1
|
Hashimura H, Kuwana S, Nakagawa H, Abe K, Adachi T, Sugita T, Fujishiro S, Honda G, Sawai S. Multi-color fluorescence live-cell imaging in Dictyostelium discoideum. Cell Struct Funct 2024; 49:135-153. [PMID: 39631875 DOI: 10.1247/csf.24065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cellular slime mold Dictyostelium discoideum, a member of the Amoebozoa, has been extensively studied in cell and developmental biology. D. discoideum is unique in that they are genetically tractable, with a wealth of data accumulated over half a century of research. Fluorescence live-cell imaging of D. discoideum has greatly facilitated studies on fundamental topics, including cytokinesis, phagocytosis, and cell migration. Additionally, its unique life cycle places Dictyostelium at the forefront of understanding aggregative multicellularity, a recurring evolutionary trait found across the Opisthokonta and Amoebozoa clades. The use of multiple fluorescent proteins (FP) and labels with separable spectral properties is critical for tracking cells in aggregates and identifying co-occurring biomolecular events and factors that underlie the dynamics of the cytoskeleton, membrane lipids, second messengers, and gene expression. However, in D. discoideum, the number of frequently used FP species is limited to two or three. In this study, we explored the use of new-generation FP for practical 4- to 5-color fluorescence imaging of D. discoideum. We showed that the yellow fluorescent protein Achilles and the red fluorescent protein mScarlet-I both yield high signals and allow sensitive detection of rapid gene induction. The color palette was further expanded to include blue (mTagBFP2 and mTurquosie2), large Stoke-shift LSSmGFP, and near-infrared (miRFP670nano3) FPs, in addition to the HaloTag ligand SaraFluor 650T. Thus, we demonstrated the feasibility of deploying 4- and 5- color imaging of D. discoideum using conventional confocal microscopy.Key words: fluorescence imaging, organelle, cytoskeleton, small GTPase, Dictyostelium.
Collapse
Affiliation(s)
| | - Satoshi Kuwana
- Graduate School of Arts and Sciences, The University of Tokyo
| | - Hibiki Nakagawa
- Graduate School of Arts and Sciences, The University of Tokyo
| | - Kenichi Abe
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo
| | - Tomoko Adachi
- Graduate School of Arts and Sciences, The University of Tokyo
| | - Toyoko Sugita
- Graduate School of Arts and Sciences, The University of Tokyo
| | - Shoko Fujishiro
- Graduate School of Arts and Sciences, The University of Tokyo
| | - Gen Honda
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, The University of Tokyo
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo
| |
Collapse
|
2
|
Su H, Xu J, Li J, Yi Z. Four ciliate-specific expansion events occurred during actin gene family evolution of eukaryotes. Mol Phylogenet Evol 2023; 184:107789. [PMID: 37105243 DOI: 10.1016/j.ympev.2023.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Actin gene family is a divergent and ancient eukaryotic cellular cytoskeletal gene family, and participates in many essential cellular processes. Ciliated protists offer us an excellent opportunity to investigate gene family evolution, since their gene families evolved faster in ciliates than in other eukaryotes. Nonetheless, actin gene family is well studied in few model ciliate species but little is known about its evolutionary patterns in ciliates. Here, we analyzed the evolutionary pattern of eukaryotic actin gene family based on genomes/transcriptomes of 36 species covering ten ciliate classes, as well as those of nine non-ciliate eukaryotic species. Results showed: (1) Except for conventional actins and actin-related proteins (Arps) shared by various eukaryotes, at least four ciliate-specific subfamilies occurred during evolution of actin gene family. Expansions of Act2 and ArpC were supposed to have happen in the ciliate common ancestor, while expansions of ActI and ActII may have occurred in the ancestor of Armophorea, Muranotrichea, and Spirotrichea. (2) The number of actin isoforms varied greatly among ciliate species. Environmental adaptability, whole genome duplication (WGD) or segmental duplication events, distinct spatial and temporal patterns of expression might play driving forces for the increasement of isoform numbers. (3) The 'birth and death' model of evolution could explain the evolution of actin gene family in ciliates. And actin genes have been generally under strong negative selection to maintain protein structures and physiological functions. Collectively, we provided meaningful information for understanding the evolution of eukaryotic actin gene family.
Collapse
Affiliation(s)
- Hua Su
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiahui Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Actin dynamics in protein homeostasis. Biosci Rep 2022; 42:231720. [PMID: 36043949 PMCID: PMC9469105 DOI: 10.1042/bsr20210848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cell homeostasis is maintained in all organisms by the constant adjustment of cell constituents and organisation to account for environmental context. Fine-tuning of the optimal balance of proteins for the conditions, or protein homeostasis, is critical to maintaining cell homeostasis. Actin, a major constituent of the cytoskeleton, forms many different structures which are acutely sensitive to the cell environment. Furthermore, actin structures interact with and are critically important for the function and regulation of multiple factors involved with mRNA and protein production and degradation, and protein regulation. Altogether, actin is a key, if often overlooked, regulator of protein homeostasis across eukaryotes. In this review, we highlight these roles and how they are altered following cell stress, from mRNA transcription to protein degradation.
Collapse
|
4
|
Lorenzo-Benito S, Rivera-Rivas LA, Sánchez-Ayala L, Ortega-López J, Montes-Flores O, Talamás-Lara D, Arroyo R. Omics Analyses of Trichomonas vaginalis Actin and Tubulin and Their Participation in Intercellular Interactions and Cytokinesis. Genes (Basel) 2022; 13:genes13061067. [PMID: 35741829 PMCID: PMC9222396 DOI: 10.3390/genes13061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Actin and tubulin proteins from Trichomonas vaginalis are crucial for morphogenesis and mitosis. This parasite has 10 and 11 genes coding bonafide actin and tubulin proteins, respectively. Hence, the goal of this work was to analyze these actin and tubulin genes, their expression at the mRNA and protein levels, and their parasite localization in intercellular interaction and cytokinesis. Representative bonafide actin (tvact1) and tubulin (tvtubα1) genes were cloned into and expressed in Escherichia coli. The recombinant proteins TvACT1r and TvTUBα1r were affinity purified and used as antigens to produce polyclonal antibodies. These antibodies were used in 1DE and 2DE WB and indirect immunofluorescence assays (IFA). By IFA, actin was detected as a ring on the periphery of ameboid, ovoid, and cold-induced cyst-like parasites, on pseudopods of amoeboid parasites, and in cytoplasmic extensions (filopodia) in cell–cell interactions. Tubulin was detected in the axostyle, flagellum, undulating membrane, and paradesmose during mitosis. Paradesmose was observed by IFA mainly during cytokinesis. By scanning electron microscopy, a tubulin-containing nanotubular structure similar to the tunneling nanotubes (TNTs) was also detected in the last stage of cytokinesis. In conclusion, actin and tubulin are multigene families differentially expressed that play important roles in intercellular interactions and cytokinesis.
Collapse
Affiliation(s)
- Sebastián Lorenzo-Benito
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Luis Alberto Rivera-Rivas
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Lizbeth Sánchez-Ayala
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN. Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (J.O.-L.); (O.M.-F.)
| | - Octavio Montes-Flores
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN. Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (J.O.-L.); (O.M.-F.)
| | - Daniel Talamás-Lara
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN #2508, Col. San Pedro Zacatenco, Alcaldía Gustavo A. Madero, Mexico City CP 07360, Mexico; (S.L.-B.); (L.A.R.-R.); (L.S.-A.); (D.T.-L.)
- Correspondence: ; Tel.: +52-55-5747-3342
| |
Collapse
|
5
|
Velle KB, Fritz-Laylin LK. Conserved actin machinery drives microtubule-independent motility and phagocytosis in Naegleria. J Cell Biol 2020; 219:e202007158. [PMID: 32960946 PMCID: PMC7594500 DOI: 10.1083/jcb.202007158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Much of our understanding of actin-driven phenotypes in eukaryotes has come from the "yeast-to-human" opisthokont lineage and the related amoebozoa. Outside of these groups lies the genus Naegleria, which shared a common ancestor with humans >1 billion years ago and includes the "brain-eating amoeba." Unlike nearly all other known eukaryotic cells, Naegleria amoebae lack interphase microtubules; this suggests that actin alone drives phenotypes like cell crawling and phagocytosis. Naegleria therefore represents a powerful system to probe actin-driven functions in the absence of microtubules, yet surprisingly little is known about its actin cytoskeleton. Using genomic analysis, microscopy, and molecular perturbations, we show that Naegleria encodes conserved actin nucleators and builds Arp2/3-dependent lamellar protrusions. These protrusions correlate with the capacity to migrate and eat bacteria. Because human cells also use Arp2/3-dependent lamellar protrusions for motility and phagocytosis, this work supports an evolutionarily ancient origin for these processes and establishes Naegleria as a natural model system for studying microtubule-independent cytoskeletal phenotypes.
Collapse
|
6
|
Rath PP, Gourinath S. The actin cytoskeleton orchestra in Entamoeba histolytica. Proteins 2020; 88:1361-1375. [PMID: 32506560 DOI: 10.1002/prot.25955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Years of evolution have kept actin conserved throughout various clades of life. It is an essential protein starring in many cellular processes. In a primitive eukaryote named Entamoeba histolytica, actin directs the process of phagocytosis. A finely tuned coordination between various actin-binding proteins (ABPs) choreographs this process and forms one of the virulence factors for this protist pathogen. The ever-expanding world of ABPs always has space to accommodate new and varied types of proteins to the earlier existing repertoire. In this article, we report the identification of 390 ABPs from Entamoeba histolytica. These proteins are part of diverse families that have been known to regulate actin dynamics. Most of the proteins are primarily uncharacterized in this organism; however, this study aims to annotate the ABPs based on their domain arrangements. A unique characteristic about some of the ABPs found is the combination of domains present in them unlike any other reported till date. Calponin domain-containing proteins formed the largest group among all types with 38 proteins, followed by 29 proteins with the infamous BAR domain in them, and 23 proteins belonging to actin-related proteins. The other protein families had a lesser number of members. Presence of exclusive domain arrangements in these proteins could guide us to yet unknown actin regulatory mechanisms prevalent in nature. This article is the first step to unraveling them.
Collapse
|
7
|
Fabrice TN, Fiedler T, Studer V, Vinet A, Brogna F, Schmidt A, Pieters J. Interactome and F-Actin Interaction Analysis of Dictyostelium discoideum Coronin A. Int J Mol Sci 2020; 21:E1469. [PMID: 32098122 PMCID: PMC7073074 DOI: 10.3390/ijms21041469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Coronin proteins are evolutionary conserved WD repeat containing proteins that have been proposed to carry out different functions. In Dictyostelium, the short coronin isoform, coronin A, has been implicated in cytoskeletal reorganization, chemotaxis, phagocytosis and the initiation of multicellular development. Generally thought of as modulators of F-actin, coronin A and its mammalian homologs have also been shown to mediate cellular processes in an F-actin-independent manner. Therefore, it remains unclear whether or not coronin A carries out its functions through its capacity to interact with F-actin. Moreover, the interacting partners of coronin A are not known. Here, we analyzed the interactome of coronin A as well as its interaction with F-actin within cells and in vitro. Interactome analysis showed the association with a diverse set of interaction partners, including fimbrin, talin and myosin subunits, with only a transient interaction with the minor actin10 isoform, but not the major form of actin, actin8, which was consistent with the absence of a coronin A-actin interaction as analyzed by co-sedimentation from cells and lysates. In vitro, however, purified coronin A co-precipitated with rabbit muscle F-actin in a coiled-coil-dependent manner. Our results suggest that an in vitro interaction of coronin A and rabbit muscle actin may not reflect the cellular interaction state of coronin A with actin, and that coronin A interacts with diverse proteins in a time-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (T.N.F.); (T.F.); (V.S.); (A.V.); (F.B.); (A.S.)
| |
Collapse
|
8
|
Batsios P, Ishikawa-Ankerhold HC, Roth H, Schleicher M, Wong CCL, Müller-Taubenberger A. Ate1-mediated posttranslational arginylation affects substrate adhesion and cell migration in Dictyostelium discoideum. Mol Biol Cell 2018; 30:453-466. [PMID: 30586322 PMCID: PMC6594445 DOI: 10.1091/mbc.e18-02-0132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The highly conserved enzyme arginyl-tRNA-protein transferase (Ate1) mediates arginylation, a posttranslational modification that is only incompletely understood at its molecular level. To investigate whether arginylation affects actin-dependent processes in a simple model organism, Dictyostelium discoideum, we knocked out the gene encoding Ate1 and characterized the phenotype of ate1-null cells. Visualization of actin cytoskeleton dynamics by live-cell microscopy indicated significant changes in comparison to wild-type cells. Ate1-null cells were almost completely lacking focal actin adhesion sites at the substrate-attached surface and were only weakly adhesive. In two-dimensional chemotaxis assays toward folate or cAMP, the motility of ate1-null cells was increased. However, in three-dimensional chemotaxis involving more confined conditions, the motility of ate1-null cells was significantly reduced. Live-cell imaging showed that GFP-tagged Ate1 rapidly relocates to sites of newly formed actin-rich protrusions. By mass spectrometric analysis, we identified four arginylation sites in the most abundant actin isoform of Dictyostelium, in addition to arginylation sites in other actin isoforms and several actin-binding proteins. In vitro polymerization assays with actin purified from ate1-null cells revealed a diminished polymerization capacity in comparison to wild-type actin. Our data indicate that arginylation plays a crucial role in the regulation of cytoskeletal activities.
Collapse
Affiliation(s)
- Petros Batsios
- Department of Cell Biology (Anatomy III), Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Hellen C Ishikawa-Ankerhold
- Department of Cell Biology (Anatomy III), Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Heike Roth
- Department of Cell Biology (Anatomy III), Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Schleicher
- Department of Cell Biology (Anatomy III), Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Catherine C L Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Annette Müller-Taubenberger
- Department of Cell Biology (Anatomy III), Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication. Proc Natl Acad Sci U S A 2018; 115:8364-8369. [PMID: 30061408 DOI: 10.1073/pnas.1800943115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
During the evolution of gene families, functional diversification of proteins often follows gene duplication. However, many gene families expand while preserving protein sequence. Why do cells maintain multiple copies of the same gene? Here we have addressed this question for an actin family with 17 genes encoding an identical protein. The genes have divergent flanking regions and are scattered throughout the genome. Surprisingly, almost the entire family showed similar developmental expression profiles, with their expression also strongly coupled in single cells. Using live cell imaging, we show that differences in gene expression were apparent over shorter timescales, with family members displaying different transcriptional bursting dynamics. Strong "bursty" behaviors contrasted steady, more continuous activity, indicating different regulatory inputs to individual actin genes. To determine the sources of these different dynamic behaviors, we reciprocally exchanged the upstream regulatory regions of gene family members. This revealed that dynamic transcriptional behavior is directly instructed by upstream sequence, rather than features specific to genomic context. A residual minor contribution of genomic context modulates the gene OFF rate. Our data suggest promoter diversification following gene duplication could expand the range of stimuli that regulate the expression of essential genes. These observations contextualize the significance of transcriptional bursting.
Collapse
|
10
|
Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK, Haas FB, Vanderstraeten L, Becker D, Lang D, Vosolsobě S, Rombauts S, Wilhelmsson PK, Janitza P, Kern R, Heyl A, Rümpler F, Villalobos LIAC, Clay JM, Skokan R, Toyoda A, Suzuki Y, Kagoshima H, Schijlen E, Tajeshwar N, Catarino B, Hetherington AJ, Saltykova A, Bonnot C, Breuninger H, Symeonidi A, Radhakrishnan GV, Van Nieuwerburgh F, Deforce D, Chang C, Karol KG, Hedrich R, Ulvskov P, Glöckner G, Delwiche CF, Petrášek J, Van de Peer Y, Friml J, Beilby M, Dolan L, Kohara Y, Sugano S, Fujiyama A, Delaux PM, Quint M, Theißen G, Hagemann M, Harholt J, Dunand C, Zachgo S, Langdale J, Maumus F, Van Der Straeten D, Gould SB, Rensing SA. The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell 2018; 174:448-464.e24. [DOI: 10.1016/j.cell.2018.06.033] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 01/11/2023]
|
11
|
F-actin homeostasis through transcriptional regulation and proteasome-mediated proteolysis. Proc Natl Acad Sci U S A 2018; 115:E6487-E6496. [PMID: 29941587 DOI: 10.1073/pnas.1721935115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many organisms possess multiple and often divergent actins whose regulation and roles are not understood in detail. For example, Chlamydomonas reinhardtii has both a conventional actin (IDA5) and a highly divergent one (NAP1); only IDA5 is expressed in normal proliferating cells. We showed previously that the drug latrunculin B (LatB) causes loss of filamentous (F-) IDA5 and strong up-regulation of NAP1, which then provides essential actin function(s) by forming LatB-resistant F-NAP1. RNA-sequencing analyses now show that this up-regulation of NAP1 reflects a broad transcriptional response, much of which depends on three proteins (LAT1, LAT2, and LAT3) identified previously as essential for NAP1 transcription. Many of the LAT-regulated genes contain a putative cis-acting regulatory site, the "LRE motif." The LatB transcriptional program appears to be activated by loss of F-IDA5 and deactivated by formation of F-NAP1, thus forming an F-actin-dependent negative-feedback loop. Multiple genes encoding proteins of the ubiquitin-proteasome system are among those induced by LatB, resulting in rapid degradation of IDA5 (but not NAP1). Our results suggest that IDA5 degradation is functionally important because nonpolymerizable LatB-bound IDA5 interferes with the formation of F-NAP1. The genes for the actin-interacting proteins cofilin and profilin are also induced. Cofilin induction may further the clearance of IDA5 by promoting the scission of F-IDA5, whereas profilin appears to function in protecting monomeric IDA5 from degradation. This multifaceted regulatory system allows rapid and quantitative turnover of F-actin in response to cytoskeletal perturbations and probably also maintains F-actin homeostasis under normal growth conditions.
Collapse
|
12
|
Paschke P, Knecht DA, Silale A, Traynor D, Williams TD, Thomason PA, Insall RH, Chubb JR, Kay RR, Veltman DM. Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum. PLoS One 2018; 13:e0196809. [PMID: 29847546 PMCID: PMC5976153 DOI: 10.1371/journal.pone.0196809] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/15/2018] [Indexed: 02/03/2023] Open
Abstract
Dictyostelium has a mature technology for molecular-genetic manipulation based around transfection using several different selectable markers, marker re-cycling, homologous recombination and insertional mutagenesis, all supported by a well-annotated genome. However this technology is optimized for mutant, axenic cells that, unlike non-axenic wild type, can grow in liquid medium. There is a pressing need for methods to manipulate wild type cells and ones with defects in macropinocytosis, neither of which can grow in liquid media. Here we present a panel of molecular genetic techniques based on the selection of Dictyostelium transfectants by growth on bacteria rather than liquid media. As well as extending the range of strains that can be manipulated, these techniques are faster than conventional methods, often giving usable numbers of transfected cells within a few days. The methods and plasmids described here allow efficient transfection with extrachromosomal vectors, as well as chromosomal integration at a 'safe haven' for relatively uniform cell-to-cell expression, efficient gene knock-in and knock-out and an inducible expression system. We have thus created a complete new system for the genetic manipulation of Dictyostelium cells that no longer requires cell feeding on liquid media.
Collapse
Affiliation(s)
- Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | | | - David Traynor
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Peter A. Thomason
- Cancer Research UK Beatson Institute Glasgow, Glasgow, United Kingdom
| | - Robert H. Insall
- Cancer Research UK Beatson Institute Glasgow, Glasgow, United Kingdom
| | - Jonathan R. Chubb
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Robert R. Kay
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
13
|
Ishikawa-Ankerhold HC, Daszkiewicz W, Schleicher M, Müller-Taubenberger A. Actin-Interacting Protein 1 Contributes to Intranuclear Rod Assembly in Dictyostelium discoideum. Sci Rep 2017; 7:40310. [PMID: 28074884 PMCID: PMC5225641 DOI: 10.1038/srep40310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022] Open
Abstract
Intranuclear rods are aggregates consisting of actin and cofilin that are formed in the nucleus in consequence of chemical or mechanical stress conditions. The formation of rods is implicated in a variety of pathological conditions, such as certain myopathies and some neurological disorders. It is still not well understood what exactly triggers the formation of intranuclear rods, whether other proteins are involved, and what the underlying mechanisms of rod assembly or disassembly are. In this study, Dictyostelium discoideum was used to examine appearance, stages of assembly, composition, stability, and dismantling of rods. Our data show that intranuclear rods, in addition to actin and cofilin, are composed of a distinct set of other proteins comprising actin-interacting protein 1 (Aip1), coronin (CorA), filactin (Fia), and the 34 kDa actin-bundling protein B (AbpB). A finely tuned spatio-temporal pattern of protein recruitment was found during formation of rods. Aip1 is important for the final state of rod compaction indicating that Aip1 plays a major role in shaping the intranuclear rods. In the absence of both Aip1 and CorA, rods are not formed in the nucleus, suggesting that a sufficient supply of monomeric actin is a prerequisite for rod formation.
Collapse
Affiliation(s)
| | - Wioleta Daszkiewicz
- Department of Cell Biology (Anatomy III), Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Schleicher
- Department of Cell Biology (Anatomy III), Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
14
|
Corrigan AM, Tunnacliffe E, Cannon D, Chubb JR. A continuum model of transcriptional bursting. eLife 2016; 5. [PMID: 26896676 PMCID: PMC4850746 DOI: 10.7554/elife.13051] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/19/2016] [Indexed: 12/20/2022] Open
Abstract
Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI:http://dx.doi.org/10.7554/eLife.13051.001 Understanding how gene activity is regulated relies on accurate measurements of the output of genes. Proteins are generated from genes via a multi-step process. In the first step, called transcription, the DNA of a gene is copied by complex cell machinery to create molecules of mRNA. Subsequently, these mRNA molecules are ‘translated’ into proteins. Previous studies have assayed gene transcription by measuring mRNA production in millions of cells at the same time. The resulting measurements give the impression that transcription occurs as a continuous, smooth process. However, when individual gene transcription is measured in single cells, mRNA production between cells is unexpectedly variable. This challenged the view that transcription is a continuous process. One idea that explains this variability – the "two-state" or "bursting" model – proposes that genes switch between "on" and "off" states with a certain probability. Thus, at any one time, a gene will be off in many cells and on in others. However, the methods used in these experiments measure mRNA in dead cells, and so the dynamic switching of genes between on and off states was presumed, but not accurately measured. Corrigan et al. have now imaged the transcription of a single gene – a gene for a protein called actin – in living cells of an amoeba called Dictyostelium. Genetic techniques and computational modeling were then used to explore what affects the variability in this gene’s activity. These approaches revealed that transcription occurs across a spectrum of activity, rather than in rigid on or off states. The transcription process itself may also contribute to where a gene’s activity sits on this spectrum. Furthermore, Corrigan et al. found that a specific DNA sequence found at the start of the actin gene, that is also found in many genes in complex life-forms, is required for the gene to reach the highest levels of activity on the spectrum. This spectrum of activity states could allow cells to finely tune their responses to the signals they receive. A future challenge will be to assess how the activity of other genes compare to the actin gene and to discover what underlies the variation in the timing of transcription’s different stages. DOI:http://dx.doi.org/10.7554/eLife.13051.002
Collapse
Affiliation(s)
- Adam M Corrigan
- Division of Cell and Developmental Biology, University College London, London, United Kingdom.,Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Edward Tunnacliffe
- Division of Cell and Developmental Biology, University College London, London, United Kingdom.,Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Danielle Cannon
- Division of Cell and Developmental Biology, University College London, London, United Kingdom.,Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jonathan R Chubb
- Division of Cell and Developmental Biology, University College London, London, United Kingdom.,Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
15
|
Developmental accumulation of inorganic polyphosphate affects germination and energetic metabolism in Dictyostelium discoideum. Proc Natl Acad Sci U S A 2016; 113:996-1001. [PMID: 26755590 DOI: 10.1073/pnas.1519440113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inorganic polyphosphate (polyP) is composed of linear chains of phosphate groups linked by high-energy phosphoanhydride bonds. However, this simple, ubiquitous molecule remains poorly understood. The use of nonstandardized analytical methods has contributed to this lack of clarity. By using improved polyacrylamide gel electrophoresis we were able to visualize polyP extracted from Dictyostelium discoideum. We established that polyP is undetectable in cells lacking the polyphosphate kinase (DdPpk1). Generation of this ppk1 null strain revealed that polyP is important for the general fitness of the amoebae with the mutant strain displaying a substantial growth defect. We discovered an unprecedented accumulation of polyP during the developmental program, with polyP increasing more than 100-fold. The failure of ppk1 spores to accumulate polyP results in a germination defect. These phenotypes are underpinned by the ability of polyP to regulate basic energetic metabolism, demonstrated by a 2.5-fold decrease in the level of ATP in vegetative ppk1. Finally, the lack of polyP during the development of ppk1 mutant cells is partially offset by an increase of both ATP and inositol pyrophosphates, evidence for a model in which there is a functional interplay between inositol pyrophosphates, ATP, and polyP.
Collapse
|
16
|
Evidence That an Unconventional Actin Can Provide Essential F-Actin Function and That a Surveillance System Monitors F-Actin Integrity in Chlamydomonas. Genetics 2015; 202:977-96. [PMID: 26715672 DOI: 10.1534/genetics.115.184663] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
Actin is one of the most conserved eukaryotic proteins. It is thought to have multiple essential cellular roles and to function primarily or exclusively as filaments ("F-actin"). Chlamydomonas has been an enigma, because a null mutation (ida5-1) in its single gene for conventional actin does not affect growth. A highly divergent actin gene, NAP1, is upregulated in ida5-1 cells, but it has been unclear whether NAP1 can form filaments or provide actin function. Here, we used the actin-depolymerizing drug latrunculin B (LatB), the F-actin-specific probe Lifeact-Venus, and genetic and molecular methods to resolve these issues. LatB-treated wild-type cells continue to proliferate; they initially lose Lifeact-stained structures but recover them concomitant with upregulation of NAP1. Thirty-nine LatB-sensitive mutants fell into four genes (NAP1 and LAT1-LAT3) in which we identified the causative mutations using a novel combinatorial pool-sequencing strategy. LAT1-LAT3 are required for NAP1 upregulation upon LatB treatment, and ectopic expression of NAP1 largely rescues the LatB sensitivity of the lat1-lat3 mutants, suggesting that the LAT gene products comprise a regulatory hierarchy with NAP1 expression as the major functional output. Selection of LatB-resistant revertants of a nap1 mutant yielded dominant IDA5 mutations that presumably render F-IDA5 resistant to LatB, and nap1 and lat mutations are synthetically lethal with ida5-1 in the absence of LatB. We conclude that both IDA5 and the divergent NAP1 can form filaments and redundantly provide essential F-actin functions and that a novel surveillance system, probably responding to a loss of F-actin, triggers NAP1 expression and perhaps other compensatory responses.
Collapse
|
17
|
Schaap P, Barrantes I, Minx P, Sasaki N, Anderson RW, Bénard M, Biggar KK, Buchler NE, Bundschuh R, Chen X, Fronick C, Fulton L, Golderer G, Jahn N, Knoop V, Landweber LF, Maric C, Miller D, Noegel AA, Peace R, Pierron G, Sasaki T, Schallenberg-Rüdinger M, Schleicher M, Singh R, Spaller T, Storey KB, Suzuki T, Tomlinson C, Tyson JJ, Warren WC, Werner ER, Werner-Felmayer G, Wilson RK, Winckler T, Gott JM, Glöckner G, Marwan W. The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling. Genome Biol Evol 2015; 8:109-25. [PMID: 26615215 PMCID: PMC4758236 DOI: 10.1093/gbe/evv237] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 12/13/2022] Open
Abstract
Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Israel Barrantes
- Magdeburg Centre for Systems Biology and Institute for Biology, University of Magdeburg, Magdeburg, Germany
| | - Pat Minx
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Narie Sasaki
- Department of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | - Roger W Anderson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Marianne Bénard
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR-7622, Paris, France
| | - Kyle K Biggar
- Biochemistry Department, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nicolas E Buchler
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham Department of Physics, Duke University, Durham
| | - Ralf Bundschuh
- Department of Physics and Center for RNA Biology, The Ohio State University, Columbus Department of Chemistry & Biochemistry, The Ohio State University, Columbus Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus
| | - Xiao Chen
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton
| | - Catrina Fronick
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Lucinda Fulton
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Georg Golderer
- Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Niels Jahn
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Bonn, Germany
| | - Laura F Landweber
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton
| | - Chrystelle Maric
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot Paris7, Paris, France
| | - Dennis Miller
- The University of Texas at Dallas, Biological Sciences, Richardson
| | - Angelika A Noegel
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rob Peace
- Carleton University, Ottawa, Ontario, Canada
| | - Gérard Pierron
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot Paris7, Paris, France
| | - Taeko Sasaki
- Department of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | | | - Michael Schleicher
- Institute for Anatomy III / Cell Biology, BioMedCenter, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Reema Singh
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thomas Spaller
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | | - Takamasa Suzuki
- Department of Biological Sciences, Graduate School of Science and JST ERATO Higashiyama Live-holonics Project, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | - Chad Tomlinson
- The Genome Institute, Washington University School of Medicine, St Louis
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Ernst R Werner
- Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Thomas Winckler
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jonatha M Gott
- Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, Cleveland
| | - Gernot Glöckner
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Wolfgang Marwan
- Magdeburg Centre for Systems Biology and Institute for Biology, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
18
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
19
|
Whitehead MP, Eagles L, Hooley P, Brown MRW. Most bacteria synthesize polyphosphate by unknown mechanisms. MICROBIOLOGY (READING, ENGLAND) 2014; 160:829-831. [PMID: 24600028 DOI: 10.1099/mic.0.075366-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Michael P Whitehead
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1SE, UK
| | - Lawrence Eagles
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1SE, UK
| | - Paul Hooley
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1SE, UK
| | | |
Collapse
|
20
|
The genome of the foraminiferan Reticulomyxa filosa. Curr Biol 2013; 24:11-18. [PMID: 24332546 DOI: 10.1016/j.cub.2013.11.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/09/2013] [Accepted: 11/12/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Rhizaria are a major branch of eukaryote evolution with an extensive microfossil record, but only scarce molecular data are available. The rhizarian species Reticulomyxa filosa, belonging to the Foraminifera, is free-living in freshwater environments. In culture, it thrives only as a plasmodium with thousands of haploid nuclei in one cell. The R. filosa genome is the first foraminiferal genome to be deciphered. RESULTS The genome is extremely repetitive, and the large amounts of identical sequences hint at frequent amplifications and homologous recombination events. Presumably, these mechanisms are employed to provide more gene copies for higher transcriptional activity and to build up a reservoir of gene diversification in certain gene families, such as the kinesin family. The gene repertoire indicates that it is able to switch to a single-celled, flagellated sexual state never observed in culture. Comparison to another rhizarian, the chlorarachniophyte alga Bigelowiella natans, reveals that proteins involved in signaling were likely drivers in establishing the Rhizaria lineage. Compared to some other protists, horizontal gene transfer is limited, but we found evidence of bacterial-to-eukaryote and eukaryote-to-eukaryote transfer events. CONCLUSIONS The R. filosa genome exhibits a unique architecture with extensive repeat homogenization and gene amplification, which highlights its potential for diverse life-cycle stages. The ability of R. filosa to rapidly transport matter from the pseudopodia to the cell body may be supported by the high diversification of actin and kinesin gene family members.
Collapse
|
21
|
Live imaging of nascent RNA dynamics reveals distinct types of transcriptional pulse regulation. Proc Natl Acad Sci U S A 2012; 109:7350-5. [PMID: 22529358 DOI: 10.1073/pnas.1117603109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription of genes can be discontinuous, occurring in pulses or bursts. It is not clear how properties of transcriptional pulses vary between different genes. We compared the pulsing of five housekeeping and five developmentally induced genes by direct imaging of single gene transcriptional events in individual living Dictyostelium cells. Each gene displayed its own transcriptional signature, differing in probability of firing and pulse duration, frequency, and intensity. In contrast to the prevailing view from both prokaryotes and eukaryotes that transcription displays binary behavior, strongly expressed housekeeping genes altered the magnitude of their transcriptional pulses during development. These nonbinary "tunable" responses may be better suited than stochastic switch behavior for housekeeping functions. Analysis of RNA synthesis kinetics using fluorescence recovery after photobleaching implied modulation of housekeeping-gene pulse strength occurs at the level of transcription initiation rather than elongation. In addition, disparities between single cell and population measures of transcript production suggested differences in RNA stability between gene classes. Analysis of stability using RNAseq revealed no major global differences in stability between developmental and housekeeping transcripts, although strongly induced RNAs showed unusually rapid decay, indicating tight regulation of expression.
Collapse
|
22
|
Heidel AJ, Lawal HM, Felder M, Schilde C, Helps NR, Tunggal B, Rivero F, John U, Schleicher M, Eichinger L, Platzer M, Noegel AA, Schaap P, Glöckner G. Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res 2011; 21:1882-91. [PMID: 21757610 PMCID: PMC3205573 DOI: 10.1101/gr.121137.111] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 07/11/2011] [Indexed: 11/24/2022]
Abstract
Dictyostelium discoideum (DD), an extensively studied model organism for cell and developmental biology, belongs to the most derived group 4 of social amoebas, a clade of altruistic multicellular organisms. To understand genome evolution over long time periods and the genetic basis of social evolution, we sequenced the genomes of Dictyostelium fasciculatum (DF) and Polysphondylium pallidum (PP), which represent the early diverging groups 1 and 2, respectively. In contrast to DD, PP and DF have conventional telomere organization and strongly reduced numbers of transposable elements. The number of protein-coding genes is similar between species, but only half of them comprise an identifiable set of orthologous genes. In general, genes involved in primary metabolism, cytoskeletal functions and signal transduction are conserved, while genes involved in secondary metabolism, export, and signal perception underwent large differential gene family expansions. This most likely signifies involvement of the conserved set in core cell and developmental mechanisms, and of the diverged set in niche- and species-specific adaptations for defense and food, mate, and kin selection. Phylogenetic dating using a concatenated data set and extensive loss of synteny indicate that DF, PP, and DD split from their last common ancestor at least 0.6 billion years ago.
Collapse
Affiliation(s)
- Andrew J. Heidel
- Leibniz Institute for Age Research–Fritz Lipmann Institute, D-07745 Jena, Germany
| | - Hajara M. Lawal
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Marius Felder
- Leibniz Institute for Age Research–Fritz Lipmann Institute, D-07745 Jena, Germany
| | - Christina Schilde
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Nicholas R. Helps
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Budi Tunggal
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
| | - Francisco Rivero
- Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, United Kingdom
| | - Uwe John
- Alfred Wegener Institute, D-27570 Bremerhaven, Germany
| | - Michael Schleicher
- Institute for Anatomy and Cell Biology, and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University Munich, D-80336 Munich, Germany
| | - Ludwig Eichinger
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research–Fritz Lipmann Institute, D-07745 Jena, Germany
| | - Angelika A. Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Gernot Glöckner
- Leibniz Institute for Age Research–Fritz Lipmann Institute, D-07745 Jena, Germany
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, D-12587 Berlin, Germany
| |
Collapse
|
23
|
Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV. Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 2011; 12:R20. [PMID: 21356102 PMCID: PMC3188802 DOI: 10.1186/gb-2011-12-2-r20] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/09/2010] [Accepted: 02/28/2011] [Indexed: 12/28/2022] Open
Abstract
Background The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. Results We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict. Conclusions The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.
Collapse
Affiliation(s)
- Richard Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kim S, Bachvaroff TR, Handy SM, Delwiche CF. Dynamics of actin evolution in dinoflagellates. Mol Biol Evol 2010; 28:1469-80. [PMID: 21149641 DOI: 10.1093/molbev/msq332] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop codons. Overall, variation in the actin gene family fits best with the "birth and death" model of evolution based on recent duplications, pseudogenes, and incomplete lineage sorting. Divergence between species was similar to variation within species, so that actin may be too conserved to be useful for phylogenetic estimation of closely related species.
Collapse
Affiliation(s)
- Sunju Kim
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | | | | | | |
Collapse
|
25
|
Lahr DJG, Nguyen TB, Barbero E, Katz LA. Evolution of the actin gene family in testate lobose amoebae (Arcellinida) is characterized by two distinct clades of paralogs and recent independent expansions. Mol Biol Evol 2010; 28:223-36. [PMID: 20679092 DOI: 10.1093/molbev/msq200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of actin gene families is characterized by independent expansions and contractions across the eukaryotic tree of life. Here, we assess diversity of actin gene sequences within three lineages of the genus Arcella, a free-living testate (shelled) amoeba in the Arcellinida. We established four clonal lines of two morphospecies, Arcella hemisphaerica and A. vulgaris, and assessed their phylogenetic relationship within the "Amoebozoa" using small subunit ribosomal DNA (SSU-rDNA) genealogy. We determined that the two lines of A. hemisphaerica are identical in SSU-rDNA, while the two A. vulgaris are independent genetic lineages. Furthermore, we characterized multiple actin gene copies from all lineages. Analyses of the resulting sequences reveal numerous diverse actin genes, which differ mostly by synonymous substitutions. We estimate that the actin gene family contains 40-50 paralogous members in each lineage. None of the three independent lineages share the same paralog with another, and divergence between actins reaches 29% in contrast to just 2% in SSU-rDNA. Analyses of effective number of codons (ENC), compositional bias, recombination signatures, and genetic diversity in the context of a gene tree indicate that there are two groups of actins evolving with distinct patterns of molecular evolution. Within these groups, there have been multiple independent expansions of actin genes within each lineage. Together, these data suggest that the two groups are located in different regions of the Arcella genome. Furthermore, we compare the Arcella actin gene family with the relatively well-described gene family in the slime mold Dictyostelium discoideum and other members of the Amoebozoa clade. Overall patterns of molecular evolution are similar in Arcella and Dictyostelium. However, the separation of genes in two distinct groups coupled with recent expansion is characteristic of Arcella and might reflect an unusual pattern of gene family evolution in the lobose testate amoebae. We provide a model to account for both the existence of two distinct groups and the pattern of recent independent expansion leading to a large number of actins in each lineage.
Collapse
Affiliation(s)
- Daniel J G Lahr
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts
| | | | | | | |
Collapse
|
26
|
Methylation of H3K4 Is required for inheritance of active transcriptional states. Curr Biol 2010; 20:397-406. [PMID: 20188556 DOI: 10.1016/j.cub.2010.01.017] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/12/2009] [Accepted: 01/05/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND Maintenance of differentiation programs requires stability, when appropriate, of transcriptional states. However, the extent to which inheritance of active transcriptional states occurs from mother to daughter cells has not been directly addressed in unperturbed cell populations. RESULTS By live imaging of single-gene transcriptional events in individual cells, we have directly recorded the potential for mitotic inheritance of transcriptional states down cell lineages. Our data showed strong similarity in frequency of transcriptional firing between mother and daughter cells. This memory persisted for complete cell cycles. Both transcriptional pulse length and pulsing rate contributed to overall inheritance, and memory was determined by lineage, not cell environment. Analysis of transcription in chromatin mutants demonstrated that the histone H3K4 methylase Set1 and Ash2, a component of the methylase complex, are required for memory. The effects of Set1 methylation may be mediated directly by chromatin, because loss of memory also occurred when endogenous H3K4 was replaced by alanine. Although methylated H3K4 is usually associated with active transcriptional units, the modification was not required for gene activity but stabilized transcriptional frequency between generations. CONCLUSIONS Our data indicate that methylated H3K4 can act as a chromatin mark reflecting the original meaning of "epigenetic."
Collapse
|
27
|
Liu X, Shu S, Hong MSS, Yu B, Korn ED. Mutation of actin Tyr-53 alters the conformations of the DNase I-binding loop and the nucleotide-binding cleft. J Biol Chem 2010; 285:9729-9739. [PMID: 20100837 DOI: 10.1074/jbc.m109.073452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All but 11 of the 323 known actin sequences have Tyr at position 53, and the 11 exceptions have the conservative substitution Phe, which raises the following questions. What is the critical role(s) of Tyr-53, and, if it can be replaced by Phe, why has this happened so infrequently? We compared the properties of purified endogenous Dictyostelium actin and mutant constructs with Tyr-53 replaced by Phe, Ala, Glu, Trp, and Leu. The Y53F mutant did not differ significantly from endogenous actin in any of the properties assayed, but the Y53A and Y53E mutants differed substantially; affinity for DNase I was reduced, the rate of nucleotide exchange was increased, the critical concentration for polymerization was increased, filament elongation was inhibited, and polymerized actin was in the form of small oligomers and imperfect filaments. Growth and/or development of cells expressing these actin mutants were also inhibited. The Trp and Leu mutations had lesser but still significant effects on cell phenotype and the biochemical properties of the purified actins. We conclude that either Tyr or Phe is required to maintain the functional conformations of the DNase I-binding loop (D-loop) in both G- and F-actin, and that the conformation of the D-loop affects not only the properties that directly involve the D-loop (binding to DNase I and polymerization) but also allosterically modifies the conformation of the nucleotide-binding cleft, thus increasing the rate of nucleotide exchange. The apparent evolutionary "preference" for Tyr at position 53 may be the result of Tyr allowing dynamic modification of the D-loop conformation by phosphorylation (Baek, K., Liu, X., Ferron, F., Shu, S., Korn, E. D., and Dominguez, R. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 11748-11753) with effects similar, but not identical, to those of the Ala and Glu mutations.
Collapse
Affiliation(s)
- Xiong Liu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Shi Shu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Myoung-Soon S Hong
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Bin Yu
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Edward D Korn
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
28
|
Derman AI, Becker EC, Truong BD, Fujioka A, Tucey TM, Erb ML, Patterson PC, Pogliano J. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol Microbiol 2009; 73:534-52. [PMID: 19602153 DOI: 10.1111/j.1365-2958.2009.06771.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Actin, one of the most abundant proteins in the eukaryotic cell, also has an abundance of relatives in the eukaryotic proteome. To date though, only five families of actins have been characterized in bacteria. We have conducted a phylogenetic search and uncovered more than 35 highly divergent families of actin-like proteins (Alps) in bacteria. Their genes are found primarily on phage genomes, on plasmids and on integrating conjugative elements, and are likely to be involved in a variety of functions. We characterize three Alps and find that all form filaments in the cell. The filaments of Alp7A, a plasmid partitioning protein and one of the most divergent of the Alps, display dynamic instability and also treadmill. Alp7A requires other elements from the plasmid to assemble into dynamic polymers in the cell. Our findings suggest that most if not all of the Alps are indeed actin relatives, and that actin is very well represented in bacteria.
Collapse
Affiliation(s)
- Alan I Derman
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377, USA
| | | | | | | | | | | | | | | |
Collapse
|