1
|
Bhattacharya D, Etten JV, Benites LF, Stephens TG. Endosymbiotic ratchet accelerates divergence after organelle origin: The Paulinella model for plastid evolution: The Paulinella model for plastid evolution. Bioessays 2023; 45:e2200165. [PMID: 36328783 DOI: 10.1002/bies.202200165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
We hypothesize that as one of the most consequential events in evolution, primary endosymbiosis accelerates lineage divergence, a process we refer to as the endosymbiotic ratchet. Our proposal is supported by recent work on the photosynthetic amoeba, Paulinella, that underwent primary plastid endosymbiosis about 124 Mya. This amoeba model allows us to explore the early impacts of photosynthetic organelle (plastid) origin on the host lineage. The current data point to a central role for effective population size (Ne ) in accelerating divergence post-endosymbiosis due to limits to dispersal and reproductive isolation that reduce Ne , leading to local adaptation. We posit that isolated populations exploit different strategies and behaviors and assort themselves in non-overlapping niches to minimize competition during the early, rapid evolutionary phase of organelle integration. The endosymbiotic ratchet provides a general framework for interpreting post-endosymbiosis lineage evolution that is driven by disruptive selection and demographic and population shifts. Also see the video abstract here: https://youtu.be/gYXrFM6Zz6Q.
Collapse
Affiliation(s)
- Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
2
|
Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun 2021; 12:6651. [PMID: 34789758 PMCID: PMC8599508 DOI: 10.1038/s41467-021-26918-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022] Open
Abstract
The endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we use single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.
Collapse
|
3
|
Irisarri I, Strassert JFH, Burki F. Phylogenomic Insights into the Origin of Primary Plastids. Syst Biol 2021; 71:105-120. [PMID: 33988690 DOI: 10.1093/sysbio/syab036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The origin of plastids was a major evolutionary event that paved the way for an astonishing diversification of photosynthetic eukaryotes. Plastids originated by endosymbiosis between a heterotrophic eukaryotic host and cyanobacteria, presumably in a common ancestor of the primary photosynthetic eukaryotes (Archaeplastida). A single origin of primary plastids is well supported by plastid evidence but not by nuclear phylogenomic analyses, which have consistently failed to recover the monophyly of Archaeplastida hosts. Importantly, plastid monophyly and non-monophyletic hosts could be explained under scenarios of independent or serial eukaryote-to-eukaryote endosymbioses. Here, we assessed the strength of the signal for the monophyly of Archaeplastida hosts in four available phylogenomic datasets. The effect of phylogenetic methodology, data quality, alignment trimming strategy, gene and taxon sampling, and the presence of outlier genes were investigated. Our analyses revealed a lack of support for host monophyly in the shorter individual datasets. However, when analyzed together under rigorous data curation and complex mixture models, the combined nuclear datasets supported the monophyly of primary photosynthetic eukaryotes (Archaeplastida) and revealed a putative association with plastid-lacking Picozoa. This study represents an important step towards better understanding deep eukaryotic evolution and the origin of plastids.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jürgen F H Strassert
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Fabien Burki
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Science For Life Laboratory, Uppsala University, 75236 Sweden
| |
Collapse
|
4
|
Strassert JFH, Irisarri I, Williams TA, Burki F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun 2021; 12:1879. [PMID: 33767194 PMCID: PMC7994803 DOI: 10.1038/s41467-021-22044-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
In modern oceans, eukaryotic phytoplankton is dominated by lineages with red algal-derived plastids such as diatoms, dinoflagellates, and coccolithophores. Despite the ecological importance of these groups and many others representing a huge diversity of forms and lifestyles, we still lack a comprehensive understanding of their evolution and how they obtained their plastids. New hypotheses have emerged to explain the acquisition of red algal-derived plastids by serial endosymbiosis, but the chronology of these putative independent plastid acquisitions remains untested. Here, we establish a timeframe for the origin of red algal-derived plastids under scenarios of serial endosymbiosis, using Bayesian molecular clock analyses applied on a phylogenomic dataset with broad sampling of eukaryote diversity. We find that the hypotheses of serial endosymbiosis are chronologically possible, as the stem lineages of all red plastid-containing groups overlap in time. This period in the Meso- and Neoproterozoic Eras set the stage for the later expansion to dominance of red algal-derived primary production in the contemporary oceans, which profoundly altered the global geochemical and ecological conditions of the Earth.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Iker Irisarri
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, and Campus Institute Data Science (CIDAS), Göttingen, Germany
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, Bristol, UK
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Pedrola-Monfort J, Lázaro-Gimeno D, Boluda CG, Pedrola L, Garmendia A, Soler C, Soriano JM. Evolutionary Trends in the Mitochondrial Genome of Archaeplastida: How Does the GC Bias Affect the Transition from Water to Land? PLANTS 2020; 9:plants9030358. [PMID: 32178249 PMCID: PMC7154891 DOI: 10.3390/plants9030358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022]
Abstract
Among the most intriguing mysteries in the evolutionary biology of photosynthetic organisms are the genesis and consequences of the dramatic increase in the mitochondrial and nuclear genome sizes, together with the concomitant evolution of the three genetic compartments, particularly during the transition from water to land. To clarify the evolutionary trends in the mitochondrial genome of Archaeplastida, we analyzed the sequences from 37 complete genomes. Therefore, we utilized mitochondrial, plastidial and nuclear ribosomal DNA molecular markers on 100 species of Streptophyta for each subunit. Hierarchical models of sequence evolution were fitted to test the heterogeneity in the base composition. The best resulting phylogenies were used for reconstructing the ancestral Guanine-Cytosine (GC) content and equilibrium GC frequency (GC*) using non-homogeneous and non-stationary models fitted with a maximum likelihood approach. The mitochondrial genome length was strongly related to repetitive sequences across Archaeplastida evolution; however, the length seemed not to be linked to the other studied variables, as different lineages showed diverse evolutionary patterns. In contrast, Streptophyta exhibited a powerful positive relationship between the GC content, non-coding DNA, and repetitive sequences, while the evolution of Chlorophyta reflected a strong positive linear relationship between the genome length and the number of genes.
Collapse
Affiliation(s)
- Joan Pedrola-Monfort
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain; (J.P.-M.); (D.L.-G.); (C.G.B.); (L.P.)
| | - David Lázaro-Gimeno
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain; (J.P.-M.); (D.L.-G.); (C.G.B.); (L.P.)
| | - Carlos G. Boluda
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain; (J.P.-M.); (D.L.-G.); (C.G.B.); (L.P.)
- Unité de Phylogénie et Génetique Moléculaires, Conservatoire et Jardin Botaniques, Chambésy, 1292 Geneva, Switzerland
| | - Laia Pedrola
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, 46980 Paterna, Spain; (J.P.-M.); (D.L.-G.); (C.G.B.); (L.P.)
| | - Alfonso Garmendia
- Mediterranean Agroforestry Institute, Department of Agroforest Ecosystems, Polytechnic University of Valencia, 46022 Valencia, Spain;
| | - Carla Soler
- Biomaterials, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain;
| | - Jose M. Soriano
- Biomaterials, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain;
- Correspondence: ; Tel.: +34-963-543-056
| |
Collapse
|
6
|
Kuthanová Trsková E, Bína D, Santabarbara S, Sobotka R, Kaňa R, Belgio E. Isolation and characterization of CAC antenna proteins and photosystem I supercomplex from the cryptophytic alga Rhodomonas salina. PHYSIOLOGIA PLANTARUM 2019; 166:309-319. [PMID: 30677144 DOI: 10.1111/ppl.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
In the present paper, we report an improved method combining sucrose density gradient with ion-exchange chromatography for the isolation of pure chlorophyll a/c antenna proteins from the model cryptophytic alga Rhodomonas salina. Antennas were used for in vitro quenching experiments in the absence of xanthophylls, showing that protein aggregation is a plausible mechanism behind non-photochemical quenching in R. salina. From sucrose gradient, it was also possible to purify a functional photosystem I supercomplex, which was in turn characterized by steady-state and time-resolved fluorescence spectroscopy. R. salina photosystem I showed a remarkably fast photochemical trapping rate, similar to what recently reported for other red clade algae such as Chromera velia and Phaeodactylum tricornutum. The method reported therefore may also be suitable for other still partially unexplored algae, such as cryptophytes.
Collapse
Affiliation(s)
- Eliška Kuthanová Trsková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, 370 05, České Budějovice, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia in České Budějovice, 370 05, České Budějovice, Czech Republic
- Institute of Plant Molecular Biology, Biology Centre CAS, 370 05, České Budějovice, Czech Republic
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, 20133, Milan, Italy
| | - Roman Sobotka
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, 370 05, České Budějovice, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, 370 05, České Budějovice, Czech Republic
| | - Erica Belgio
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81, Třeboň, Czech Republic
| |
Collapse
|
7
|
Antoshvili M, Caspy I, Hippler M, Nelson N. Structure and function of photosystem I in Cyanidioschyzon merolae. PHOTOSYNTHESIS RESEARCH 2019; 139:499-508. [PMID: 29582227 DOI: 10.1007/s11120-018-0501-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 05/19/2023]
Abstract
The evolution of photosynthesis from primitive photosynthetic bacteria to higher plants has been driven by the need to adapt to a wide range of environmental conditions. The red alga Cyanidioschyzon merolae is a primitive organism, which is capable of performing photosynthesis in extreme acidic and hot environments. The study of its photosynthetic machinery may provide new insight on the evolutionary path of photosynthesis and on light harvesting and its regulation in eukaryotes. With that aim, the structural and functional properties of the PSI complex were investigated by biochemical characterization, mass spectrometry, and X-ray crystallography. PSI was purified from cells grown at 25 and 42 °C, crystallized and its crystal structure was solved at 4 Å resolution. The structure of C. merolae reveals a core complex with a crescent-shaped structure, formed by antenna proteins. In addition, the structural model shows the position of PsaO and PsaM. PsaG and PsaH are present in plant complex and are missing from the C. merolae model as expected. This paper sheds new light onto the evolution of photosynthesis, which gives a strong indication for the chimerical properties of red algae PSI. The subunit composition of the PSI core from C. merolae and its associated light-harvesting antennae suggests that it is an evolutionary and functional intermediate between cyanobacteria and plants.
Collapse
Affiliation(s)
- Maya Antoshvili
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
8
|
Wang Q, Sun H, Huang J. Re-analyses of "Algal" Genes Suggest a Complex Evolutionary History of Oomycetes. FRONTIERS IN PLANT SCIENCE 2017; 8:1540. [PMID: 28932232 PMCID: PMC5592239 DOI: 10.3389/fpls.2017.01540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
The spread of photosynthesis is one of the most important but constantly debated topics in eukaryotic evolution. Various hypotheses have been proposed to explain the plastid distribution in extant eukaryotes. Notably, the chromalveolate hypothesis suggested that multiple eukaryotic lineages were derived from a photosynthetic ancestor that had a red algal endosymbiont. As such, genes of plastid/algal origin in aplastidic chromalveolates, such as oomycetes, were considered to be important supporting evidence. Although the chromalveolate hypothesis has been seriously challenged, some of its supporting evidence has not been carefully investigated. In this study, we re-evaluate the "algal" genes from oomycetes with a larger sampling and careful phylogenetic analyses. Our data provide no conclusive support for a common photosynthetic ancestry of stramenopiles, but show that the initial estimate of "algal" genes in oomycetes was drastically inflated due to limited genome data available then for certain eukaryotic lineages. These findings also suggest that the evolutionary histories of these "algal" genes might be attributed to complex scenarios such as differential gene loss, serial endosymbioses, or horizontal gene transfer.
Collapse
Affiliation(s)
- Qia Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- University of Chinese Academy of SciencesBeijing, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, Henan UniversityKaifeng, China
- Department of Biology, East Carolina University, GreenvilleNC, United States
| |
Collapse
|
9
|
Ren R, Sun Y, Zhao Y, Geiser D, Ma H, Zhou X. Phylogenetic Resolution of Deep Eukaryotic and Fungal Relationships Using Highly Conserved Low-Copy Nuclear Genes. Genome Biol Evol 2016; 8:2683-701. [PMID: 27604879 PMCID: PMC5631032 DOI: 10.1093/gbe/evw196] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A comprehensive and reliable eukaryotic tree of life is important for many aspects of biological studies from comparative developmental and physiological analyses to translational medicine and agriculture. Both gene-rich and taxon-rich approaches are effective strategies to improve phylogenetic accuracy and are greatly facilitated by marker genes that are universally distributed, well conserved, and orthologous among divergent eukaryotes. In this article, we report the identification of 943 low-copy eukaryotic genes and we show that many of these genes are promising tools in resolving eukaryotic phylogenies, despite the challenges of determining deep eukaryotic relationships. As a case study, we demonstrate that smaller subsets of ∼20 and 52 genes could resolve controversial relationships among widely divergent taxa and provide strong support for deep relationships such as the monophyly and branching order of several eukaryotic supergroups. In addition, the use of these genes resulted in fungal phylogenies that are congruent with previous phylogenomic studies that used much larger datasets, and successfully resolved several difficult relationships (e.g., forming a highly supported clade with Microsporidia, Mitosporidium and Rozella sister to other fungi). We propose that these genes are excellent for both gene-rich and taxon-rich analyses and can be applied at multiple taxonomic levels and facilitate a more complete understanding of the eukaryotic tree of life.
Collapse
Affiliation(s)
- Ren Ren
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, China
| | - Yazhou Sun
- Department of Biology, Institute of Molecular Evolutionary Genetics, The Pennsylvania State University Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - Yue Zhao
- Intercollege Graduate Program in Cell and Developmental Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University
| | - David Geiser
- Department of Plant Pathology, The Pennsylvania State University
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, China
| | - Xiaofan Zhou
- Department of Biology, Institute of Molecular Evolutionary Genetics, The Pennsylvania State University Intercollege Graduate Program in Cell and Developmental Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University Present address: Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| |
Collapse
|
10
|
Gorelick R, Carpinone J, Derraugh LJ. No universal differences between female and male eukaryotes: anisogamy and asymmetrical female meiosis. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Root Gorelick
- Department of Biology; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
- School of Mathematics & Statistics and Institute of Interdisciplinary Studies; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
| | - Jessica Carpinone
- Department of Biology; Carleton University; 1125 Raven Road Ottawa Ontario K1S 5B6 Canada
| | | |
Collapse
|
11
|
Hadariová L, Vesteg M, Birčák E, Schwartzbach SD, Krajčovič J. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis. Curr Genet 2016; 63:331-341. [PMID: 27553633 DOI: 10.1007/s00294-016-0641-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 08/13/2016] [Indexed: 12/18/2022]
Abstract
Euglena gracilis growth with antibacterial agents leads to bleaching, permanent plastid gene loss. Colorless Euglena (Astasia) longa resembles a bleached E. gracilis. To evaluate the role of bleaching in E. longa evolution, the effect of streptomycin, a plastid protein synthesis inhibitor, and ofloxacin, a plastid DNA gyrase inhibitor, on E. gracilis and E. longa growth and plastid DNA content were compared. E. gracilis growth was unaffected by streptomycin and ofloxacin. Quantitative PCR analyses revealed a time dependent loss of plastid genes in E. gracilis demonstrating that bleaching agents produce plastid gene deletions without affecting cell growth. Streptomycin and ofloxacin inhibited E. longa growth indicating that it requires plastid genes to survive. This suggests that evolutionary divergence of E. longa from E. gracilis was triggered by the loss of a cytoplasmic metabolic activity also occurring in the plastid. Plastid metabolism has become obligatory for E. longa cell growth. A process termed "intermittent bleaching", short term exposure to subsaturating concentrations of reversible bleaching agents followed by growth in the absence of a bleaching agent, is proposed as the molecular mechanism for E. longa plastid genome reduction. Various non-photosynthetic lineages could have independently arisen from their photosynthetic ancestors via a similar process.
Collapse
Affiliation(s)
- Lucia Hadariová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic
| | - Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Erik Birčák
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic
| | | | - Juraj Krajčovič
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina G-1, 842 15, Bratislava, Slovak Republic. .,Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia.
| |
Collapse
|
12
|
Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP, Keeling PJ. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc Biol Sci 2016; 283:rspb.2015.2802. [PMID: 26817772 DOI: 10.1098/rspb.2015.2802] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022] Open
Abstract
Assembling the global eukaryotic tree of life has long been a major effort of Biology. In recent years, pushed by the new availability of genome-scale data for microbial eukaryotes, it has become possible to revisit many evolutionary enigmas. However, some of the most ancient nodes, which are essential for inferring a stable tree, have remained highly controversial. Among other reasons, the lack of adequate genomic datasets for key taxa has prevented the robust reconstruction of early diversification events. In this context, the centrohelid heliozoans are particularly relevant for reconstructing the tree of eukaryotes because they represent one of the last substantial groups that was missing large and diverse genomic data. Here, we filled this gap by sequencing high-quality transcriptomes for four centrohelid lineages, each corresponding to a different family. Combining these new data with a broad eukaryotic sampling, we produced a gene-rich taxon-rich phylogenomic dataset that enabled us to refine the structure of the tree. Specifically, we show that (i) centrohelids relate to haptophytes, confirming Haptista; (ii) Haptista relates to SAR; (iii) Cryptista share strong affinity with Archaeplastida; and (iv) Haptista + SAR is sister to Cryptista + Archaeplastida. The implications of this topology are discussed in the broader context of plastid evolution.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maia Kaplan
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Denis V Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Vasily Zlatogursky
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - Bui Quang Minh
- Center for Integrative Bioinformatics, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Liudmila V Radaykina
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - Alexander P Mylnikov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Becker B, Doan JM, Wustman B, Carpenter EJ, Chen L, Zhang Y, Wong GKS, Melkonian M. The Origin and Evolution of the Plant Cell Surface: Algal Integrin-Associated Proteins and a New Family of Integrin-Like Cytoskeleton-ECM Linker Proteins. Genome Biol Evol 2015; 7:1580-9. [PMID: 25977459 PMCID: PMC4494055 DOI: 10.1093/gbe/evv089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The extracellular matrix of scaly green flagellates consists of small organic scales consisting of polysaccharides and scale-associated proteins (SAPs). Molecular phylogenies have shown that these organisms represent the ancestral stock of flagellates from which all green plants (Viridiplantae) evolved. The molecular characterization of four different SAPs is presented. Three SAPs are type-2 membrane proteins with an arginine/alanine-rich short cytoplasmic tail and an extracellular domain that is most likely of bacterial origin. The fourth protein is a filamin-like protein. In addition, we report the presence of proteins similar to the integrin-associated proteins α-actinin (in transcriptomes of glaucophytes and some viridiplants), LIM-domain proteins, and integrin-associated kinase in transcriptomes of viridiplants, glaucophytes, and rhodophytes. We propose that the membrane proteins identified are the predicted linkers between scales and the cytoskeleton. These proteins are present in many green algae but are apparently absent from embryophytes. These proteins represent a new protein family we have termed gralins for green algal integrins. Gralins are absent from embryophytes. A model for the evolution of the cell surface proteins in Plantae is discussed.
Collapse
Affiliation(s)
- Burkhard Becker
- Biozentrum Köln, Botanical Institute, Universität zu Köln, Germany
| | - Jean Michel Doan
- Biozentrum Köln, Botanical Institute, Universität zu Köln, Germany
| | - Brandon Wustman
- Biozentrum Köln, Botanical Institute, Universität zu Köln, Germany
| | - Eric J Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Li Chen
- BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China
| | - Yong Zhang
- BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada BGI-Shenzhen, Bei Shan Industrial Zone, Shenzhen, China Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
14
|
Marter K, Grauel MK, Lewa C, Morgenstern L, Buckemüller C, Heufelder K, Ganz M, Eisenhardt D. Duration of the unconditioned stimulus in appetitive conditioning of honeybees differentially impacts learning, long-term memory strength, and the underlying protein synthesis. ACTA ACUST UNITED AC 2014; 21:676-85. [PMID: 25403456 PMCID: PMC4236413 DOI: 10.1101/lm.035600.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study examines the role of stimulus duration in learning and memory formation of honeybees (Apis mellifera). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS becomes a predictor for the US eliciting a conditioned response (CR). Here we study the role of US duration in classical conditioning by examining honeybees conditioned with different US durations. We quantify the CR during acquisition, memory retention, and extinction of the early long-term memory (eLTM), and examine the molecular mechanisms of eLTM by interfering with protein synthesis. We find that the US duration affects neither the probability nor the strength of the CR during acquisition, eLTM retention, and extinction 24 h after conditioning. However, we find that the resistance to extinction 24 h after conditioning is susceptible to protein synthesis inhibition depending on the US duration. We conclude that the US duration does not affect the predictability of the US but modulates the protein synthesis underlying the eLTM's strength. Thus, the US duration differentially impacts learning, eLTM strength, and its underlying protein synthesis.
Collapse
Affiliation(s)
- Kathrin Marter
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - M Katharina Grauel
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Carmen Lewa
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Laura Morgenstern
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Christina Buckemüller
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Karin Heufelder
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Marion Ganz
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| | - Dorothea Eisenhardt
- Freie Universität Berlin, FB Biologie, Chemie, Pharmazie, Institut für Biologie, Neurobiologie, 14195 Berlin, Germany
| |
Collapse
|
15
|
Jackson CJ, Reyes-Prieto A. The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: multilocus phylogenetics suggests a monophyletic archaeplastida. Genome Biol Evol 2014; 6:2774-85. [PMID: 25281844 PMCID: PMC4224345 DOI: 10.1093/gbe/evu218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2014] [Indexed: 12/16/2022] Open
Abstract
A significant limitation when testing the putative single origin of primary plastids and the monophyly of the Archaeplastida supergroup, comprised of the red algae, viridiplants, and glaucophytes, is the scarce nuclear and organellar genome data available from the latter lineage. The Glaucophyta are a key algal group when investigating the origin and early diversification of photosynthetic eukaryotes. However, so far only the plastid and mitochondrial genomes of the glaucophytes Cyanophora paradoxa (strain CCMP 329) and Glaucocystis nostochinearum (strain UTEX 64) have been completely sequenced. Here, we present the complete mitochondrial genomes of Gloeochaete wittrockiana SAG 46.84 (36.05 kb; 33 protein-coding genes, 6 unidentified open reading frames [ORFs], and 28 transfer RNAs [tRNAs]) and Cyanoptyche gloeocystis SAG 4.97 (33.24 kb; 33 protein-coding genes, 6 unidentified ORFs, and 26 tRNAs), which represent two genera distantly related to the "well-known" Cyanophora and Glaucocystis. The mitochondrial gene repertoire of the four glaucophyte species is highly conserved, whereas the gene order shows considerable variation. Phylogenetic analyses of 14 mitochondrial genes from representative taxa from the major eukaryotic supergroups, here including novel sequences from the glaucophytes Cyanophora tetracyanea (strain NIES-764) and Cyanophora biloba (strain UTEX LB 2766), recover a clade uniting the three Archaeplastida lineages; this recovery is dependent on our novel glaucophyte data, demonstrating the importance of greater taxon sampling within the glaucophytes.
Collapse
Affiliation(s)
- Christopher J Jackson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
16
|
Hovde BT, Starkenburg SR, Hunsperger HM, Mercer LD, Deodato CR, Jha RK, Chertkov O, Monnat RJ, Cattolico RA. The mitochondrial and chloroplast genomes of the haptophyte Chrysochromulina tobin contain unique repeat structures and gene profiles. BMC Genomics 2014; 15:604. [PMID: 25034814 PMCID: PMC4226036 DOI: 10.1186/1471-2164-15-604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/09/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Haptophytes are widely and abundantly distributed in both marine and freshwater ecosystems. Few genomic analyses of representatives within this taxon have been reported, despite their early evolutionary origins and their prominent role in global carbon fixation. RESULTS The complete mitochondrial and chloroplast genome sequences of the haptophyte Chrysochromulina tobin (Prymnesiales) provide insight into the architecture and gene content of haptophyte organellar genomes. The mitochondrial genome (~34 kb) encodes 21 protein coding genes and contains a complex, 9 kb tandem repeat region. Similar to other haptophytes and rhodophytes, but not cryptophytes or stramenopiles, the mitochondrial genome has lost the nad7, nad9 and nad11 genes. The ~105 kb chloroplast genome encodes 112 protein coding genes, including ycf39 which has strong structural homology to NADP-binding nitrate transcriptional regulators; a divergent 'CheY-like' two-component response regulator (ycf55) and Tic/Toc (ycf60 and ycf80) membrane transporters. Notably, a zinc finger domain has been identified in the rpl36 ribosomal protein gene of all chloroplasts sequenced to date with the exception of haptophytes and cryptophytes--algae that have gained (via lateral gene transfer) an alternative rpl36 lacking the zinc finger motif. The two C. tobin chloroplast ribosomal RNA operon spacer regions differ in tRNA content. Additionally, each ribosomal operon contains multiple single nucleotide polymorphisms (SNPs)--a pattern observed in rhodophytes and cryptophytes, but few stramenopiles. Analysis of small (<200 bp) chloroplast encoded tandem and inverted repeats in C. tobin and 78 other algal chloroplast genomes show that repeat type, size and location are correlated with gene identity and taxonomic clade. CONCLUSION The Chrysochromulina tobin organellar genomes provide new insight into organellar function and evolution. These are the first organellar genomes to be determined for the prymnesiales, a taxon that is present in both oceanic and freshwater systems and represents major primary photosynthetic producers and contributors to global ecosystem stability.
Collapse
|
17
|
Stiller JW. Toward an empirical framework for interpreting plastid evolution. JOURNAL OF PHYCOLOGY 2014; 50:462-471. [PMID: 26988319 DOI: 10.1111/jpy.12178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/06/2014] [Indexed: 06/05/2023]
Abstract
The idea that evolutionary models should minimize plastid endosymbioses has dominated thinking about the history of eukaryotic photosynthesis. Although a reasonable starting point, this framework has not gained support from observed patterns of algal and plant evolution, and can be an obstacle to fully understanding the modern distribution of plastids. Empirical data indicate that plastid losses are extremely uncommon, that major changes in plastid biochemistry/architecture are evidence of an endosymbiotic event, and that comparable selection pressures can lead to remarkable convergences in algae with different endosymbiotic origins. Such empirically based generalizations can provide a more realistic philosophical framework for interpreting complex and often contradictory results from phylogenomic investigations of algal evolution.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| |
Collapse
|
18
|
Petroutsos D, Amiar S, Abida H, Dolch LJ, Bastien O, Rébeillé F, Jouhet J, Falconet D, Block MA, McFadden GI, Bowler C, Botté C, Maréchal E. Evolution of galactoglycerolipid biosynthetic pathways – From cyanobacteria to primary plastids and from primary to secondary plastids. Prog Lipid Res 2014; 54:68-85. [DOI: 10.1016/j.plipres.2014.02.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/17/2022]
|
19
|
Kim KM, Park JH, Bhattacharya D, Yoon HS. Applications of next-generation sequencing to unravelling the evolutionary history of algae. Int J Syst Evol Microbiol 2014; 64:333-345. [PMID: 24505071 DOI: 10.1099/ijs.0.054221-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
First-generation Sanger DNA sequencing revolutionized science over the past three decades and the current next-generation sequencing (NGS) technology has opened the doors to the next phase in the sequencing revolution. Using NGS, scientists are able to sequence entire genomes and to generate extensive transcriptome data from diverse photosynthetic eukaryotes in a timely and cost-effective manner. Genome data in particular shed light on the complicated evolutionary history of algae that form the basis of the food chain in many environments. In the Eukaryotic Tree of Life, the fact that photosynthetic lineages are positioned in four supergroups has important evolutionary consequences. We now know that the story of eukaryotic photosynthesis unfolds with a primary endosymbiosis between an ancestral heterotrophic protist and a captured cyanobacterium that gave rise to the glaucophytes, red algae and Viridiplantae (green algae and land plants). These primary plastids were then transferred to other eukaryotic groups through secondary endosymbiosis. A red alga was captured by the ancestor(s) of the stramenopiles, alveolates (dinoflagellates, apicomplexa, chromeridae), cryptophytes and haptophytes, whereas green algae were captured independently by the common ancestors of the euglenophytes and chlorarachniophytes. A separate case of primary endosymbiosis is found in the filose amoeba Paulinella chromatophora, which has at least nine heterotrophic sister species. Paulinella genome data provide detailed insights into the early stages of plastid establishment. Therefore, genome data produced by NGS have provided many novel insights into the taxonomy, phylogeny and evolutionary history of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Kyeong Mi Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jun-Hyung Park
- Codes Division, Insilicogen Inc., Suwon, 440-746, Republic of Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Institute of Marine and Coastal Science, Rutgers University, NJ 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
20
|
Ultrastructure and Molecular Phylogeny of the Cryptomonad Goniomonas avonlea sp. nov. Protist 2013; 164:160-82. [DOI: 10.1016/j.protis.2012.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 09/02/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022]
|
21
|
Keeling PJ. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:583-607. [PMID: 23451781 DOI: 10.1146/annurev-arplant-050312-120144] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plastids (chloroplasts) have long been recognized to have originated by endosymbiosis of a cyanobacterium, but their subsequent evolutionary history has proved complex because they have also moved between eukaryotes during additional rounds of secondary and tertiary endosymbioses. Much of this history has been revealed by genomic analyses, but some debates remain unresolved, in particular those relating to secondary red plastids of the chromalveolates, especially cryptomonads. Here, I examine several fundamental questions and assumptions about endosymbiosis and plastid evolution, including the number of endosymbiotic events needed to explain plastid diversity, whether the genetic contribution of the endosymbionts to the host genome goes far beyond plastid-targeted genes, and whether organelle origins are best viewed as a singular transition involving one symbiont or as a gradual transition involving a long line of transient food/symbionts. I also discuss a possible link between transporters and the evolution of protein targeting in organelle integration.
Collapse
Affiliation(s)
- Patrick J Keeling
- Canadian Institute for Advanced Research and Department of Botany, University of British Columbia, Vancouver, Canada V6T 1Z4.
| |
Collapse
|
22
|
Coelho SM, Simon N, Ahmed S, Cock JM, Partensky F. Ecological and evolutionary genomics of marine photosynthetic organisms. Mol Ecol 2012; 22:867-907. [PMID: 22989289 DOI: 10.1111/mec.12000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/10/2012] [Accepted: 07/15/2012] [Indexed: 01/05/2023]
Abstract
Environmental (ecological) genomics aims to understand the genetic basis of relationships between organisms and their abiotic and biotic environments. It is a rapidly progressing field of research largely due to recent advances in the speed and volume of genomic data being produced by next generation sequencing (NGS) technologies. Building on information generated by NGS-based approaches, functional genomic methodologies are being applied to identify and characterize genes and gene systems of both environmental and evolutionary relevance. Marine photosynthetic organisms (MPOs) were poorly represented amongst the early genomic models, but this situation is changing rapidly. Here we provide an overview of the recent advances in the application of ecological genomic approaches to both prokaryotic and eukaryotic MPOs. We describe how these approaches are being used to explore the biology and ecology of marine cyanobacteria and algae, particularly with regard to their functions in a broad range of marine ecosystems. Specifically, we review the ecological and evolutionary insights gained from whole genome and transcriptome sequencing projects applied to MPOs and illustrate how their genomes are yielding information on the specific features of these organisms.
Collapse
Affiliation(s)
- Susana M Coelho
- UPMC-Université Paris 06, Station Biologique de Roscoff, Roscoff, France.
| | | | | | | | | |
Collapse
|
23
|
Gross J, Bhattacharya D, Pelletreau KN, Rumpho ME, Reyes-Prieto A. Secondary and Tertiary Endosymbiosis and Kleptoplasty. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
|
25
|
Sekimoto S, Rochon D, Long JE, Dee JM, Berbee ML. A multigene phylogeny of Olpidium and its implications for early fungal evolution. BMC Evol Biol 2011; 11:331. [PMID: 22085768 PMCID: PMC3247622 DOI: 10.1186/1471-2148-11-331] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 11/15/2011] [Indexed: 01/02/2023] Open
Abstract
Background From a common ancestor with animals, the earliest fungi inherited flagellated zoospores for dispersal in water. Terrestrial fungi lost all flagellated stages and reproduce instead with nonmotile spores. Olpidium virulentus (= Olpidium brassicae), a unicellular fungus parasitizing vascular plant root cells, seemed anomalous. Although Olpidium produces zoospores, in previous phylogenetic studies it appeared nested among the terrestrial fungi. Its position was based mainly on ribosomal gene sequences and was not strongly supported. Our goal in this study was to use amino acid sequences from four genes to reconstruct the branching order of the early-diverging fungi with particular emphasis on the position of Olpidium. Results We concatenated sequences from the Ef-2, RPB1, RPB2 and actin loci for maximum likelihood and Bayesian analyses. In the resulting trees, Olpidium virulentus, O. bornovanus and non-flagellated terrestrial fungi formed a strongly supported clade. Topology tests rejected monophyly of the Olpidium species with any other clades of flagellated fungi. Placing Olpidium at the base of terrestrial fungi was also rejected. Within the terrestrial fungi, Olpidium formed a monophyletic group with the taxa traditionally classified in the phylum Zygomycota. Within Zygomycota, Mucoromycotina was robustly monophyletic. Although without bootstrap support, Monoblepharidomycetes, a small class of zoosporic fungi, diverged from the basal node in Fungi. The zoosporic phylum Blastocladiomycota appeared as the sister group to the terrestrial fungi plus Olpidium. Conclusions This study provides strong support for Olpidium as the closest living flagellated relative of the terrestrial fungi. Appearing nested among hyphal fungi, Olpidium's unicellular thallus may have been derived from ancestral hyphae. Early in their evolution, terrestrial hyphal fungi may have reproduced with zoospores.
Collapse
Affiliation(s)
- Satoshi Sekimoto
- Department of Botany, 3529-6270 University Boulevard, University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Johnson MD. Acquired phototrophy in ciliates: a review of cellular interactions and structural adaptations. J Eukaryot Microbiol 2011; 58:185-95. [PMID: 21518077 DOI: 10.1111/j.1550-7408.2011.00545.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Many ciliates acquire the capacity for photosynthesis through stealing plastids or harboring intact endosymbiotic algae. Both phenomena are a form of mixotrophy and are widespread among ciliates. Mixotrophic ciliates may be abundant in freshwater and marine ecosystems, sometimes making substantial contributions toward community primary productivity. While mixotrophic ciliates utilize phagotrophy to capture algal cells, their endomembrane system has evolved to partially bypass typical heterotrophic digestion pathways, enabling metabolic interaction with foreign cells or organelles. Unique adaptations may also be found in certain algal endosymbionts, facilitating establishment of symbiosis and nutritional interactions, while reducing their fitness for survival as free-living cells. Plastid retaining oligotrich ciliates possess little selectivity from which algae they sequester plastids, resulting in unstable kleptoplastids that require frequent ingestion of algal cells to replace them. Mesodinium rubrum (=Myrionecta rubra) possesses cryptophyte organelles that resemble a reduced endosymbont, and is the only ciliate capable of functional phototrophy and plastid division. Certain strains of M. rubrum may have a stable association with their cryptophyte organelles, while others need to acquire a cryptophyte nucleus through feeding. This process of stealing a nucleus, termed karyoklepty, was first described in M. rubrum and may be an evolutionary precursor to a stable, reduced endosymbiont, and perhaps eventually a tertiary plastid. The newly described Mesodinium"chamaeleon," however, is less selective of which cryptophyte species it will retain organelles, and appears less capable of sustained phototrophy. Ciliates likely stem from a phototrophic ancestry, which may explain their propensity to practice acquired phototrophy.
Collapse
Affiliation(s)
- Matthew D Johnson
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Massachusetts 02543, USA.
| |
Collapse
|
28
|
Chan CX, Gross J, Yoon HS, Bhattacharya D. Plastid origin and evolution: new models provide insights into old problems. PLANT PHYSIOLOGY 2011; 155:1552-60. [PMID: 21343425 PMCID: PMC3091110 DOI: 10.1104/pp.111.173500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
|
29
|
Xie Q, Lin J, Qin Y, Zhou J, Bu W. Structural diversity of eukaryotic 18S rRNA and its impact on alignment and phylogenetic reconstruction. Protein Cell 2011; 2:161-70. [PMID: 21400046 DOI: 10.1007/s13238-011-1017-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 01/30/2011] [Indexed: 10/18/2022] Open
Abstract
Ribosomal RNAs are important because they catalyze the synthesis of peptides and proteins. Comparative studies of the secondary structure of 18S rRNA have revealed the basic locations of its many length-conserved and length-variable regions. In recent years, many more sequences of 18S rDNA with unusual lengths have been documented in GenBank. These data make it possible to recognize the diversity of the secondary and tertiary structures of 18S rRNAs and to identify the length-conserved parts of 18S rDNAs. The longest 18S rDNA sequences of almost every known eukaryotic phylum were included in this study. We illustrated the bioinformatics-based structure to show that, the regions that are more length-variable, regions that are less length-variable, the splicing sites for introns, and the sites of A-minor interactions are mostly distributed in different parts of the 18S rRNA. Additionally, this study revealed that some length-variable regions or insertion positions could be quite close to the functional part of the 18S rRNA of Foraminifera organisms. The tertiary structure as well as the secondary structure of 18S rRNA can be more diverse than what was previously supposed. Besides revealing how this interesting gene evolves, it can help to remove ambiguity from the alignment of eukaryotic 18S rDNAs and to improve the performance of 18S rDNA in phylogenetic reconstruction. Six nucleotides shared by Archaea and Eukaryota but rarely by Bacteria are also reported here for the first time, which might further support the supposed origin of eukaryote from archaeans.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
30
|
Vinogradov SN, Fernández I, Hoogewijs D, Arredondo-Peter R. Phylogenetic relationships of 3/3 and 2/2 hemoglobins in Archaeplastida genomes to bacterial and other eukaryote hemoglobins. MOLECULAR PLANT 2011; 4:42-58. [PMID: 20952597 DOI: 10.1093/mp/ssq040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Land plants and algae form a supergroup, the Archaeplastida, believed to be monophyletic. We report the results of an analysis of the phylogeny of putative globins in the currently available genomes to bacterial and other eukaryote hemoglobins (Hbs). Archaeplastida genomes have 3/3 and 2/2 Hbs, with the land plant genomes having group 2 2/2 Hbs, except for the unexpected occurrence of two group 1 2/2 Hbs in Ricinus communis. Bayesian analysis shows that plant 3/3 Hbs are related to vertebrate neuroglobins and bacterial flavohemoglobins (FHbs). We sought to define the bacterial groups, whose ancestors shared the precursors of Archaeplastida Hbs, via Bayesian and neighbor-joining analyses based on COBALT alignment of representative sets of bacterial 3/3 FHb-like globins and group 1 and 2 2/2 Hbs with the corresponding Archaeplastida Hbs. The results suggest that the Archaeplastida 3/3 and group 1 2/2 Hbs could have originated from the horizontal gene transfers (HGTs) that accompanied the two generally accepted endosymbioses of a proteobacterium and a cyanobacterium with a eukaryote ancestor. In contrast, the origin of the group 2 2/2 Hbs unexpectedly appears to involve HGT from a bacterium ancestral to Chloroflexi, Deinococcales, Bacilli, and Actinomycetes. Furthermore, although intron positions and phases are mostly conserved among the land plant 3/3 and 2/2 globin genes, introns are absent in the algal 3/3 genes and intron positions and phases are highly variable in their 2/2 genes. Thus, introns are irrelevant to globin evolution in Archaeplastida.
Collapse
Affiliation(s)
- Serge N Vinogradov
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
31
|
Palpitomonas bilix gen. et sp. nov.: A Novel Deep-branching Heterotroph Possibly Related to Archaeplastida or Hacrobia. Protist 2010; 161:523-38. [DOI: 10.1016/j.protis.2010.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/31/2010] [Indexed: 11/19/2022]
|
32
|
Parfrey LW, Grant J, Tekle YI, Lasek-Nesselquist E, Morrison HG, Sogin ML, Patterson DJ, Katz LA. Broadly sampled multigene analyses yield a well-resolved eukaryotic tree of life. Syst Biol 2010; 59:518-33. [PMID: 20656852 DOI: 10.1093/sysbio/syq037] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An accurate reconstruction of the eukaryotic tree of life is essential to identify the innovations underlying the diversity of microbial and macroscopic (e.g., plants and animals) eukaryotes. Previous work has divided eukaryotic diversity into a small number of high-level "supergroups," many of which receive strong support in phylogenomic analyses. However, the abundance of data in phylogenomic analyses can lead to highly supported but incorrect relationships due to systematic phylogenetic error. Furthermore, the paucity of major eukaryotic lineages (19 or fewer) included in these genomic studies may exaggerate systematic error and reduce power to evaluate hypotheses. Here, we use a taxon-rich strategy to assess eukaryotic relationships. We show that analyses emphasizing broad taxonomic sampling (up to 451 taxa representing 72 major lineages) combined with a moderate number of genes yield a well-resolved eukaryotic tree of life. The consistency across analyses with varying numbers of taxa (88-451) and levels of missing data (17-69%) supports the accuracy of the resulting topologies. The resulting stable topology emerges without the removal of rapidly evolving genes or taxa, a practice common to phylogenomic analyses. Several major groups are stable and strongly supported in these analyses (e.g., SAR, Rhizaria, Excavata), whereas the proposed supergroup "Chromalveolata" is rejected. Furthermore, extensive instability among photosynthetic lineages suggests the presence of systematic biases including endosymbiotic gene transfer from symbiont (nucleus or plastid) to host. Our analyses demonstrate that stable topologies of ancient evolutionary relationships can be achieved with broad taxonomic sampling and a moderate number of genes. Finally, taxon-rich analyses such as presented here provide a method for testing the accuracy of relationships that receive high bootstrap support (BS) in phylogenomic analyses and enable placement of the multitude of lineages that lack genome scale data.
Collapse
Affiliation(s)
- Laura Wegener Parfrey
- Program in Organismic and Evolutionary Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bodył A, Mackiewicz P, Stiller JW. Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:639-649. [PMID: 20636907 DOI: 10.1111/j.1438-8677.2009.00264.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plastids evolved from free-living cyanobacteria through a process of primary endosymbiosis. The most widely accepted hypothesis derives three ancient lineages of primary plastids, i.e. those of glaucophytes, red algae and green plants, from a single cyanobacterial endosymbiosis. This hypothesis was originally predicated on the assumption that transformations of endosymbionts into organelles must be exceptionally rare because of the difficulty in establishing efficient protein trafficking between a host cell and incipient organelle. It turns out, however, that highly integrated endosymbiotic associations are more common than once thought. Among them is the amoeba Paulinella chromatophora, which harbours independently acquired cyanobacterial endosymbionts functioning as plastids. Sequencing of the Paulinella endosymbiont genome revealed an absence of essential genes for protein trafficking, suggesting their residence in the host nucleus and import of protein products back into the endosymbiont. To investigate this hypothesis, we searched the Paulinella endosymbiont genome for homologues of higher plant translocon proteins that form the import apparatus in two-membrane envelopes of primary plastids. We found homologues of Toc12, Tic21 and Tic32, but genes for other key translocon proteins (e.g. Omp85/Toc75 and Tic20) were missing. We propose that these missing genes were transferred to the Paulinella nucleus and their products are imported and integrated into the endosymbiont envelope membranes, thereby creating an effective protein import apparatus. We further suggest that other bacterial/cyanobacterial endosymbionts found in protists, plants and animals could have evolved efficient protein import systems independently and, therefore, reached the status of true cellular organelles.
Collapse
Affiliation(s)
- A Bodył
- Department of Biodiversity and Evolutionary Taxonomy, Zoological Institute, University of Wrocław, Wrocław, Poland.
| | | | | |
Collapse
|
34
|
Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 2010; 365:729-48. [PMID: 20124341 DOI: 10.1098/rstb.2009.0103] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
35
|
|
36
|
Stiller JW, Huang J, Ding Q, Tian J, Goodwillie C. Are algal genes in nonphotosynthetic protists evidence of historical plastid endosymbioses? BMC Genomics 2009; 10:484. [PMID: 19843329 PMCID: PMC2770532 DOI: 10.1186/1471-2164-10-484] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 10/20/2009] [Indexed: 12/18/2022] Open
Abstract
Background How photosynthetic organelles, or plastids, were acquired by diverse eukaryotes is among the most hotly debated topics in broad scale eukaryotic evolution. The history of plastid endosymbioses commonly is interpreted under the "chromalveolate" hypothesis, which requires numerous plastid losses from certain heterotrophic groups that now are entirely aplastidic. In this context, discoveries of putatively algal genes in plastid-lacking protists have been cited as evidence of gene transfer from a photosynthetic endosymbiont that subsequently was lost completely. Here we examine this evidence, as it pertains to the chromalveolate hypothesis, through genome-level statistical analyses of similarity scores from queries with two diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, and two aplastidic sister taxa, Phytophthora ramorum and P. sojae. Results Contingency tests of specific predictions of the chromalveolate model find no evidence for an unusual red algal contribution to Phytophthora genomes, nor that putative cyanobacterial sequences that are present entered these genomes through a red algal endosymbiosis. Examination of genes unrelated to plastid function provide extraordinarily significant support for both of these predictions in diatoms, the control group where a red endosymbiosis is known to have occurred, but none of that support is present in genes specifically conserved between diatoms and oomycetes. In addition, we uncovered a strong association between overall sequence similarities among taxa and relative sizes of genomic data sets in numbers of genes. Conclusion Signal from "algal" genes in oomycete genomes is inconsistent with the chromalveolate hypothesis, and better explained by alternative models of sequence and genome evolution. Combined with the numerous sources of intragenomic phylogenetic conflict characterized previously, our results underscore the potential to be mislead by a posteriori interpretations of variable phylogenetic signals contained in complex genome-level data. They argue strongly for explicit testing of the different a priori assumptions inherent in competing evolutionary hypotheses.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, USA.
| | | | | | | | | |
Collapse
|
37
|
Brown MW, Spiegel FW, Silberman JD. Phylogeny of the "forgotten" cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 2009; 26:2699-709. [PMID: 19692665 DOI: 10.1093/molbev/msp185] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The shared ancestry between Fungi and animals has been unequivocally demonstrated by abundant molecular and morphological data for well over a decade. Along with the animals and Fungi, multiple protists have been placed in the supergroup Opisthokonta making it exceptionally diverse. In an effort to place the cellular slime mold Fonticula alba, an amoeboid protist with aggregative, multicellular fruiting, we sequenced five nuclear encoded genes; small subunit ribosomal RNA, actin, beta-tubulin, elongation factor 1-alpha, and the cytosolic isoform of heat shock protein 70 for phylogenetic analyses. Molecular trees demonstrate that Fonticula is an opisthokont that branches sister to filose amoebae in the genus Nuclearia. Fonticula plus Nuclearia are sister to Fungi. We propose a new name for this well-supported clade, Nucletmycea, incorporating Nuclearia, Fonticula, and Fungi. Fonticula represents the first example of a cellular slime mold morphology within Opisthokonta. Thus, there are four types of multicellularity in the supergroup-animal, fungal, colonial, and now aggregative. Our data indicate that multicellularity in Fonticula evolved independent of that found in the fungal and animal radiations. With the rapidly expanding sequence and genomic data becoming available from many opisthokont lineages, Fonticula may be fundamental to understanding opisthokont evolution as well as any possible commonalities involved with the evolution of multicellularity.
Collapse
|
38
|
Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K. Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 2009; 53:872-80. [PMID: 19698794 DOI: 10.1016/j.ympev.2009.08.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/15/2009] [Accepted: 08/13/2009] [Indexed: 11/16/2022]
Abstract
The phylogenetic positions of the primary photosynthetic eukaryotes, or Archaeplastida (green plants, red algae, and glaucophytes) and the secondary photosynthetic chromalveolates, Haptophyta, vary depending on the data matrices used in the previous nuclear multigene phylogenetic studies. Here, we deduced the phylogeny of three groups of Archaeplastida and Haptophyta on the basis of sequences of the multiple slowly evolving nuclear genes and reduced the gaps or missing data, especially in glaucophyte operational taxonomic units (OTUs). The present multigene phylogenetic analyses resolved that Haptophyta and two other groups of Chromalveolata, stramenopiles and Alveolata, form a monophyletic group that is sister to the green plants and that the glaucophytes and red algae are basal to the clade composed of green plants and Chromalveolata. The bootstrap values supporting these phylogenetic relationships increased with the exclusion of long-branched OTUs. The close relationship between green plants and Chromalveolata is further supported by the common replacement in two plastid-targeted genes.
Collapse
Affiliation(s)
- Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Burki F, Inagaki Y, Bråte J, Archibald JM, Keeling PJ, Cavalier-Smith T, Sakaguchi M, Hashimoto T, Horak A, Kumar S, Klaveness D, Jakobsen KS, Pawlowski J, Shalchian-Tabrizi K. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, telonemia and centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol Evol 2009; 1:231-8. [PMID: 20333193 PMCID: PMC2817417 DOI: 10.1093/gbe/evp022] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2009] [Indexed: 12/03/2022] Open
Abstract
Understanding the early evolution and diversification of eukaryotes relies on a fully resolved phylogenetic tree. In recent years, most eukaryotic diversity has been assigned to six putative supergroups, but the evolutionary origin of a few major “orphan” lineages remains elusive. Two ecologically important orphan groups are the heterotrophic Telonemia and Centroheliozoa. Telonemids have been proposed to be related to the photosynthetic cryptomonads or stramenopiles and centrohelids to haptophytes, but molecular phylogenies have failed to provide strong support for any phylogenetic hypothesis. Here, we investigate the origins of Telonema subtilis (a telonemid) and Raphidiophrys contractilis (a centrohelid) by large-scale 454 pyrosequencing of cDNA libraries and including new genomic data from two cryptomonads (Guillardia theta and Plagioselmis nannoplanctica) and a haptophyte (Imantonia rotunda). We demonstrate that 454 sequencing of cDNA libraries is a powerful and fast method of sampling a high proportion of protist genes, which can yield ample information for phylogenomic studies. Our phylogenetic analyses of 127 genes from 72 species indicate that telonemids and centrohelids are members of an emerging major group of eukaryotes also comprising cryptomonads and haptophytes. Furthermore, this group is possibly closely related to the SAR clade comprising stramenopiles (heterokonts), alveolates, and Rhizaria. Our results link two additional heterotrophic lineages to the predominantly photosynthetic chromalveolate supergroup, providing a new framework for interpreting the evolution of eukaryotic cell structures and the diversification of plastids.
Collapse
|
40
|
Abstract
A comprehensive understanding of the origin and spread of plastids remains an important yet elusive goal in the field of eukaryotic evolution. Combined with the discovery of new photosynthetic and non-photosynthetic protist lineages, the results of recent taxonomically broad phylogenomic studies suggest that a re-shuffling of higher-level eukaryote systematics is in order. Consequently, new models of plastid evolution involving ancient secondary and tertiary endosymbioses are needed to explain the full spectrum of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- John M Archibald
- The Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 1X5, Canada.
| |
Collapse
|
41
|
Bodył A, Stiller JW, Mackiewicz P. Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 2009; 24:119-21; author reply 121-2. [DOI: 10.1016/j.tree.2008.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
42
|
Inagaki Y, Nakajima Y, Sato M, Sakaguchi M, Hashimoto T. Gene Sampling Can Bias Multi-Gene Phylogenetic Inferences: The Relationship between Red Algae and Green Plants as a Case Study. Mol Biol Evol 2009; 26:1171-8. [DOI: 10.1093/molbev/msp036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|