockdown of plasminogen activator inhibitor-1 (PAI-1), a TLS-CHOP downstream molecule, suppressed the growth of MLS cells, thus instigating the investigation of the effect of PAI-1 on IL-24 expression in MLS cells. Double knockdown of PAI-1 and IL-24 negated the growth-suppressive effect of PAI-1 single knockdown in MLS cells. Interestingly, PAI-1 single knockdown did not increase the mRNA expression of IL24, but it did increase the protein abundance of IL-24, indicating that PAI-1 suppressed IL-24 expression by promoting its proteasomal degradation. Moreover, treatment of MLS cells with a PAI-1 inhibitor, TM5275, induced IL-24 protein expression and apoptosis. Collectively, the results of the present as well as previous studies indicated that IL-24 expression may be suppressed at the transcriptional level by PRG4 and at the protein level by PAI-1 in MLS cells. Accordingly, PAI-1 may represent an effective therapeutic target for MLS treatment.
Collapse
Affiliation(s)
- Kosuke Oikawa
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shogo Ehata
- Department of Pathology, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
5
|
La Ferlita A, Sp N, Goryunova M, Nigita G, Pollock RE, Croce CM, Beane JD. Small Non-Coding RNAs in Soft-Tissue Sarcomas: State of the Art and Future Directions. Mol Cancer Res 2023; 21:511-524. [PMID: 37052491 PMCID: PMC10238653 DOI: 10.1158/1541-7786.mcr-22-1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
Soft-tissue sarcomas (STS) are a rare and heterogeneous group of tumors that arise from connective tissue and can occur anywhere in the body. Among the plethora of over 50 different STS types, liposarcoma (LPS) is one of the most common. The subtypes of STS are characterized by distinct differences in tumor biology that drive responses to pharmacologic therapy and disparate oncologic outcomes. Small non-coding RNAs (sncRNA) are a heterogeneous class of regulatory RNAs involved in the regulation of gene expression by targeting mRNAs. Among the several types of sncRNAs, miRNAs and tRNA-derived ncRNAs are the most studied in the context of tumor biology, and we are learning more about the role of these molecules as important regulators of STS tumorigenesis and differentiation. However, challenges remain in translating these findings and no biomarkers or therapeutic approaches targeting sncRNAs have been developed for clinical use. In this review, we summarize the current landscape of sncRNAs in the context of STS with an emphasis on LPS, including the role of sncRNAs in the tumorigenesis and differentiation of these rare malignancies and their potential as novel biomarkers and therapeutic targets. Finally, we provide an appraisal of published studies and outline future directions to study sncRNAs in STS, including tRNA-derived ncRNAs.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Nipin Sp
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Marina Goryunova
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Raphael E. Pollock
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Joal D. Beane
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Choi JH, Ro JY. The Recent Advances in Molecular Diagnosis of Soft Tissue Tumors. Int J Mol Sci 2023; 24:ijms24065934. [PMID: 36983010 PMCID: PMC10051446 DOI: 10.3390/ijms24065934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Soft tissue tumors are rare mesenchymal tumors with divergent differentiation. The diagnosis of soft tissue tumors is challenging for pathologists owing to the diversity of tumor types and histological overlap among the tumor entities. Present-day understanding of the molecular pathogenesis of soft tissue tumors has rapidly increased with the development of molecular genetic techniques (e.g., next-generation sequencing). Additionally, immunohistochemical markers that serve as surrogate markers for recurrent translocations in soft tissue tumors have been developed. This review aims to provide an update on recently described molecular findings and relevant novel immunohistochemical markers in selected soft tissue tumors.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Namgu, Daegu 42415, Republic of Korea
| | - Jae Y Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College, Cornell University, Houston, TX 77030, USA
| |
Collapse
|
7
|
Fusion protein-driven IGF-IR/PI3K/AKT signals deregulate Hippo pathway promoting oncogenic cooperation of YAP1 and FUS-DDIT3 in myxoid liposarcoma. Oncogenesis 2022; 11:20. [PMID: 35459264 PMCID: PMC9033823 DOI: 10.1038/s41389-022-00394-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Myxoid liposarcoma (MLS) represents a common subtype of liposarcoma molecularly characterized by a recurrent chromosomal translocation that generates a chimeric FUS-DDIT3 fusion gene. The FUS-DDIT3 oncoprotein has been shown to be crucial in MLS pathogenesis. Acting as a transcriptional dysregulator, FUS-DDIT3 stimulates proliferation and interferes with adipogenic differentiation. As the fusion protein represents a therapeutically challenging target, a profound understanding of MLS biology is elementary to uncover FUS-DDIT3-dependent molecular vulnerabilities. Recently, a specific reliance on the Hippo pathway effector and transcriptional co-regulator YAP1 was detected in MLS; however, details on the molecular mechanism of FUS-DDIT3-dependent YAP1 activation, and YAP1´s precise mode of action remain unclear. In elaborate in vitro studies, employing RNA interference-based approaches, small-molecule inhibitors, and stimulation experiments with IGF-II, we show that FUS-DDIT3-driven IGF-IR/PI3K/AKT signaling promotes stability and nuclear accumulation of YAP1 via deregulation of the Hippo pathway. Co-immunoprecipitation and proximity ligation assays revealed nuclear co-localization of FUS-DDIT3 and YAP1/TEAD in FUS-DDIT3-expressing mesenchymal stem cells and MLS cell lines. Transcriptome sequencing of MLS cells demonstrated that FUS-DDIT3 and YAP1 co-regulate oncogenic gene signatures related to proliferation, cell cycle progression, apoptosis, and adipogenesis. In adipogenic differentiation assays, we show that YAP1 critically contributes to FUS-DDIT3-mediated adipogenic differentiation arrest. Taken together, our study provides mechanistic insights into a complex FUS-DDIT3-driven network involving IGF-IR/PI3K/AKT signals acting on Hippo/YAP1, and uncovers substantial cooperative effects of YAP1 and FUS-DDIT3 in the pathogenesis of MLS.
Collapse
|
8
|
Xu C, Yan L, An Q, Zhang S, Guan X, Wang Z, Lv A, Liu D, Liu F, Dong B, Zhao M, Tian X, Hao C. Establishment and evaluation of retroperitoneal liposarcoma patient-derived xenograft models: an ideal model for preclinical study. Int J Med Sci 2022; 19:1241-1253. [PMID: 35928724 PMCID: PMC9346387 DOI: 10.7150/ijms.70706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Retroperitoneal liposarcoma (RLPS) is one of the most common subtypes of retroperitoneal soft tissue sarcomas. It is characterized by poor sensitivity to radiotherapy and chemotherapy and a low success rate of complete surgical resection. However, there are few reliable preclinical RLPS models for target discovery and therapy research. In this study, we aimed to establish RLPS patient-derived xenograft (PDX) models that are useful for biological research and preclinical drug trials. A total of 56 freshly resected RLPS tissues were subcutaneously transplanted into non-obese diabetic-severe combined immune deficient (NOD-SCID) mice, with subsequent xenotransplantation into second-generation mice. The tumor engraftment rate of first generation PDXs was 44.64%, and higher success rates were obtained from implantations of dedifferentiated, myxous, pleomorphic, high-grade liposarcomas and those with retroperitoneal organ infiltration. The first- and second- generation PDX models preserved the histopathological morphology, gene mutation profiles and MDM2 amplification of the primary tissues. PDX models can also provide the benefit of retaining original tumor biology and microenvironment characteristics, such as abnormal adipose differentiation, elevated Ki67 levels, high microvessel density, cancer-associated fibroblast presence, and tumor-associated macrophage infiltration. Overall survival (OS) and disease-free survival (DFS) of patients with successful first-generation PDX engraftment were significantly poorer than those with failed engraftment. Treatment with MDM2 inhibitor RG7112 significantly suppressed tumor growth of DDLPS PDX in mice. In conclusion, we successfully established RLPS PDX models that were histologically, genetically, and molecularly consistent with the original tissues. These models might provide opportunities for advancing RLPS tumor biology research, facilitating the development of novel drugs, particularly those targeting MDM2 amplification, adipose differentiation process, angiogenesis, cancer-associated fibroblasts, and so on.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qiming An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.,Department of Gastrointestinal Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Sha Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.,Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ang Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Daoning Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Faqiang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
9
|
Mannarino L, Craparotta I, Ballabio S, Frapolli R, Meroni M, Bello E, Panini N, Callari M, Sanfilippo R, Casali PG, Barisella M, Fabbroni C, Marchini S, D'Incalci M. Mechanisms of responsiveness to and resistance against trabectedin in murine models of human myxoid liposarcoma. Genomics 2021; 113:3439-3448. [PMID: 34339817 DOI: 10.1016/j.ygeno.2021.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Myxoid liposarcoma (MLPS) is a rare soft-tissue sarcoma characterised by the expression of FUS-DDIT3 chimera. Trabectedin has shown significant clinical anti-tumour activity against MLPS. To characterise the molecular mechanism of trabectedin sensitivity and of resistance against it, we integrated genomic and transcriptomic data from treated mice bearing ML017 or ML017/ET, two patient-derived MLPS xenograft models, sensitive to and resistant against trabectedin, respectively. Longitudinal RNA-Seq analysis of ML017 showed that trabectedin acts mainly as a transcriptional regulator: 15 days after the third dose trabectedin modulates the transcription of 4883 genes involved in processes that sustain adipocyte differentiation. No such differences were observed in ML017/ET. Genomic analysis showed that prolonged treatment causes losses in 4p15.2, 4p16.3 and 17q21.3 cytobands leading to acquired-resistance against the drug. The results dissect the complex mechanism of action of trabectedin and provide the basis for novel combinatorial approaches for the treatment of MLPS that could overcome drug-resistance.
Collapse
Affiliation(s)
- Laura Mannarino
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele - Milan, Italy.; Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Ilaria Craparotta
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Sara Ballabio
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Roberta Frapolli
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Marina Meroni
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Ezia Bello
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Nicolò Panini
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, via Mario Negri 2, 20156 Milan, Italy
| | - Maurizio Callari
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Roberta Sanfilippo
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Paolo G Casali
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Marta Barisella
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Fabbroni
- Adult Mesenchymal Tumour Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Sergio Marchini
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele - Milan, Italy.; Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano - Milan, Italy..
| |
Collapse
|
10
|
Baranov E, Black MA, Fletcher CDM, Charville GW, Hornick JL. Nuclear expression of DDIT3 distinguishes high-grade myxoid liposarcoma from other round cell sarcomas. Mod Pathol 2021; 34:1367-1372. [PMID: 33731886 PMCID: PMC8763641 DOI: 10.1038/s41379-021-00782-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/09/2022]
Abstract
Myxoid liposarcoma (MLPS) is a malignant adipocytic neoplasm with predilection for the extremities. MLPS is genetically defined by a t(12;16) translocation leading to FUS-DDIT3 (95%) or more rarely t(12;22) leading to EWSR1-DDIT3. Low-grade MLPS is characterized by bland spindle cells within a myxoid matrix containing delicate "chicken-wire" vasculature, whereas high-grade ("round cell") MLPS may be indistinguishable from other round cell sarcomas. In many cases, cytogenetic or molecular genetic techniques are applied to confirm the diagnosis. A recent study documented the utility of DDIT3 immunohistochemistry (IHC) in the differential diagnosis of adipocytic and myxoid soft tissue tumors. The purpose of this study was to evaluate DDIT3 IHC as a surrogate for molecular testing in high-grade MLPS. IHC was performed using a mouse monoclonal antibody directed against the N-terminus of DDIT3 on whole tissue sections from 50 high-grade MLPS cases and 319 histologic mimics used as controls (170 on whole tissue sections and 149 on a tissue microarray). Histologic mimics included Ewing sarcoma, CIC-rearranged sarcoma, sarcomas with BCOR genetic alterations, poorly differentiated synovial sarcoma, alveolar and embryonal rhabdomyosarcomas, mesenchymal chondrosarcoma, desmoplastic small round cell tumor, and neuroblastoma. Nuclear staining in >5% of cells was considered positive. By IHC, 48 (96%) high-grade MLPS showed strong diffuse nuclear staining for DDIT3. Of the controls, 2% of cases were positive, with no more than 25% nuclear staining. An additional 19% of control cases displayed less than 5% nuclear staining. Overall, DDIT3 IHC showed 96% sensitivity and 98% specificity for high-grade MLPS; strong, diffuse staining is also 96% sensitive but is 100% specific. IHC using an antibody directed against the N-terminus of DDIT3 is highly sensitive and specific for high-grade MLPS among histologic mimics and could replace molecular genetic testing in many cases, although limited labeling may be seen in a range of other tumor types.
Collapse
Affiliation(s)
- Esther Baranov
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret A. Black
- Department of Pathology, Stanford Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gregory W. Charville
- Department of Pathology, Stanford Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason L. Hornick
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Clanchy FIL. Rationale for Early Detection of EWSR1 Translocation-Associated Sarcoma Biomarkers in Liquid Biopsy. Cancers (Basel) 2021; 13:824. [PMID: 33669307 PMCID: PMC7920076 DOI: 10.3390/cancers13040824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcomas are mesenchymal tumours that often arise and develop as a result of chromosomal translocations, and for several forms of sarcoma the EWSR1 gene is a frequent translocation partner. Sarcomas are a rare form of malignancy, which arguably have a proportionally greater societal burden that their prevalence would suggest, as they are more common in young people, with survivors prone to lifelong disability. For most forms of sarcoma, histological diagnosis is confirmed by molecular techniques such as FISH or RT-PCR. Surveillance after surgical excision, or ablation by radiation or chemotherapy, has remained relatively unchanged for decades, but recent developments in molecular biology have accelerated the progress towards routine analysis of liquid biopsies of peripheral blood. The potential to detect evidence of residual disease or metastasis in the blood has been demonstrated by several groups but remains unrealized as a routine diagnostic for relapse during remission, for disease monitoring during treatment, and for the detection of occult, residual disease at the end of therapy. An update is provided on research relevant to the improvement of the early detection of relapse in sarcomas with EWSR1-associated translocations, in the contexts of biology, diagnosis, and liquid biopsy.
Collapse
Affiliation(s)
- Felix I. L. Clanchy
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK;
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7LD, UK
| |
Collapse
|
12
|
Kamikawa Y, Yokota K, Oikawa K, Sato F, Muragaki Y. Suppression of MKL1 promotes adipocytic differentiation and reduces the proliferation of myxoid liposarcoma cells. Oncol Lett 2020; 20:369. [PMID: 33154767 DOI: 10.3892/ol.2020.12232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/23/2020] [Indexed: 11/05/2022] Open
Abstract
Myxoid liposarcoma (MLS) is thought to occur due to defective adipocytic differentiation in mesenchymal stem cells. A promising strategy for MLS treatment is the prevention of sarcomagenesis by promoting the terminal differentiation of MLS cells into adipocytes. Previous studies have reported that the suppression of megakaryoblastic leukemia 1 (MKL1) expression induces adipocytic differentiation in preadipocyte cell lines. The present study aimed to investigate the effects of MKL1 suppression on MLS cells. In the present study, MKL1 knockdown was demonstrated to promote the adipocytic differentiation of an MLS-derived cell line, designated 1955/91, under adipogenic conditions. This suggests that therapeutic targeting of the MKL1-associated molecular pathway has potential as a promising method of MLS treatment. However, the induction of adipogenesis by MKL knockdown was incomplete, and Oil Red O staining indicated that intracellular lipid droplets were only sporadically generated. Conversely, MKL1 knockdown reduced the growth of the MLS cells. As adipocytic differentiation in vitro requires cellular confluence, the decreased growth rate of the MLS cells following MKL1 knockdown could be attributed to the incomplete induction of adipogenesis. Translocated in liposarcoma-CCAAT/enhancer-binding protein homologous protein (TLS-CHOP) is an MLS-specific oncoprotein that is thought to play key roles in sarcomagenesis and the suppression of adipocytic differentiation. However, the results of western blotting analyses suggest that TLS-CHOP has limited effects on MKL1 expression in MLS cells and that MKL1 knockdown hardly affects TLS-CHOP expression. Thus, it is postulated that the inhibitory effect of TLS-CHOP on adipogenesis is not associated with MKL1 expression. However, MKL1 and the molecular pathway involving MKL1 appear to be attractive targets for the differentiation therapy of MLS.
Collapse
Affiliation(s)
- Yohei Kamikawa
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kento Yokota
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Kosuke Oikawa
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Fuyuki Sato
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yasuteru Muragaki
- Department of Pathology, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
13
|
Frapolli R, Bello E, Ponzo M, Craparotta I, Mannarino L, Ballabio S, Marchini S, Carrassa L, Ubezio P, Porcu L, Brich S, Sanfilippo R, Casali PG, Gronchi A, Pilotti S, D'Incalci M. Combination of PPARγ Agonist Pioglitazone and Trabectedin Induce Adipocyte Differentiation to Overcome Trabectedin Resistance in Myxoid Liposarcomas. Clin Cancer Res 2019; 25:7565-7575. [PMID: 31481505 DOI: 10.1158/1078-0432.ccr-19-0976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/01/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE This study was aimed at investigating whether the PPARγ agonist pioglitazone-given in combination with trabectedin-is able to reactivate adipocytic differentiation in myxoid liposarcoma (MLS) patient-derived xenografts, overcoming resistance to trabectedin. EXPERIMENTAL DESIGN The antitumor and biological effects of trabectedin, pioglitazone, and the combination of the two drugs were investigated in nude mice bearing well-characterized MLS xenografts representative of innate or acquired resistance against trabectedin. Pioglitazone and trabectedin were given by daily oral and weekly i.v. administrations, respectively. Molecular studies were performed by using microarrays approach, real-time PCR, and Western blotting. RESULTS We found that the resistance of MLS against trabectedin is associated with the lack of activation of adipogenesis. The PPARγ agonist pioglitazone reactivated adipogenesis, assessed by histologic and gene pathway analyses. Pioglitazone was well tolerated and did not increase the toxicity of trabectedin. The ability of pioglitazone to reactivate adipocytic differentiation was observed by morphologic examination, and it is consistent with the increased expression of genes such as ADIPOQ implicated in the adipogenesis process. The determination of adiponectin by Western blotting constitutes a good and reliable biomarker related to MLS adipocytic differentiation. CONCLUSIONS The finding that the combination of pioglitazone and trabectedin induces terminal adipocytic differentiation of some MLSs with the complete pathologic response and cure of tumor-bearing mice provides a strong rationale to test the combination of trabectedin and pioglitazone in patients with MLS.
Collapse
Affiliation(s)
- Roberta Frapolli
- Unit of Preclinical Experimental Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ezia Bello
- Unit of Preclinical Experimental Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marianna Ponzo
- Unit of Preclinical Experimental Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Craparotta
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Mannarino
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sara Ballabio
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sergio Marchini
- Unit of Translational Genomic, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Carrassa
- Unit of DNA repair, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Ubezio
- Unit of Biophysics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Porcu
- Unit of Methodological Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Silvia Brich
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Sanfilippo
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Giovanni Casali
- Medical Oncology Unit 2, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Pilotti
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maurizio D'Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
14
|
Abstract
Myxoid adipocytic tumors encompass a broad heterogeneous group of benign and malignant adipocytic tumors, which are typically myxoid (e.g. myxoid liposarcoma, lipoblastoma and lipoblastoma-like tumor of the vulva) or may occasionally appear predominantly myxoid (e.g. pleomorphic liposarcoma, atypical lipomatous tumor, dedifferentiated liposarcoma, chondroid lipoma, spindle cell/pleomorphic lipoma, atypical spindle cell lipomatous tumor and atypical pleomorphic lipomatous tumor). There have been significant advances in recent years in classification and understanding the pathogenesis of adipocytic tumors, based on the correlation of histologic, immunohistochemical, and cytogenetic/molecular findings. Despite these advances, the morphologic diagnosis and accurate classification of a myxoid adipocytic tumor can be challenging due to major morphologic overlap between myxoid adipocytic and non-adipocytic tumors. This article will provide a review on the currently known morphological, immunohistochemical and molecular features of myxoid adipocytic tumors and their differential diagnosis.
Collapse
Affiliation(s)
- David Creytens
- Department of Pathology, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; CRIG, Cancer Research Institute Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
15
|
Aoyama T, Takasawa A, Takasawa K, Ono Y, Emori M, Murata M, Hayasaka T, Fujitani N, Osanai M, Yamashita T, Hasegawa T, Sawada N. Identification of Coiled-Coil Domain-Containing Protein 180 and Leucine-Rich Repeat-Containing Protein 4 as Potential Immunohistochemical Markers for Liposarcoma Based on Proteomic Analysis Using Formalin-Fixed, Paraffin-Embedded Tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1015-1028. [PMID: 30790560 DOI: 10.1016/j.ajpath.2019.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
Recent technical improvements in both mass spectrometry and protein extraction have made it possible to use formalin-fixed, paraffin-embedded (FFPE) tissues for proteome analysis. In this study, comparable proteome analysis of FFPE tissues revealed multiple candidate marker molecules for differentiating atypical lipomatous tumor/well-differentiated liposarcoma (ALT/WDL) from lipoma. A total of 181 unique proteins were identified for ALT/WDL. Of the identified proteins, coiled-coil domain-containing protein 180 (CCDC180) and leucine-rich repeat-containing protein 4 (LRRC4) were studied as candidate markers of ALT/WDL. CCDC180 and LRRC4 immunohistochemistry clearly stained tumor cells of ALT/WDL and dedifferentiated liposarcoma and could differentiate them from lipoma with high accuracy. Cell biological methods were used to further examine the expression of the candidate marker molecules in liposarcoma cells. In liposarcoma cells, knockdown of CCDC180 and LRRC4 inhibited cell proliferation. CCDC180 inhibited cell migration, invasion, and apoptosis resistance in WDL cells. Adipogenic differentiation suppressed the expression of CCDC180 and LRRC4 in WDL cells. These results indicated that LRRC4 and CCDC180 are novel immunohistochemical markers for differentiating ALT/WDLs. Their expression was associated with adipocyte differentiation and contributed to malignant potentials of WDL cells. Proteome analysis using a standard stock of FFPE tissues can reveal novel biomarkers for various diseases, which contributes to the progress of molecular pathology.
Collapse
Affiliation(s)
- Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Emori
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takahiro Hayasaka
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Naoki Fujitani
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Yamashita
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
16
|
FusionPathway: Prediction of pathways and therapeutic targets associated with gene fusions in cancer. PLoS Comput Biol 2018; 14:e1006266. [PMID: 30040819 PMCID: PMC6075785 DOI: 10.1371/journal.pcbi.1006266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/03/2018] [Accepted: 06/05/2018] [Indexed: 12/03/2022] Open
Abstract
Numerous gene fusions have been uncovered across multiple cancer types. Although the ability to target several of these fusions has led to the development of some successful anti-cancer drugs, most of them are not druggable. Understanding the molecular pathways of a fusion is important in determining its function in oncogenesis and in developing therapeutic strategies for patients harboring the fusion. However, the molecular pathways have been elucidated for only a few fusions, in part because of the labor-intensive nature of the required functional assays. Therefore, we developed a domain-based network approach to infer the pathways of a fusion. Molecular interactions of a fusion are first predicted by using its protein domain composition, and its associated pathways are then inferred from these molecular interactions. We demonstrated the capabilities of this approach by primarily applying it to the well-studied BCR-ABL1 fusion. The approach was also applied to two undruggable fusions in sarcoma, EWS-FL1 and FUS-DDIT3. We successfully identified known genes and pathways associated with these fusions and satisfactorily validated these predictions using several benchmark sets. The predictions of EWS-FL1 and FUS-DDIT3 also correlate with results of high-throughput drug screening. To our best knowledge, this is the first approach for inferring pathways of fusions. We present a computational framework, FusionPathway, to infer the oncogenesis pathways of a fusion and help develop therapeutic strategies in these pathways for patients harboring the fusion. In this work, we successfully validated the capabilities of this approach through its application to the well-studied BCR-ABL1 fusion and two undruggable fusions in sarcoma, EWS-FL1 and FUS-DDIT3. Especially, the predictions of EWS-FL1 and FUS-DDIT3 correlate well with results of high-throughput drug screening in sarcoma cells. Therefore, FusionPathway can be an effective method to infer pathways and potential therapeutic targets that are associated with those undruggable fusions. Our results of BCR-ABL1 also suggest that FusionPathway may be able to help elucidate pathway-dependent mechanisms of resistances to those kinase fusion-targeting therapies and develop strategies to overcome the resistances. In addition, the developed R package of FusionPathways (https://github.com/perwu/FusionPathway/) can help people easily apply our approach to study other important fusions in cancer.
Collapse
|
17
|
Ali MU, Ur Rahman MS, Jia Z, Jiang C. Eukaryotic translation initiation factors and cancer. Tumour Biol 2017; 39:1010428317709805. [PMID: 28653885 DOI: 10.1177/1010428317709805] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent technological advancements have shown tremendous mechanistic accomplishments in our understanding of the mechanism of messenger RNA translation in eukaryotic cells. Eukaryotic messenger RNA translation is very complex process that includes four phases (initiation, elongation, termination, and ribosome recycling) and diverse mechanisms involving protein and non-protein molecules. Translation regulation is principally achieved during initiation step of translation, which is organized by multiple eukaryotic translation initiation factors. Eukaryotic translation initiation factor proteins help in stabilizing the formation of the functional ribosome around the start codon and provide regulatory mechanisms in translation initiation. Dysregulated messenger RNA translation is a common feature of tumorigenesis. Various oncogenic and tumor suppressive genes affect/are affected by the translation machinery, making the components of the translation apparatus promising therapeutic targets for the novel anticancer drug. This review provides details on the role of eukaryotic translation initiation factors in messenger RNA translation initiation, their contribution to onset and progression of tumor, and how dysregulated eukaryotic translation initiation factors can be used as a target to treat carcinogenesis.
Collapse
Affiliation(s)
- Muhammad Umar Ali
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Muhammad Saif Ur Rahman
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyu Jia
- 2 Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Cao Jiang
- 1 Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
de Graaff MA, Malu S, Guardiola I, Kruisselbrink AB, de Jong Y, Corver WE, Gelderblom H, Hwu P, Nielsen TO, Lazar AJ, Somaiah N, Bovée JVMG. High-Throughput Screening of Myxoid Liposarcoma Cell Lines: Survivin Is Essential for Tumor Growth. Transl Oncol 2017; 10:546-554. [PMID: 28654818 PMCID: PMC5487254 DOI: 10.1016/j.tranon.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Myxoid liposarcoma (MLS) is a soft tissue sarcoma characterized by a recurrent t(12;16) translocation. Although tumors are initially radio- and chemosensitive, the management of inoperable or metastatic MLS can be challenging. Therefore, our aim was to identify novel targets for systemic therapy. We performed an in vitro high-throughput drug screen using three MLS cell lines (402091, 1765092, DL-221), which were treated with 273 different drugs at four different concentrations. Cell lines and tissue microarrays were used for validation. As expected, all cell lines revealed a strong growth inhibition to conventional chemotherapeutic agents, such as anthracyclines and taxanes. A good response was observed to compounds interfering with Src and the mTOR pathway, which are known to be affected in these tumors. Moreover, BIRC5 was important for MLS survival because a strong inhibitory effect was seen at low concentration using the survivin inhibitor YM155, and siRNA for BIRC5 decreased cell viability. Immunohistochemistry revealed abundant expression of survivin restricted to the nucleus in all 32 tested primary tumor specimens. Inhibition of survivin in 402-91 and 1765-92 by YM155 increased the percentage S-phase but did not induce apoptosis, which warrants further investigation before application in the treatment of metastatic MLS. Thus, using a 273-compound drug screen, we confirmed previously identified targets (mTOR, Src) in MLS and demonstrate survivin as essential for MLS survival.
Collapse
Affiliation(s)
- Marieke A de Graaff
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shruti Malu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irma Guardiola
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Yvonne de Jong
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
19
|
Codenotti S, Vezzoli M, Monti E, Fanzani A. Focus on the role of Caveolin and Cavin protein families in liposarcoma. Differentiation 2017; 94:21-26. [DOI: 10.1016/j.diff.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023]
|
20
|
Axitinib Has Antiangiogenic and Antitumorigenic Activity in Myxoid Liposarcoma. Sarcoma 2016; 2016:3484673. [PMID: 27822137 PMCID: PMC5086398 DOI: 10.1155/2016/3484673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
Myxoid liposarcoma is a rare form of soft-tissue sarcoma. Although most patients initially respond well to treatment, approximately 21% relapse, highlighting the need for alternative treatments. To identify novel treatment regimens and gain a better understanding of myxoid liposarcoma tumor biology, we screened various candidate and approved targeted therapeutics and chemotherapeutics against myxoid liposarcoma cell lines. Therapeutics that target angiogenesis showed antitumor activity. The small molecule inhibitor axitinib, which targets angiogenesis by inhibiting the VEGFR and PDGFR families and c-Kit, inhibited cell cycle progression and induced apoptosis in vitro, as well as having significant antitumor activity against MLS 1765 myxoid liposarcoma xenografts in mice. Axitinib also displayed synergistic antitumor activity in vitro when combined with the potassium channel ionophore salinomycin or the BH3 mimetic ABT-737. Another angiogenesis-targeting therapeutic, 4EGI-1, which targets the oncoprotein eIF4E, significantly decreased angiogenic ligand expression by myxoid liposarcoma cells and reduced tumor cell growth. To verify this oncogenic addiction to angiogenic pathways, we utilized VEGFR-derived ligand traps and found that autocrine VEGFR signaling was crucial to myxoid liposarcoma cell survival. Overall, these findings suggest that autocrine angiogenic signaling through the VEGFR family is critical to myxoid liposarcoma cell survival and that further study of axitinib as a potential anticancer therapy is warranted.
Collapse
|
21
|
Establishment and characterization of a new human myxoid liposarcoma cell line (DL-221) with the FUS-DDIT3 translocation. J Transl Med 2016; 96:885-94. [PMID: 27270875 PMCID: PMC4965313 DOI: 10.1038/labinvest.2016.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
Myxoid liposarcoma has the pathognomonic fusion oncogene FUS-DDIT3 encoding a chimeric transcription factor. Metastatic risk is higher with an increased round cell component and has been linked to aberrations involving the IGFR/PI3K/AKT pathway. These molecular insights have yet to translate to targeted therapies, and the lack of experimental models is a major hindrance. We describe the initial in-depth characterization of a new cell line (DL-221) and establishment of a mouse xenograft model. The cell line DL-221 was derived from a metastatic pleural lesion showing myxoid and round cell histology. This newly established cell line was characterized for phenotypic properties and molecular cytogenetic profile, using PCR, COBRA-FISH, and western blot. Next-generation whole-exome sequencing was performed to further characterize the cell line and the parent tumor. NOD-SCID-IL2R gamma knockout mice were xenograft hosts. DL-221 cells grew an adhering monolayer and COBRA-FISH showed an aneuploid karyotype with t(12;16)(q13;p11) and several other rearrangements; RT-PCR demonstrated a FUS-DDIT3 fusion transcript type 1. Both the cell line and the original tumor harbored a TP53 compound heterozygous mutation in exon 4 and 7, and were wild-type for PIK3CA. Moreover, among the 1254 variants called by whole-exome sequencing, there was 77% concordance between the cell line and parent tumor. The recently described hotspot mutation in the TERT promoter region in myxoid liposarcomas was also found at C228T in DL-221. Xenografts suitable for additional preclinical studies were successfully established in mice after subcutaneous injection. The established DL-221 cell line is the only published available myxoid liposarcoma cell line that underwent spontaneous immortalization, without requiring SV40 transformation. The cell line and its xenograft model are unique and helpful tools to study the biology and novel potential-targeted treatment approaches for myxoid liposarcoma.
Collapse
|
22
|
Iwasaki H, Ishiguro M, Nishio J, Aoki M, Yokoyama R, Yokoyama K, Taguchi K, Nabeshima K. Extensive lipoma-like changes of myxoid liposarcoma: morphologic, immunohistochemical, and molecular cytogenetic analyses. Virchows Arch 2015; 466:453-64. [PMID: 25650275 PMCID: PMC4392166 DOI: 10.1007/s00428-015-1721-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/02/2015] [Accepted: 01/19/2015] [Indexed: 10/27/2022]
Abstract
Myxoid liposarcomas (MLSs) with extensive lipoma-like changes (MLSLC) are rare, and it is often difficult to distinguish them from well-differentiated liposarcoma (LS)/dedifferentiated LS (WDLS/DDLS) with myxoid changes. For the characterization of these neoplasms, we studied 8 MLSLCs, 11 ordinary MLSs, 4 WDLSs, and 6 DDLSs. Cytogenetically, MLSLC and ordinary MLS were characterized by t(12;16)(q13;p11) and FUS-DDIT3 fusion gene, whereas WDLS/DDLS lacked the fusion gene but possessed giant marker/ring chromosomes. Both lipoma-like and myxoid components of the same MLSLC exhibited the identical FUS-DDIT3, as confirmed by fluorescence in situ hybridization (FISH) and reverse transcription polymerase chain reaction (RT-PCR). Immunohistochemically, MDM2 and CDK4 were positive in WDLS/DDLS but negative in MLSLC and ordinary MLS. PPARγ, C/EBPα, adipophilin, and perilipin were found in each type of LS. Adipophilin was expressed chiefly in tiny fat droplets of immature lipoblasts, whereas perilipin showed a strong positive staining in large fat vacuoles of signet ring and multivacuolated lipoblasts. The Ki-67 labeling index was lower in the lipoma-like component of MLSLC when compared with the myxoid component of the same tumors as well as ordinary MLS (p < 0.001). When compared with ordinary MLS, MLSLC may be less aggressive in clinical behavior (rare recurrences or metastases) after a wide surgical excision. In conclusion, the distinction between MLSLC and WDLS/DDLS is important, because of the differences of molecular cytogenetic features as well as clinical behaviors between these distinct sarcomas presenting similar morphologic features. In addition, the combined immunohistochemical detection of adipophilin and perilipin may provide a useful ancillary tool for identification of lipoblastic cells in soft tissue sarcomas.
Collapse
Affiliation(s)
- Hiroshi Iwasaki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Guan Z, Yu X, Wang H, Wang H, Zhang J, Li G, Cao J, Teng L. Advances in the targeted therapy of liposarcoma. Onco Targets Ther 2015; 8:125-36. [PMID: 25609980 PMCID: PMC4293924 DOI: 10.2147/ott.s72722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Liposarcoma (LPS) is the most common type of soft-tissue sarcoma. Complete surgical resection is the only curative means for localized disease; however, both radiation and conventional cytotoxic chemotherapy remain controversial for metastatic or unresectable disease. An increasing number of trials with novel targeted therapy of LPS have provided encouraging data during recent years. This review will provide an overview of the advances in our understanding of LPS and summarize the results of recent trials with novel therapies targeting different genetic and molecular aberrations for different subtypes of LPS.
Collapse
Affiliation(s)
- Zhonghai Guan
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Xiongfei Yu
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Haohao Wang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Haiyong Wang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Jing Zhang
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Guangliang Li
- Department of Medicine Oncology, Zhejiang Cancer Hospital, Zhejiang, People's Republic of China
| | - Jiang Cao
- Clinical Research Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lisong Teng
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| |
Collapse
|
24
|
Yang J, Ren Z, Du X, Hao M, Zhou W. The role of mesenchymal stem/progenitor cells in sarcoma: update and dispute. Stem Cell Investig 2014; 1:18. [PMID: 27358864 DOI: 10.3978/j.issn.2306-9759.2014.10.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/10/2014] [Indexed: 12/26/2022]
Abstract
Sarcoma is the collective name for a relatively rare, yet heterogeneous group of cancers, most probably derived from mesenchymal tissues. There are currently over 50 sarcoma subtypes described underscoring the clinical and biologic diversity of this group of malignant cancers. This wide lineage range might suggest that sarcomas originate from either many committed different cell types or from a multipotent cell. Mesenchymal stem/progenitor cells (MSCs) are able to differentiate into many cell types and these multipotent cells have been isolated from several adult human tumors, making them available for research as well as potential beneficial therapeutical agents. Recent accomplishments in the field have broadened our knowledge of MSCs in relation to sarcoma origin and sarcoma treatment in therapeutic settings. However, numerous concerns and disputes have been raised about whether they are the putative originating cells of sarcoma and their questionable role in sarcomagenesis and progression. We summarize the update and dispute about MSC investigations in sarcomas including the definition, cell origin hypothesis, functional and descriptive assays, roles in sarcomagenesis and targeted therapy, with the purpose to give a comprehensive view of the role of MSCs in sarcomas.
Collapse
Affiliation(s)
- Jilong Yang
- 1 Departments of Bone and Soft Tissue Tumor, 2 National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China ; 3 Departments of Diagnostics, Tianjin Medical University, Tianjin 30060, China
| | - Zhiwu Ren
- 1 Departments of Bone and Soft Tissue Tumor, 2 National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China ; 3 Departments of Diagnostics, Tianjin Medical University, Tianjin 30060, China
| | - Xiaoling Du
- 1 Departments of Bone and Soft Tissue Tumor, 2 National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China ; 3 Departments of Diagnostics, Tianjin Medical University, Tianjin 30060, China
| | - Mengze Hao
- 1 Departments of Bone and Soft Tissue Tumor, 2 National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China ; 3 Departments of Diagnostics, Tianjin Medical University, Tianjin 30060, China
| | - Wenya Zhou
- 1 Departments of Bone and Soft Tissue Tumor, 2 National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China ; 3 Departments of Diagnostics, Tianjin Medical University, Tianjin 30060, China
| |
Collapse
|
25
|
Rodriguez R, Tornin J, Suarez C, Astudillo A, Rubio R, Yauk C, Williams A, Rosu-Myles M, Funes JM, Boshoff C, Menendez P. Expression of FUS-CHOP fusion protein in immortalized/transformed human mesenchymal stem cells drives mixoid liposarcoma formation. Stem Cells 2014; 31:2061-72. [PMID: 23836491 DOI: 10.1002/stem.1472] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/22/2013] [Accepted: 06/08/2013] [Indexed: 12/11/2022]
Abstract
Increasing evidence supports that mesenchymal stromal/stem cells (MSCs) may represent the target cell for sarcoma development. Although different sarcomas have been modeled in mice upon expression of fusion oncogenes in MSCs, sarcomagenesis has not been successfully modeled in human MSCs (hMSCs). We report that FUS-CHOP, a hallmark fusion gene in mixoid liposarcoma (MLS), has an instructive role in lineage commitment, and its expression in hMSC sequentially immortalized/transformed with up to five oncogenic hits (p53 and Rb deficiency, hTERT over-expression, c-myc stabilization, and H-RAS(v12) mutation) drives the formation of serially transplantable MLS. This is the first model of sarcoma based on the expression of a sarcoma-associated fusion protein in hMSC, and allowed us to unravel the differentiation processes and signaling pathways altered in the MLS-initiating cells. This study will contribute to test novel therapeutic approaches and constitutes a proof-of-concept to use hMSCs as target cell for modeling other fusion gene-associated human sarcomas.
Collapse
Affiliation(s)
- Rene Rodriguez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Eid JE, Garcia CB. Reprogramming of mesenchymal stem cells by oncogenes. Semin Cancer Biol 2014; 32:18-31. [PMID: 24938913 DOI: 10.1016/j.semcancer.2014.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) originate from embryonic mesoderm and give rise to the multiple lineages of connective tissues. Transformed MSCs develop into aggressive sarcomas, some of which are initiated by specific chromosomal translocations that generate fusion proteins with potent oncogenic properties. The sarcoma oncogenes typically prime MSCs through aberrant reprogramming. They dictate commitment to a specific lineage but prevent mature differentiation, thus locking the cells in a state of proliferative precursors. Deregulated expression of lineage-specific transcription factors and controllers of chromatin structure play a central role in MSC reprogramming and sarcoma pathogenesis. This suggests that reversing the epigenetic aberrancies created by the sarcoma oncogenes with differentiation-related reagents holds great promise as a beneficial addition to sarcoma therapies.
Collapse
Affiliation(s)
- Josiane E Eid
- Department of Cancer Biology, Vanderbilt University Medical Center, 771 Preston, Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA.
| | - Christina B Garcia
- Department of Pediatrics-Nutrition, Baylor College of Medicine, BCM320, Huston, TX 77030, USA
| |
Collapse
|
27
|
Di Giandomenico S, Frapolli R, Bello E, Uboldi S, Licandro SA, Marchini S, Beltrame L, Brich S, Mauro V, Tamborini E, Pilotti S, Casali PG, Grosso F, Sanfilippo R, Gronchi A, Mantovani R, Gatta R, Galmarini CM, Sousa-Faro JMF, D'Incalci M. Mode of action of trabectedin in myxoid liposarcomas. Oncogene 2013; 33:5201-10. [PMID: 24213580 DOI: 10.1038/onc.2013.462] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/11/2022]
Abstract
To elucidate the mechanisms behind the high sensitivity of myxoid/round cell liposarcoma (MRCL) to trabectedin and the suggested selectivity for specific subtypes, we have developed and characterized three MRCL xenografts, namely ML017, ML015 and ML004 differing for the break point of the fusion gene FUS-CHOP, respectively of type I, II and III. FUS-CHOP binding to the promoters of some target genes such as Pentraxin 3 or Fibronectin 1, assessed by chromatin immunoprecipitation, was strongly reduced in the tumor 24 h after the first or the third weekly dose of trabectedin, indicating that the drug at therapeutic doses causes a detachment of the FUS-CHOP chimera from its target promoters as previously shown in vitro. Moreover, the higher sensitivity of MRCL types I and II appears to be related to a more prolonged block of the transactivating activity of the fusion protein. Doxorubicin did not affect the binding of FUS-CHOP to target promoters. Histologically, the response to trabectedin in ML017 and ML015 was associated with a marked depletion of non-lipogenic tumoral cells and vascular component, as well as lipidic maturation as confirmed by PPARγ2 expression in western Blot. By contrast, in ML004 no major changes either in the cellularity or in the amount of mature were found, and consistently PPARγ2 was null. In conclusion, the data support the view that the selective mechanism of action of trabectedin in MRCL is specific and related to its ability to cause a functional inactivation of the oncogenic chimera with consequent derepression of the adypocytic differentiation.
Collapse
Affiliation(s)
- S Di Giandomenico
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - R Frapolli
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - E Bello
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - S Uboldi
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - S A Licandro
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - S Marchini
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - L Beltrame
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - S Brich
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - V Mauro
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - E Tamborini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - S Pilotti
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - P G Casali
- Adult Sarcoma Medical Treatment Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - F Grosso
- Department of Oncology, SS Antonio e Biagio General Hospital, Alessandria, Italy
| | - R Sanfilippo
- Adult Sarcoma Medical Treatment Unit, Cancer Medicine Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - A Gronchi
- Department of Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - R Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - R Gatta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | | | - M D'Incalci
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| |
Collapse
|
28
|
Xiao W, Mohseny AB, Hogendoorn PCW, Cleton-Jansen AM. Mesenchymal stem cell transformation and sarcoma genesis. Clin Sarcoma Res 2013; 3:10. [PMID: 23880362 PMCID: PMC3724575 DOI: 10.1186/2045-3329-3-10] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/01/2013] [Indexed: 01/27/2023] Open
Abstract
MSCs are hypothesized to potentially give rise to sarcomas after transformation and therefore serve as a good model to study sarcomagenesis. Both spontaneous and induced transformation of MSCs have been reported, however, spontaneous transformation has only been convincingly shown in mouse MSCs while induced transformation has been demonstrated in both mouse and human MSCs. Transformed MSCs of both species can give rise to pleomorphic sarcomas after transplantation into mice, indicating the potential MSC origin of so-called non-translocation induced sarcomas. Comparison of expression profiles and differentiation capacities between MSCs and sarcoma cells further supports this. Deregulation of P53- Retinoblastoma-, PI3K-AKT-and MAPK pathways has been implicated in transformation of MSCs. MSCs have also been indicated as cell of origin in several types of chromosomal translocation associated sarcomas. In mouse models the generated sarcoma type depends on amongst others the tissue origin of the MSCs, the targeted pathways and genes and the differentiation commitment status of MSCs. While some insights are glowing, it is clear that more studies are needed to thoroughly understand the molecular mechanism of sarcomagenesis from MSCs and mechanisms determining the sarcoma type, which will potentially give directions for targeted therapies.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, the Netherlands.
| | | | | | | |
Collapse
|
29
|
Pishvaian MJ, Marshall JL, Wagner AJ, Hwang JJ, Malik S, Cotarla I, Deeken JF, He AR, Daniel H, Halim AB, Zahir H, Copigneaux C, Liu K, Beckman RA, Demetri GD. A phase 1 study of efatutazone, an oral peroxisome proliferator-activated receptor gamma agonist, administered to patients with advanced malignancies. Cancer 2012; 118:5403-13. [PMID: 22570147 PMCID: PMC3726261 DOI: 10.1002/cncr.27526] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/13/2011] [Accepted: 02/09/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND Efatutazone (CS-7017), a novel peroxisome proliferator-activated receptor gamma (PPARγ) agonist, exerts anticancer activity in preclinical models. The authors conducted a phase 1 study to determine the recommended phase 2 dose, safety, tolerability, and pharmacokinetics of efatutazone. METHODS Patients with advanced solid malignancies and no curative therapeutic options were enrolled to receive a given dose of efatutazone, administered orally (PO) twice daily for 6 weeks, in a 3 + 3 intercohort dose-escalation trial. After the third patient, patients with diabetes mellitus were excluded. Efatutazone dosing continued until disease progression or unacceptable toxicity, with measurement of efatutazone pharmacokinetics and plasma adiponectin levels. RESULTS Thirty-one patients received efatutazone at doses ranging from 0.10 to 1.15 mg PO twice daily. Dose escalation stopped when maximal impact on PPARγ-related biomarkers had been reached before any protocol-defined maximum-tolerated dose level. On the basis of a population pharmacokinetic/pharmacodynamic analysis, the recommended phase 2 dose was 0.5 mg PO twice daily. A majority of patients experienced peripheral edema (53.3%), often requiring diuretics. Three episodes of dose-limiting toxicities, related to fluid retention, were noted in the 0.10-, 0.25-, and 1.15-mg cohorts. Of 31 treated patients, 27 were evaluable for response. A sustained partial response (PR; 690 days on therapy) was observed in a patient with myxoid liposarcoma. Ten additional patients had stable disease (SD) for ≥60 days. Exposures were approximately dose proportional, and adiponectin levels increased after 4 weeks of treatment at all dose levels. Immunohistochemistry of archived specimens demonstrated that PPARγ and retinoid X receptor expression levels were significantly greater in patients with SD for ≥60 days or PR (P = .0079), suggesting a predictive biomarker. CONCLUSIONS Efatutazone demonstrates acceptable tolerability with evidence of disease control in patients with advanced malignancies.
Collapse
Affiliation(s)
- Michael J Pishvaian
- Lombardi Comprehensive Cancer Center, Developmental Therapeutics Program, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Borjigin N, Ohno S, Wu W, Tanaka M, Suzuki R, Fujita K, Takanashi M, Oikawa K, Goto T, Motoi T, Kosaka T, Yamamoto K, Kuroda M. TLS-CHOP represses miR-486 expression, inducing upregulation of a metastasis regulator PAI-1 in human myxoid liposarcoma. Biochem Biophys Res Commun 2012; 427:355-60. [PMID: 22995304 DOI: 10.1016/j.bbrc.2012.09.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 12/16/2022]
Abstract
Myxoid liposarcomas (MLSs) are characterized by t(12;16)(q13;p11) translocation and expression of TLS-CHOP chimeric oncoprotein. However, the molecular functions of TLS-CHOP have not been fully understood. On the other hand, microRNAs (miRNAs) comprise an abundant class of endogenous small non-coding RNAs that negatively regulate the expression of their target genes, and are involved in many biological processes. It is now evident that dysregulation of miRNAs is an important step in the development of many cancers. To our knowledge, however, there have been no reports of the miRNAs involved in MLS tumorigenesis and development. In this study, we have found that miR-486 expression was repressed in TLS-CHOP-expressed NIH3T3 fibroblasts and MLS tissues, and exogenous overexpression of miR-486 repressed growth of MLS cells. Thus, downregulation of miR-486 may be an important process for MLS. In addition, we have identified plasminogen activator inhibitor-1 (PAI-1) as a novel target gene of miR-486. PAI-1 is a unique type of serine protease inhibitor and is known to be one of the key regulators of tumor invasion and metastasis. Furthermore, knockdown of PAI-1 by a specific small interfering RNA (siRNA) inhibited growth of MLS cells, suggesting that increased expression of PAI-1 by miR-486 repression is critical for survival of MLS cells. Collectively, these results suggest a novel essential molecular mechanism that TLS-CHOP activates PAI-1 expression by repression of miR-486 expression in MLS tumorigenesis and development.
Collapse
Affiliation(s)
- Nariso Borjigin
- Department of Molecular Pathology, Tokyo Medical University, Tokyo 160-8402, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Background: Translocated in liposarcoma-CCAAT/enhancer binding protein homologous protein (TLS–CHOP) (also known as FUS-DDIT3) chimeric oncoprotein is found in the majority of human myxoid liposarcoma (MLS), but its molecular function remains unclear. Methods: We knockdowned TLS–CHOP expression in MLS-derived cell lines by a specific small interfering RNA, and analysed the gene expression profiles with microarray. Results: TLS-CHOP knockdown inhibited growth of MLS cells, and induced an anticancer cytokine, melanoma differentiation-associated gene 7 (MDA-7)/interleukin-24 (IL-24) expression. However, double knockdown of TLS–CHOP and MDA-7/IL-24 did not inhibit MLS cell growth. Conclusion: Repression of MDA-7/IL-24 expression by TLS–CHOP is required for MLS tumour growth, and TLS–CHOP may become a promising therapeutic target for MLS treatment.
Collapse
|
32
|
Myxoid liposarcoma-associated EWSR1-DDIT3 selectively represses osteoblastic and chondrocytic transcription in multipotent mesenchymal cells. PLoS One 2012; 7:e36682. [PMID: 22570737 PMCID: PMC3343026 DOI: 10.1371/journal.pone.0036682] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/11/2012] [Indexed: 12/25/2022] Open
Abstract
Background Liposarcomas are the most common class of soft tissue sarcomas, and myxoid liposarcoma is the second most common liposarcoma. EWSR1-DDIT3 is a chimeric fusion protein generated by the myxoid liposarcoma-specific chromosomal translocation t(12;22)(q13;q12). Current studies indicate that multipotent mesenchymal cells are the origin of sarcomas. The mechanism whereby EWSR1-DDIT3 contributes to the phenotypic selection of target cells during oncogenic transformation remains to be elucidated. Methodology/Principal Findings Reporter assays showed that the EWSR1-DDIT3 myxoid liposarcoma fusion protein, but not its wild-type counterparts EWSR1 and DDIT3, selectively repressed the transcriptional activity of cell lineage-specific marker genes in multipotent mesenchymal C3H10T1/2 cells. Specifically, the osteoblastic marker Opn promoter and chondrocytic marker Col11a2 promoter were repressed, while the adipocytic marker Ppar-γ2 promoter was not affected. Mutation analyses, transient ChIP assays, and treatment of cells with trichostatin A (a potent inhibitor of histone deacetylases) or 5-Aza-2′-deoxycytidine (a methylation-resistant cytosine homolog) revealed the possible molecular mechanisms underlying the above-mentioned selective transcriptional repression. The first is a genetic action of the EWSR1-DDIT3 fusion protein, which results in binding to the functional C/EBP site within Opn and Col11a2 promoters through interaction of its DNA-binding domain and subsequent interference with endogenous C/EBPβ function. Another possible mechanism is an epigenetic action of EWSR1-DDIT3, which enhances histone deacetylation, DNA methylation, and histone H3K9 trimethylation at the transcriptional repression site. We hypothesize that EWSR1-DDIT3-mediated transcriptional regulation may modulate the target cell lineage through target gene-specific genetic and epigenetic conversions. Conclusions/Significance This study elucidates the molecular mechanisms underlying EWSR1-DDIT3 fusion protein-mediated phenotypic selection of putative target multipotent mesenchymal cells during myxoid liposarcoma development. A better understanding of this process is fundamental to the elucidation of possible direct lineage reprogramming in oncogenic sarcoma transformation mediated by fusion proteins.
Collapse
|
33
|
Charytonowicz E, Terry M, Coakley K, Telis L, Remotti F, Cordon-Cardo C, Taub RN, Matushansky I. PPARγ agonists enhance ET-743-induced adipogenic differentiation in a transgenic mouse model of myxoid round cell liposarcoma. J Clin Invest 2012; 122:886-98. [PMID: 22293175 DOI: 10.1172/jci60015] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/14/2011] [Indexed: 12/23/2022] Open
Abstract
Myxoid round cell liposarcoma (MRCLS) is a common liposarcoma subtype characterized by a translocation that results in the fusion protein TLS:CHOP as well as by mixed adipocytic histopathology. Both the etiology of MRCLS and the mechanism of action of TLS:CHOP remain poorly understood. It was previously shown that ET-743, an antitumor compound with an unclear mechanism of action, is highly effective in patients with MRCLS. To identify the cellular origin of MRCLS, we engineered a mouse model in which TLS:CHOP was expressed under the control of a mesodermally restricted promoter (Prx1) in a p53-depleted background. This model resembled MRCLS histologically as well as functionally in terms of its specific adipocytic differentiation-based response to ET-743. Specifically, endogenous mesenchymal stem cells (MSCs) expressing TLS:CHOP developed into MRCLS in vivo. Gene expression and microRNA analysis of these MSCs showed that they were committed to adipocytic differentiation, but unable to terminally differentiate. We also explored the method of action of ET-743. ET-743 downregulated TLS:CHOP expression, which correlated with CEBPα expression and adipocytic differentiation. Furthermore, PPARγ agonists enhanced the differentiation process initiated by ET-743. Our work highlights how clinical observations can lead to the generation of a mouse model that recapitulates human disease and may be used to develop rational treatment combinations, such as ET-743 plus PPARγ agonists, for the treatment of MRCLS.
Collapse
|
34
|
Rodriguez R, Rubio R, Gutierrez-Aranda I, Melen GJ, Elosua C, García-Castro J, Menendez P. FUS-CHOP fusion protein expression coupled to p53 deficiency induces liposarcoma in mouse but not in human adipose-derived mesenchymal stem/stromal cells. Stem Cells 2011; 29:179-92. [PMID: 21732477 DOI: 10.1002/stem.571] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human sarcomas have been modeled in mice by expression of specific fusion genes in mesenchymal stem cells (MSCs). However, sarcoma models based on human MSCs are still missing. We attempted to develop a model of liposarcoma by expressing FUS (FUsed in Sarcoma; also termed TLS, Translocated in LipoSarcoma)-CHOP (C/EBP HOmologous Protein; also termed DDIT3, DNA Damage-Inducible Transcript 3), a hallmark mixoid liposarcoma-associated fusion oncogene, in wild-type and p53-deficient mouse and human adipose-derived mesenchymal stem/stromal cells (ASCs). FUS-CHOP induced liposarcoma-like tumors when expressed in p53(-/-) but not in wild-type (wt) mouse ASCs (mASCs). In the absence of FUS-CHOP, p53(-/-) mASCs forms leiomyosarcoma, indicating that the expression of FUS-CHOP redirects the tumor genesis/phenotype. FUS-CHOP expression in wt mASCs does not initiate sarcomagenesis, indicating that p53 deficiency is required to induce FUS-CHOP-mediated liposarcoma in fat-derived mASCs. In a human setting, p53-deficient human ASCs (hASCs) displayed a higher in vitro growth rate and a more extended lifespan than wt hASCs. However, FUS-CHOP expression did not induce further changes in culture homeostasis nor initiated liposarcoma in either wt or p53-depleted hASCs. These results indicate that FUS-CHOP expression in a p53-deficient background is sufficient to initiate liposarcoma in mouse but not in hASCs, suggesting the need of additional cooperating mutations in hASCs. A microarray gene expression profiling has shed light into the potential deregulated pathways in liposarcoma formation from p53-deficient mASCs expressing FUS-CHOP, which might also function as potential cooperating mutations in the transformation process from hASCs.
Collapse
Affiliation(s)
- Rene Rodriguez
- Andalusian Stem Cell Bank, Centro de Investigación Biomédica, Consejería de Salud-Universidad de Granada, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
35
|
Rodriguez R, Rubio R, Menendez P. Modeling sarcomagenesis using multipotent mesenchymal stem cells. Cell Res 2011; 22:62-77. [PMID: 21931359 DOI: 10.1038/cr.2011.157] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Because of their unique properties, multipotent mesenchymal stem cells (MSCs) represent one of the most promising adult stem cells being used worldwide in a wide array of clinical applications. Overall, compelling evidence supports the long-term safety of ex vivo expanded human MSCs, which do not seem to transform spontaneously. However, experimental data reveal a link between MSCs and cancer, and MSCs have been reported to inhibit or promote tumor growth depending on yet undefined conditions. Interestingly, solid evidence based on transgenic mice and genetic intervention of MSCs has placed these cells as the most likely cell of origin for certain sarcomas. This research area is being increasingly explored to develop accurate MSC-based models of sarcomagenesis, which will be undoubtedly valuable in providing a better understanding about the etiology and pathogenesis of mesenchymal cancer, eventually leading to the development of more specific therapies directed against the sarcoma-initiating cell. Unfortunately, still little is known about the mechanisms underlying MSC transformation and further studies are required to develop bona fide sarcoma models based on human MSCs. Here, we comprehensively review the existing MSC-based models of sarcoma and discuss the most common mechanisms leading to tumoral transformation of MSCs and sarcomagenesis.
Collapse
Affiliation(s)
- Rene Rodriguez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENyO), Parque Tecnológico de Ciencias de la Salud, Granada, Spain.
| | | | | |
Collapse
|
36
|
Wagner KD, Benchetrit M, Bianchini L, Michiels JF, Wagner N. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is highly expressed in liposarcoma and promotes migration and proliferation. J Pathol 2011; 224:575-88. [PMID: 21598253 DOI: 10.1002/path.2910] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/21/2011] [Accepted: 03/26/2011] [Indexed: 01/13/2023]
Abstract
Aberrations of specialized metabolic pathways might be implicated in the development of neoplasias. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors with important functions in metabolism. PPARβ/δ and PPARγ act in the proliferation and differentiation of adipose tissue progenitor cells. Thus, a potential use of PPARγ agonists for the treatment of liposarcoma had been suggested, but clinical trials failed to detect beneficial effects. We show here that PPARδ is highly expressed in liposarcoma compared to lipoma and correlates with proliferation. Stimulation of liposarcoma cell lines with a specific PPARδ agonist increases proliferation, which is abolished by a PPARδ-siRNA or a specific PPARδ antagonist. Expression of the adipose tissue secretory factor leptin is lower in liposarcoma compared to lipoma and leptin reduces proliferation of liposarcoma cell lines. PPARδ activation stimulates cell migration whereas leptin diminishes it. We demonstrate that PPARδ directly represses leptin as: (a) leptin becomes down-regulated upon PPARδ activation; (b) PPARδ represses leptin promoter activity in different sarcoma cell lines; (c) deletion of a PPAR/RxR binding element in the leptin promoter abolishes repression by PPARδ; and (d) in chromatin immunoprecipitation we confirm in vivo binding of PPARδ to the leptin promoter. Our data suggest inhibition of PPARδ as a potential novel strategy to reduce liposarcoma cell proliferation.
Collapse
Affiliation(s)
- Kay-Dietrich Wagner
- INSERM U907, Nice, France; Faculté de Médecine, Université de Nice-Sophia Antipolis, Nice, France
| | | | | | | | | |
Collapse
|
37
|
New frontiers in the treatment of liposarcoma, a therapeutically resistant malignant cohort. Drug Resist Updat 2010; 14:52-66. [PMID: 21169051 DOI: 10.1016/j.drup.2010.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/23/2010] [Indexed: 01/10/2023]
Abstract
The adipogenic origin-derived liposarcoma (LPS) family is the most common soft tissue sarcoma histological subtype. This group is composed of three categories as per the 2002 WHO guidelines: (1) well-differentiated and dedifferentiated liposarcoma (WDLPS/DDLPS); (2) myxoid and round cell liposarcoma (MLS and RCL); and (3) pleomorphic liposarcoma (PLS). While clustered together, these histological subtypes are widely diverse in their clinical, pathological, and molecular characteristics. In general, surgery still remains the mainstay of LPS therapy and the only approach offering the potential of cure. Effective therapeutic strategies for locally advanced and metastatic disease are currently lacking and are crucially needed. With the current gradually increasing knowledge of LPS genetic- and epigenetic-associated deregulations, the ultimate goal is to develop drugs that can specifically eliminate LPS cells while sparing normal tissues. This tumor-tailored target-orientated approach will hopefully result in a significant improvement in the outcome of patients suffering from these poor prognosis malignancies.
Collapse
|
38
|
Willems SM, Schrage YM, Bruijn IHBD, Szuhai K, Hogendoorn PCW, Bovée JVMG. Kinome profiling of myxoid liposarcoma reveals NF-kappaB-pathway kinase activity and casein kinase II inhibition as a potential treatment option. Mol Cancer 2010; 9:257. [PMID: 20863376 PMCID: PMC2955617 DOI: 10.1186/1476-4598-9-257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/23/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Myxoid liposarcoma is a relatively common malignant soft tissue tumor, characterized by a (12;16) translocation resulting in a FUS-DDIT3 fusion gene playing a pivotal role in its tumorigenesis. Treatment options in patients with inoperable or metastatic myxoid liposarcoma are relatively poor though being developed and new hope is growing. RESULTS Using kinome profiling and subsequent pathway analysis in two cell lines and four primary cultures of myxoid liposarcomas, all of which demonstrated a FUS-DDIT3 fusion gene including one new fusion type, we aimed at identifying new molecular targets for systemic treatment. Protein phosphorylation by activated kinases was verified by Western Blot and cell viability was measured before and after treatment of the myxoid liposarcoma cells with kinase inhibitors. We found kinases associated with the atypical nuclear factor-kappaB and Src pathways to be the most active in myxoid liposarcoma. Inhibition of Src by the small molecule tyrosine kinase inhibitor dasatinib showed only a mild effect on cell viability of myxoid liposarcoma cells. In contrast, inhibition of the nuclear factor-kappaB pathway, which is regulated by the FUS-DDIT3 fusion product, in myxoid liposarcoma cells using casein kinase 2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) showed a significant decrease in cell viability, decreased phosphorylation of nuclear factor-kappaB pathway proteins, and caspase 3 mediated apoptosis. Combination of dasatinib and TBB showed an enhanced effect. CONCLUSION Kinases associated with activation of the atypical nuclear factor-kappaB and the Src pathways are the most active in myxoid liposarcoma in vitro and inhibition of nuclear factor-kappaB pathway activation by inhibiting casein kinase 2 using TBB, of which the effect is enhanced by Src inhibition using dasatinib, offers new potential therapeutic strategies for myxoid liposarcoma patients with advanced disease.
Collapse
Affiliation(s)
- Stefan M Willems
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Willems SM, van Remoortere A, van Zeijl R, Deelder AM, McDonnell LA, Hogendoorn PCW. Imaging mass spectrometry of myxoid sarcomas identifies proteins and lipids specific to tumour type and grade, and reveals biochemical intratumour heterogeneity. J Pathol 2010; 222:400-9. [DOI: 10.1002/path.2771] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Frapolli R, Tamborini E, Virdis E, Bello E, Tarantino E, Marchini S, Grosso F, Sanfilippo R, Gronchi A, Tercero JC, Peloso G, Casali P, Pilotti S, D'Incalci M. Novel models of myxoid liposarcoma xenografts mimicking the biological and pharmacologic features of human tumors. Clin Cancer Res 2010; 16:4958-67. [PMID: 20732964 DOI: 10.1158/1078-0432.ccr-10-0317] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Myxoid liposarcoma is a common subtype of liposarcoma. It is associated in more than 90% of cases with the chromosomal translocation t(12;16)(q13;p11) leading to the fusion FUS-CHOP gene that is responsible for the oncogenic transformation of preadipocytes. Recently the marine natural product trabectedin has shown highly selective activity for myxoid liposarcoma, even in the most aggressive round-cell subtype. EXPERIMENTAL DESIGN Fragments of 17 sarcomas were transplanted s.c. in female athymic NCr-nu/nu mice. Xenografts were established and characterized by morphology, fluorescence in situ hybridization analysis for the translocation and reverse transcriptase-PCR analysis for fusion transcripts. Trabectedin was injected i.v. RESULTS Seven of 17 tumors grew as continuous xenografts, five of them being myxoid liposarcoma of the round-cell subtype. The chromosomal rearrangement and fusion transcripts in different passages were the same as in the human tumors from which they were derived. The responsiveness to trabectedin in type II myxoid liposarcoma xenografts was as high as in patients. The pathologic response was associated with the presence of the FUS-CHOP fusion gene, indicating that the drug does not totally eradicate the disease. Type III myxoid liposarcoma xenografts seemed much less sensitive to trabectedin, confirming previous clinical observations. CONCLUSIONS This study reports for the first time the characterization of human myxoid liposarcoma xenografts that adequately mimic the biological and pharmacologic features of the human tumor. These models offer a useful tool for investigating the mechanism of selectivity of trabectedin, testing new combinations with this drug and evaluating novel therapies for myxoid liposarcoma.
Collapse
Affiliation(s)
- Roberta Frapolli
- Department of Oncology, Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Andersson MK, Göransson M, Olofsson A, Andersson C, Aman P. Nuclear expression of FLT1 and its ligand PGF in FUS-DDIT3 carrying myxoid liposarcomas suggests the existence of an intracrine signaling loop. BMC Cancer 2010; 10:249. [PMID: 20515481 PMCID: PMC2889895 DOI: 10.1186/1471-2407-10-249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 06/01/2010] [Indexed: 01/05/2023] Open
Abstract
Background The FUS-DDIT3 fusion oncogene encodes an abnormal transcription factor that has a causative role in the development of myxoid/round-cell liposarcomas (MLS/RCLS). We have previously identified FLT1 (VEGFR1) as a candidate downstream target gene of FUS-DDIT3. The aim of this study was to investigate expression of FLT1 and its ligands in MLS cells. Methods HT1080 human fibrosarcoma cells were transiently transfected with FUS-DDIT3-GFP variant constructs and FLT1 expression was measured by quantitative real-time PCR. In addition, FLT1, PGF, VEGFA and VEGFB expression was measured in MLS/RCLS cell lines, MLS/RCLS tumors and in normal adiopocytes. We analyzed nine cases of MLS/RCLS and one cell line xenografted in mice for FLT1 protein expression using immunohistochemistry. MLS/RCLS cell lines were also analyzed for FLT1 by immunofluorescence and western blot. MLS/RCLS cell lines were additionally treated with FLT1 tyrosine kinase inhibitors and assayed for alterations in proliferation rate. Results FLT1 expression was dramatically increased in transfected cells stably expressing FUS-DDIT3 and present at high levels in cell lines derived from MLS. The FLT1 protein showed a strong nuclear expression in cells of MLS tissue as well as in cultured MLS cells, which was confirmed by cellular fractionation. Tissue array analysis showed a nuclear expression of the FLT1 protein also in several other tumor and normal cell types including normal adipocytes. The FLT1 ligand coding gene PGF was highly expressed in cultured MLS cells compared to normal adipocytes while the other ligand genes VEGFA and VEGFB were expressed to lower levels. A more heterogeneous expression pattern of these genes were observed in tumor samples. No changes in proliferation rate of MLS cells were detected at concentrations for which the kinase inhibitors have shown specific inhibition of FLT1. Conclusions Our results imply that FLT1 is induced as an indirect downstream effect of FUS-DDIT3 expression in MLS. This could be a consequence of the ability of FUS-DDIT3 to hijack parts of normal adipose tissue development and reprogram primary cells to a liposarcoma-like phenotype. The findings of nuclear FLT1 protein and expression of corresponding ligands in MLS and normal tissues may have implications for tissue homeostasis and tumor development through auto- or intracrine signaling.
Collapse
Affiliation(s)
- Mattias K Andersson
- Lundberg Laboratory for Cancer Research, Department of Pathology, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Thomas DM, O'Sullivan B, Gronchi A. Current concepts and future perspectives in retroperitoneal soft-tissue sarcoma management. Expert Rev Anticancer Ther 2009; 9:1145-57. [PMID: 19671034 DOI: 10.1586/era.09.77] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retroperitoneal soft-tissue sarcomas are complex, heterogeneous cancers requiring expert multidisciplinary care. They can occur anywhere in the retroperitoneal abdominal or pelvic space. Usually large at presentation they present particular challenges for both local treatment and systemic control. The most common adult subtypes are liposarcomas and leiomyosarcomas, followed by pleomorphic sarcoma/malignant fibros histiocytoma (an entity not always easily distinguishable from dedifferentiated liposarcoma). A variety of additional histotypes may also be observed, but are uncommon in the retroperitoneum, either because of intrinsic rarity or because they are usually found in other anatomic sites. The underlying biology varies according to the different histotypes. Pediatric subtypes mainly comprise extraskeletal Ewing sarcoma/pPNET and alveolar rhabdomyosarcoma. Surgery is critical for controlling these tumors and requires an aggressive approach. It may also provide useful palliation for patients with advanced slow-growing disease. Radiotherapy has acquired a definite position in attempting to reduce relapse, although prospective trials of adjuvant or neoadjuvant radiotherapy are needed. Chemotherapy has a limited role in the adjuvant setting for most forms of retroperitoneal sarcoma (excluding pediatric subtypes), but has an increasing role in advanced disease. Novel targeted therapeutic agents that target specific amplification or translocation products offer promise for subsets of these diseases.
Collapse
Affiliation(s)
- David M Thomas
- Peter MacCallum Cancer Centre, St Andrew's Place East Melbourne Victoria, Australia.
| | | | | |
Collapse
|
43
|
Tan AY, Manley JL. The TET family of proteins: functions and roles in disease. J Mol Cell Biol 2009; 1:82-92. [PMID: 19783543 DOI: 10.1093/jmcb/mjp025] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Translocated in liposarcoma, Ewing's sarcoma and TATA-binding protein-associated factor 15 constitute an interesting and important family of proteins known as the TET proteins. The proteins function in several aspects of cell growth control, including multiple different steps in gene expression, and they are also found mutated in a number of specific diseases. For example, all contain domains for binding nucleic acids and have been shown to function in both RNA polymerase II-mediated transcription and pre-mRNA splicing, possibly connecting these two processes. Chromosomal translocations in human sarcomas result in a fusion of the amino terminus of these proteins, which contains a transcription activation domain, to the DNA-binding domain of a transcription factor. Although the fusion proteins have been characterized in a clinical environment, the function of the cognate full-length protein in normal cells is a more recent topic of study. The first part of this review will describe the TET proteins, followed by detailed descriptions of their multiple roles in cells. The final sections will examine changes that occur in gene regulation in cells expressing the fusion proteins. The clinical implications and treatment of sarcomas will not be addressed but have recently been reviewed.
Collapse
Affiliation(s)
- Adelene Y Tan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|