1
|
Aouadhi C, Jouini A, Maaroufi K, Maaroufi A. Antibacterial Effect of Eight Essential Oils against Bacteria Implicated in Bovine Mastitis and Characterization of Primary Action Mode of Thymus capitatus Essential Oil. Antibiotics (Basel) 2024; 13:237. [PMID: 38534672 DOI: 10.3390/antibiotics13030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 03/28/2024] Open
Abstract
During the current investigation, eight essential oils (EOs) were tested for their antimicrobial activity against six species, belonging to the genus of staphylococcus, multi-resistant to antibiotics (S. epidermidis, S. cohni, S. wareneri, S. scuiri, S. chromogenes, S. pasteuri), three methicillin-resistant Staphylococcus aureus strains (MRSA) and two strains of Escherichia coli, producing extended-spectrum β-lactamase (ESBL) responsible for bovine mastitis. Our results indicated that the antimicrobial activities of eight EOs varied significantly among the types of EOs and bacterial species. Thymus capitatus and Trachyspermum ammi EOs display important antibacterial activity against all tested strains, with the inhibition zone diameters situated between 20 and 45 mm, while EOs of Artemisia absinthium, Eucalyptus globulus, Eucalyptus camaldulensis, Myrtus communis and Mentha pulegium exerted an intermediate activity. For Cymbopogon citratus, this effect depends on bacteria species. In fact, an important effect was observed against S. warneri, S. epidermidis, S. cohenii, S. pasteuri and MRSA (EC 39+) strains. In addition, the important lytic effect was observed against MRSA strains, showing that Gram-positive bacteria were more sensitive to T. capitatus EO than Gram-negative ones. Concerning the characterization of the mode action of T. capitatus, experiments of kill-time, bacteriolytic, loss of salt tolerance and loss of cytoplasmic material showed that the used EO was able to destroy cell walls and membranes followed by the loss of vital intracellular materials. In addition, it inhibits the normal synthesis of DNA, causing the bacterial death of E. coli and MRSA strains. This study shows the potential of using of EOs, particularly T. capitaus, to inhibit the growth of Gram-positive and Gram-negative bacteria multi-resistant to antibiotics causing bovine mastitis.
Collapse
Affiliation(s)
- Chedia Aouadhi
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Pasteur Institute of Tunisia (IPT), University of Tunis El Manar (UTM), BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Ahlem Jouini
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Pasteur Institute of Tunisia (IPT), University of Tunis El Manar (UTM), BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia
| | - Karima Maaroufi
- Laboratory of Functional Physiology and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Abderrazak Maaroufi
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Pasteur Institute of Tunisia (IPT), University of Tunis El Manar (UTM), BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia
| |
Collapse
|
2
|
Gerbig GR, Piontkivska H, Smith TC, White R, Mukherjee J, Benson H, Rosenbaum M, Leibler JH. Genetic characterization of Staphylococcus aureus isolated from Norway rats in Boston, Massachusetts. Vet Med Sci 2023; 9:272-281. [PMID: 36524786 PMCID: PMC9856981 DOI: 10.1002/vms3.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite the importance of domesticated animals in the generation and transmission of antibiotic-resistant Staphylococcus aureus, the role of wild animals, specifically rodents, in the ecology of S. aureus remains unclear. We recovered and genotyped S. aureus isolates from wild Norway rats (Rattus norvegicus) in Boston, Massachusetts to examine genetic relationships between common human and animal S. aureus isolates in a large US metropolitan area. METHODS We collected and necropsied 63 rats from June 2016 to June 2017. Nasal, foot pad, fur, and fecal swabs were collected. Staphylococcus aureus was isolated using culture-based methods and polymerase chain reaction confirmation. S. aureus isolates were spa typed, tested for antibiotic susceptibility, and whole genome sequenced. Assembled sequences were uploaded to the Comprehensive Antibiotic Resistance Database to identify antibiotic resistance elements. A phylogenetic tree was constructed using the neighbor-joining method with the maximum composite likelihood distance in MEGA7. RESULTS We recovered 164 Gram-positive bacterial isolates from Norway rats. Nineteen isolates from eight individual rats were confirmed as S. aureus (prevalence: 12.9% (8/63)). All S. aureus isolates were methicillin-susceptible S. aureus (MSSA), pvl-negative, and resistant to penicillin. Two isolates displayed resistance to erythromycin. Four different S. aureus spa types were detected (t933, t10751, t18202, and t189). Thirteen unique antibiotic resistance elements were identified, and all isolates shared genes mepR, mgrA, arlR, and S. aureus norA. Phylogenetic analysis if the 19 S. aureus isolates revealed they were genetically similar to four clades of S. aureus with similar resistance gene profiles isolated from both human- and animal-derived S. aureus, as well as formed a distinct phylogenetic cluster composed only of rat isolates. CONCLUSIONS Wild rodents may serve as a reservoir or vector of antibiotic resistance genes in the urban environment with relevance for human and animal health.
Collapse
Affiliation(s)
| | | | - Tara C. Smith
- College of Public HealthKent State UniversityKentOhioUSA
| | - Ruairi White
- Department of Infectious Disease and Global Health, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachussetsUSA
| | - Jean Mukherjee
- Department of Infectious Disease and Global Health, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachussetsUSA
| | - Hayley Benson
- Department of Infectious Disease and Global Health, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachussetsUSA
| | - Marieke Rosenbaum
- Department of Infectious Disease and Global Health, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachussetsUSA
| | - Jessica H. Leibler
- Department of Environmental HealthBoston University School of Public HealthBostonMassachusettsUSA
| |
Collapse
|
3
|
Cheng X, Xu J, Smith G, Nirmalakhandan N, Zhang Y. Metagenomic profiling of antibiotic resistance and virulence removal: Activated sludge vs. algal wastewater treatment system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113129. [PMID: 34182338 PMCID: PMC8338905 DOI: 10.1016/j.jenvman.2021.113129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 05/19/2023]
Abstract
Conventional activated sludge-based (CAS) wastewater treatment plants are known to be a source of antibiotic resistance genes (ARGs) and virulence genes (VGs). As an alternative, a single-step mixotrophic algal wastewater treatment (A-WWT) system is proposed here to effectively reduce ARGs and VGs in the final effluent while meeting all the discharge standards. In this study, we applied the metagenomic profiling approach to compare the A-WWT system against the CAS system in terms of removal efficacy of ARG and VGs. A total of 111 ARG and 93 VG subtypes belonging to 10 antibiotic resistant classes and 19 virulence classes were detected in this study. Although the CAS system reduced the relative abundance of most classes of ARGs (7 of 10) and VGs (11 of 19), 3 ARG classes and 7 VG classes had increased abundances. On the other hand, the A-WWT system reduced the relative abundance of all classes of ARGs and VGs, and effectively eliminated most subtypes of ARGs and VGs. In the CAS system, the bacterial genera carrying ARGs and VGs was expanded, and the diversity index was increased greatly, suggesting the occurrence of horizontal gene transfer (HGT). In contrast, the A-WWT system narrowed down the potential host range and decreased their diversity substantially. Results of this study highlight the potential risk of ARGs and VGs in CAS system and demonstrate the feasibility of the algal-based system in removing ARGs and VGs.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jiannong Xu
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Geoffrey Smith
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Yanyan Zhang
- Civil Engineering Department, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
4
|
Horve PF, Dietz LG, Ishaq SL, Kline J, Fretz M, Van Den Wymelenberg KG. Viable bacterial communities on hospital window components in patient rooms. PeerJ 2020; 8:e9580. [PMID: 33194331 PMCID: PMC7391968 DOI: 10.7717/peerj.9580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 01/04/2023] Open
Abstract
Previous studies demonstrate an exchange of bacteria between hospital room surfaces and patients, and a reduction in survival of microorganisms in dust inside buildings from sunlight exposure. While the transmission of microorganisms between humans and their local environment is a continuous exchange which generally does not raise cause for alarm, in a hospital setting with immunocompromised patients, these building-source microbial reservoirs may pose a risk. Window glass is often neglected during hospital disinfection protocols, and the microbial communities found there have not previously been examined. This pilot study examined whether living bacterial communities, and specifically the pathogens Methicillin-resistant Staphylococcus aureus (MRSA) and Clostridioides difficile (C. difficile), were present on window components of exterior-facing windows inside patient rooms, and whether relative light exposure (direct or indirect) was associated with changes in bacterial communities on those hospital surfaces. Environmental samples were collected from 30 patient rooms in a single ward at Oregon Health & Science University (OHSU) in Portland, Oregon, USA. Sampling locations within each room included the window glass surface, both sides of the window curtain, two surfaces of the window frame, and the air return grille. Viable bacterial abundances were quantified using qPCR, and community composition was assessed using Illumina MiSeq sequencing of the 16S rRNA gene V3/V4 region. Viable bacteria occupied all sampled locations, but was not associated with a specific hospital surface or relative sunlight exposure. Bacterial communities were similar between window glass and the rest of the room, but had significantly lower Shannon Diversity, theorized to be related to low nutrient density and resistance to bacterial attachment of glass compared to other surface materials. Rooms with windows that were facing west demonstrated a higher abundance of viable bacteria than those facing other directions, potentially because at the time of sampling (morning) west-facing rooms had not yet been exposed to sunlight that day. Viable C. difficile was not detected and viable MRSA was detected at very low abundance. Bacterial abundance was negatively correlated with distance from the central staff area containing the break room and nursing station. In the present study, it can be assumed that there is more human traffic in the center of the ward, and is likely responsible for the observed gradient of total abundance in rooms along the ward, as healthcare staff both deposit more bacteria during activities and affect microbial transit indoors. Overall, hospital window components possess similar microbial communities to other previously identified room locations known to act as reservoirs for microbial agents of hospital-associated infections.
Collapse
Affiliation(s)
- Patrick F Horve
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
| | - Leslie G Dietz
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
| | - Suzanne L Ishaq
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America.,School of Food and Agriculture, University of Maine, Orono, ME, United States of America
| | - Jeff Kline
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America
| | - Mark Fretz
- Institute for Health in the Built Environment, University of Oregon, Portland, OR, United States of America
| | - Kevin G Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, United States of America.,Institute for Health in the Built Environment, University of Oregon, Portland, OR, United States of America
| |
Collapse
|
5
|
Cullen CM, Aneja KK, Beyhan S, Cho CE, Woloszynek S, Convertino M, McCoy SJ, Zhang Y, Anderson MZ, Alvarez-Ponce D, Smirnova E, Karstens L, Dorrestein PC, Li H, Sen Gupta A, Cheung K, Powers JG, Zhao Z, Rosen GL. Emerging Priorities for Microbiome Research. Front Microbiol 2020; 11:136. [PMID: 32140140 PMCID: PMC7042322 DOI: 10.3389/fmicb.2020.00136] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiome research has increased dramatically in recent years, driven by advances in technology and significant reductions in the cost of analysis. Such research has unlocked a wealth of data, which has yielded tremendous insight into the nature of the microbial communities, including their interactions and effects, both within a host and in an external environment as part of an ecological community. Understanding the role of microbiota, including their dynamic interactions with their hosts and other microbes, can enable the engineering of new diagnostic techniques and interventional strategies that can be used in a diverse spectrum of fields, spanning from ecology and agriculture to medicine and from forensics to exobiology. From June 19-23 in 2017, the NIH and NSF jointly held an Innovation Lab on Quantitative Approaches to Biomedical Data Science Challenges in our Understanding of the Microbiome. This review is inspired by some of the topics that arose as priority areas from this unique, interactive workshop. The goal of this review is to summarize the Innovation Lab's findings by introducing the reader to emerging challenges, exciting potential, and current directions in microbiome research. The review is broken into five key topic areas: (1) interactions between microbes and the human body, (2) evolution and ecology of microbes, including the role played by the environment and microbe-microbe interactions, (3) analytical and mathematical methods currently used in microbiome research, (4) leveraging knowledge of microbial composition and interactions to develop engineering solutions, and (5) interventional approaches and engineered microbiota that may be enabled by selectively altering microbial composition. As such, this review seeks to arm the reader with a broad understanding of the priorities and challenges in microbiome research today and provide inspiration for future investigation and multi-disciplinary collaboration.
Collapse
Affiliation(s)
- Chad M. Cullen
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | | | - Sinem Beyhan
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, United States
| | - Clara E. Cho
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, United States
| | - Stephen Woloszynek
- Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI), Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States
- College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Matteo Convertino
- Nexus Group, Faculty of Information Science and Technology, Gi-CoRE Station for Big Data & Cybersecurity, Hokkaido University, Sapporo, Japan
| | - Sophie J. McCoy
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | | | - Ekaterina Smirnova
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, United States
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ananya Sen Gupta
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, United States
| | - Kevin Cheung
- Department of Dermatology, The University of Iowa, Iowa City, IA, United States
| | | | - Zhengqiao Zhao
- Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI), Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States
| | - Gail L. Rosen
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
- Ecological and Evolutionary Signal-processing and Informatics Laboratory (EESI), Electrical and Computer Engineering, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Said KB, Aljarbou AN, Alorainy MS, Saeed EMA, Hassan KM. Molecular characterization and susceptibility screening for methicillin-resistant Staphylococcus aureus reveals the dominant clones in a tertiary care hospital in Al Qassim, Saudi Arabia. Int J Health Sci (Qassim) 2020; 14:9-19. [PMID: 31983916 PMCID: PMC6968884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Staphylococcus aureus has become an important pathogen in hospitals worldwide. Despite its differentiation into human and animal lineages, common methods are used for genotyping. While these methods are useful, they are based on the stable genome, and hence, are insensitive to host-specific subtyping. The objectives of this study were to investigate the repeat-domain of the Clumping-Factor A gene (clfA- R) as an objective and adaptation-sensitive approach. METHODOLOGY We have used 113 isolates for susceptibility testing and genotyping by polymerase chain reaction amplification of the clfA- R regions. Of these, 105 were from King Fahad Specialist Hospital, Buraidah and eight were published sequences used as references. Isolates were further confirmed as S. aureus by the commercial Kits. Amplicon sizes were measured and the number of the 18-bp-repeating-units in each isolate was determined against that of methicillin-resistant S. aureus COL (MRSA) sequence. RESULTS Results showed that all 42 nasal screening isolates (100%) and all but six isolates from clinical specimens were MRSA with 37% of the former and 50% of the latter isolates showing community-acquired-MRSA susceptibility patterns. clfA-R analysis grouped 113 isolates into 14 repeat-genotypes. The two dominant types, D and X, represented the long- and short clfA-R types found in humans and animals, respectively. Linezolid, rifampicin, and vancomycin were the drugs of choice. CONCLUSIONS clfA-R was useful in rapid genotyping and implied host-specific phenotypic properties of the ClfA. It has been recommended that the approach used in regional laboratories for uniform strain-profiling. Future work will show more insights into the gene content and origins of clones .
Collapse
Affiliation(s)
- Kamaleldin B. Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail, Saudi Arabia,
Address for correspondence: Kamaleldin B. Said, Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail, Saudi Arabia. Tel.: +966-500771459. E-mail:
| | - Ahmed N. Aljarbou
- Dean, Al Ghad International Colleges for Applied Medical Sciences, Qassim, Saudi Arabia
| | - Mohamed S. Alorainy
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia
| | - Elhassan M. A. Saeed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia,Department of Microbiology, Faculty of Veterinary Medicine, Khartoum University, Khartoum, Sudan
| | - Khalid M. Hassan
- Department of Pathology, King Fahad Specialist Hospital, Buraydah 52366, Saudi Arabia
| |
Collapse
|
7
|
Klibi A, Jouini A, Gómez P, Slimene K, Ceballos S, Torres C, Maaroufi A. Molecular Characterization and Clonal Diversity of Methicillin-Resistant and -Susceptible Staphylococcus aureus Isolates of Milk of Cows with Clinical Mastitis in Tunisia. Microb Drug Resist 2018; 24:1210-1216. [DOI: 10.1089/mdr.2017.0278] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Amira Klibi
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Developement, Pasteur Institute of Tunis, Univérsité de Tunis El Manar, Tunis, Tunisia
| | - Ahlem Jouini
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Developement, Pasteur Institute of Tunis, Univérsité de Tunis El Manar, Tunis, Tunisia
| | - Paula Gómez
- Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Khouloud Slimene
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Developement, Pasteur Institute of Tunis, Univérsité de Tunis El Manar, Tunis, Tunisia
| | - Sara Ceballos
- Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Abderrazek Maaroufi
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology Developement, Pasteur Institute of Tunis, Univérsité de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
8
|
Tong C, Wu Z, Zhao X, Xue H. Arginine Catabolic Mobile Elements in Livestock-Associated Methicillin-Resistant Staphylococcal Isolates From Bovine Mastitic Milk in China. Front Microbiol 2018; 9:1031. [PMID: 29867908 PMCID: PMC5964201 DOI: 10.3389/fmicb.2018.01031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022] Open
Abstract
The arginine catabolic mobile element (ACME) facilitates colonization of staphylococci on skin and mucous membranes by improving their tolerances to polyamines and acidic conditions. ACME is inserted in tandem with the SCCmec element and Staphylococcus epidermidis has been proposed to be a reservoir of ACME for other staphylococci. In this study, we investigated the existence of ACME in 146 staphylococcal isolates from mastitic milk and found 21 of them carried ACME. Almost half of the investigated S. epidermidis isolates contained the element. The whole genome of a S. epidermidis strain Y24 with ACME was further sequenced and the ACME-SCCmec composite island was assembled. This composite island is 81.3 kb long and consisted of 77 ORFs including a methicillin resistance gene mecA, a type II’ ACME gene cluster, a virulence gene pls and eight heavy metal tolerance genes. Wide existence of ACME in livestock-associated staphylococci from this study and a potential risk of spreading ACME among different staphylococcal species warrant close monitoring and further studies.
Collapse
Affiliation(s)
- Chao Tong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhaowei Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal Science, McGill University, Montreal, QC, Canada
| | - Huping Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Doulgeraki AI, Di Ciccio P, Ianieri A, Nychas GJE. Methicillin-resistant food-related Staphylococcus aureus: a review of current knowledge and biofilm formation for future studies and applications. Res Microbiol 2017; 168:1-15. [DOI: 10.1016/j.resmic.2016.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 12/18/2022]
|
10
|
Budd KE, McCoy F, Monecke S, Cormican P, Mitchell J, Keane OM. Extensive Genomic Diversity among Bovine-Adapted Staphylococcus aureus: Evidence for a Genomic Rearrangement within CC97. PLoS One 2015; 10:e0134592. [PMID: 26317849 PMCID: PMC4552844 DOI: 10.1371/journal.pone.0134592] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/11/2015] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus is an important pathogen associated with both human and veterinary disease and is a common cause of bovine mastitis. Genomic heterogeneity exists between S. aureus strains and has been implicated in the adaptation of specific strains to colonise particular mammalian hosts. Knowledge of the factors required for host specificity and virulence is important for understanding the pathogenesis and management of S. aureus mastitis. In this study, a panel of mastitis-associated S. aureus isolates (n = 126) was tested for resistance to antibiotics commonly used to treat mastitis. Over half of the isolates (52%) demonstrated resistance to penicillin and ampicillin but all were susceptible to the other antibiotics tested. S. aureus isolates were further examined for their clonal diversity by Multi-Locus Sequence Typing (MLST). In total, 18 different sequence types (STs) were identified and eBURST analysis demonstrated that the majority of isolates grouped into clonal complexes CC97, CC151 or sequence type (ST) 136. Analysis of the role of recombination events in determining S. aureus population structure determined that ST diversification through nucleotide substitutions were more likely to be due to recombination compared to point mutation, with regions of the genome possibly acting as recombination hotspots. DNA microarray analysis revealed a large number of differences amongst S. aureus STs in their variable genome content, including genes associated with capsule and biofilm formation and adhesion factors. Finally, evidence for a genomic arrangement was observed within isolates from CC97 with the ST71-like subgroup showing evidence of an IS431 insertion element having replaced approximately 30 kb of DNA including the ica operon and histidine biosynthesis genes, resulting in histidine auxotrophy. This genomic rearrangement may be responsible for the diversification of ST71 into an emerging bovine adapted subgroup.
Collapse
Affiliation(s)
- Kathleen E. Budd
- Animal & Bioscience Department, AGRIC, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Finola McCoy
- Animal Health Ireland, Carrick-on-Shannon, Co. Leitrim, Ireland
| | - Stefan Monecke
- Alere Technologies GmbH, Löbstedter Straße 103–105, D-07749 Jena, Germany
| | - Paul Cormican
- Animal & Bioscience Department, AGRIC, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Jennifer Mitchell
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Orla M. Keane
- Animal & Bioscience Department, AGRIC, Teagasc, Grange, Dunsany, Co. Meath, Ireland
- * E-mail:
| |
Collapse
|
11
|
Wang L, Gutek A, Grewal S, Michel FC, Yu Z. Changes in diversity of cultured bacteria resistant to erythromycin and tetracycline in swine manure during simulated composting and lagoon storage. Lett Appl Microbiol 2015; 61:245-51. [PMID: 26031793 DOI: 10.1111/lam.12450] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 11/27/2022]
Abstract
UNLABELLED This study investigated the impact of composting and lagoon storage on survival and change in diversity of tetracycline-resistant (Tc(r) ) and erythromycin-resistant (Em(r) ) bacteria and the resistance genes they carry in swine manure. Treatments were arranged as a 2 × 2 factorial design: composting vs lagoon storage and 0 vs 1% Surround WP Crop Protectant (a clay product) in three replicates. After 48 days of treatments, resistant bacteria were enumerated by selective plating and identified by 16S rRNA gene sequencing. The erm and the tet gene(s) carried by the resistant isolates were screened using class-specific PCR assays. The plate counts of Tc(r) and Em(r) bacteria decreased by 4-7 logs by composting, but only by 1-2 logs by the lagoon treatment. During the treatments, Acinetobacter gave way to Pseudomonas and Providencia as the largest resistant genera. The clay product had little effect on survival or diversity of resistant bacteria. Of six classes of erm and seven classes of tet genes tested, changes in prevalence were also noted. The results indicate that composting can dramatically shift Tc(r) and Em(r) bacterial populations, and composting can be an effective and practical approach to decrease dissemination of antibiotic resistance from swine farms to the environment. SIGNIFICANCE AND IMPACT OF THE STUDY The presented research provided evidence that composting is much more effective than lagoon storage in dramatically decreasing culturable bacteria resistant to erythromycin and tetracycline in swine manure. Considerable diversity changes of resistant bacteria were also demonstrated during composting or lagoon storage. Overall, Acinetobacter was the major resistant genus in untreated swine manure, but pseudomonads and Providencia became the major resistant genera after the treatments. This is the first study that investigated diversity changes of cultured bacteria resistant to these two antibiotics during composting and lagoon storage of swine manure. New genes encoding resistance to the two antibiotics were also implied in the cultured isolates.
Collapse
Affiliation(s)
- L Wang
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - A Gutek
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - S Grewal
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, OH, USA
| | - F C Michel
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, OH, USA
| | - Z Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Li L, Zhou L, Wang L, Xue H, Zhao X. Characterization of methicillin-resistant and -susceptible staphylococcal isolates from bovine milk in northwestern china. PLoS One 2015; 10:e0116699. [PMID: 25756992 PMCID: PMC4355487 DOI: 10.1371/journal.pone.0116699] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/14/2014] [Indexed: 11/19/2022] Open
Abstract
Emergence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MR-CoNS) in bovine milk is a major public health concern. The primary purpose of this research was to determine molecular genetic characteristics and antibiotic resistance of staphylococcal isolates recovered from milk of mastitic cows in the Shaanxi Province in Northwestern China. One hundred and thirteen methicillin-susceptible Staphylococcus aureus (MSSA), one mecA-positive and phenotype-positive MRSA, seven mecA- and mecC- negative but phenotype-positive MRSA and two MR-CoNS including one oxacillin-susceptible mecA-positive Staphylococcus haemolyticus (OS-MRSH) and one mecA-positive and methicillin-resistant Staphylococcus epidermidis (MRSE) isolates were recovered from 214 quarter milk samples on 4 dairy farms. All above 123 isolates were subjected to antibiotic resistance profiling. S. aureus isolates were also genotyped using the spa typing and the multilocus sequence typing (MLST). Eight MRSA and 2 MR-CoNS isolates were additionally tested for SCCmec types. Resistance was common among isolates against ampicillin or penicillin (80.5%), kanamycin (68.3%), gentamicin (67.5%), tetracycline (43.9%) and chloramphenicol (30.1%). However, no isolate was resistant to vancomycin or teicoplanin. Twenty, 29 and 58 isolates showed resistance to 1, 2 or more than 2 antibiotics, respectively. The predominant multidrug resistance profile was penicillin/ampicillin/kanamycin/gentamicin/tetracycline (46 isolates). Most S. aureus isolates belonged to spa types t524 (n = 63), t11772 (a new type, n = 31) and t4207 (n = 15). At the same time, MLST types ST71 (n = 67) and ST2738 (a new type, n = 45) were identified as dominant sequence types. The mecA-positive and phenotype-positive MRSA isolate had a composite genotype t524-ST71-SCCmecIVa, while 7 mecA-negative but phenotype-positive MRSA isolates were all t524-ST71. The OS-MRSH isolate contained a type V SCCmec cassette, while the MRSE isolate possessed a non-typeable SCCmec. The spa-MLST types t11772-ST2738 (n = 27), t11807-ST2683 (n = 4) and t11771-ST2738 (n = 3) were newly identified genotypes of S. aureus. These new genotypes and multidrug-resistant staphylococci could pose additional threat to animal and human health.
Collapse
Affiliation(s)
- Longping Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Luoxiong Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Huping Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China
- Department of Animal Science, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada
- * E-mail:
| |
Collapse
|
13
|
Hoogewerf AJ, Dyk LAV, Buit TS, Roukema D, Resseguie E, Plaisier C, Le N, Heeringa L, Griend DAV. Functional characterization of a cadmium resistance operon inStaphylococcus aureusATCC12600: CadC does not function as a repressor. J Basic Microbiol 2014; 55:148-59. [DOI: 10.1002/jobm.201400498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/30/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Arlene J. Hoogewerf
- Calvin College Departments of Biology; Knollcrest Circle SE; Grand Rapids MI USA
| | - Lisa A. Van Dyk
- Calvin College Departments of Biology; Knollcrest Circle SE; Grand Rapids MI USA
| | - Tyler S. Buit
- Calvin College Departments of Biology; Knollcrest Circle SE; Grand Rapids MI USA
| | - David Roukema
- Calvin College Departments of Biology; Knollcrest Circle SE; Grand Rapids MI USA
| | - Emily Resseguie
- Calvin College Departments of Biology; Knollcrest Circle SE; Grand Rapids MI USA
| | | | - Nga Le
- Chemistry & Biochemistry; Knollcrest Circle SE; Grand Rapids MI USA
| | - Lee Heeringa
- Chemistry & Biochemistry; Knollcrest Circle SE; Grand Rapids MI USA
| | | |
Collapse
|
14
|
|
15
|
Fitzgerald JR. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol 2012; 20:192-8. [DOI: 10.1016/j.tim.2012.01.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/09/2012] [Accepted: 01/17/2012] [Indexed: 10/28/2022]
|
16
|
Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 2011; 35:707-35. [DOI: 10.1111/j.1574-6976.2010.00261.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
17
|
Kumar R, Yadav BR, Singh RS. Antibiotic resistance and pathogenicity factors in Staphylococcus aureus isolated from mastitic Sahiwal cattle. J Biosci 2011; 36:175-88. [PMID: 21451258 DOI: 10.1007/s12038-011-9004-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious problem in dairy animals suffering from mastitis. In the present study, the distribution of mastitic MRSA and antibiotic resistance was studied in 107 strains of S. aureus isolated from milk samples from 195 infected udders. The characterizations pathogenic factors (adhesin and toxin genes) and antibiotic susceptibility of isolates were carried out using gene amplification and disc diffusion assays, respectively. A high prevalence of MRSA was observed in the tested isolates (13.1%). The isolates were also highly resistant to antibiotics, i.e. 36.4% were resistant to streptomycin, 33.6% to oxytetracycline, 29.9% to gentamicin and 26.2% each to chloramphenicol, pristinomycin and ciprofloxacin. A significant variation in the expression of pathogenic factors (Ig, coa and clf) was observed in these isolates. The overall distribution of adhesin genes ebp, fib, bbp, fnbB, cap5, cap8, map and cna in the isolates was found to be 69.1, 67.2, 6.5, 20.5, 60.7, 26.1, 81.3 and 8.4%, respectively. The presence of fib, fnbB, bbp and map genes was considerably greater in MRSA than in methicillin-susceptible S. aureus (MSSA) isolates. The proportions of toxin genes, namely, hlb, seb, sec, sed, seg and sei, in the isolates were found to be 94.3, 0.9, 8.4, 0.9, 10.2 and 49.5%, respectively. The proportions of agr genes I, II, III and IV were found to be 39.2, 27.1, 21.5 and 12.1%, respectively. A few isolates showed similar antibiotic-resistance patterns, which could be due to identical strains or the dissemination of the same strains among animals. These findings can be utilized in mastitis treatment programmes and antimicrobials strategies in organized herd.
Collapse
Affiliation(s)
- Ravinder Kumar
- Livestock Genome Analysis Laboratory, National Dairy Research Institute, Karnal 132 001, India
| | | | | |
Collapse
|
18
|
Kumar R, Yadav B, Anand S, Singh R. Molecular surveillance of putative virulence factors and antibiotic resistance in Staphylococcus aureus isolates recovered from intra-mammary infections of river buffaloes. Microb Pathog 2011; 51:31-8. [DOI: 10.1016/j.micpath.2011.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 12/14/2010] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|
19
|
Lateral transfer of genes and gene fragments in Staphylococcus extends beyond mobile elements. J Bacteriol 2011; 193:3964-77. [PMID: 21622749 DOI: 10.1128/jb.01524-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The widespread presence of antibiotic resistance and virulence among Staphylococcus isolates has been attributed in part to lateral genetic transfer (LGT), but little is known about the broader extent of LGT within this genus. Here we report the first systematic study of the modularity of genetic transfer among 13 Staphylococcus genomes covering four distinct named species. Using a topology-based phylogenetic approach, we found, among 1,354 sets of homologous genes examined, strong evidence of LGT in 368 (27.1%) gene sets, and weaker evidence in another 259 (19.1%). Within-gene and whole-gene transfer contribute almost equally to the topological discordance of these gene sets against a reference phylogeny. Comparing genetic transfer in single-copy and in multicopy gene sets, we observed a higher frequency of LGT in the latter, and a substantial functional bias in cases of whole-gene transfer (little such bias was observed in cases of fragmentary genetic transfer). We found evidence that lateral transfer, particularly of entire genes, impacts not only functions related to antibiotic, drug, and heavy-metal resistance, as well as membrane transport, but also core informational and metabolic functions not associated with mobile elements. Although patterns of sequence similarity support the cohesion of recognized species, LGT within S. aureus appears frequently to disrupt clonal complexes. Our results demonstrate that LGT and gene duplication play important parts in functional innovation in staphylococcal genomes.
Collapse
|
20
|
Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer. PLoS One 2011; 6:e20332. [PMID: 21625460 PMCID: PMC3098876 DOI: 10.1371/journal.pone.0020332] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 04/27/2011] [Indexed: 11/25/2022] Open
Abstract
Background Horizontal gene transfer (HGT) is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr) family has been compared among different sources of Staphylococcus aureus (S. aureus) to discover sequence diversities within their genomes. Methodology/Principal Findings Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study), ovine mastitis (ED133), pig (ST398), chicken (ED98), and human methicillin-resistant S. aureus (MRSA) (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9) were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. Conclusions Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may inadvertently enhance the contact of human and animal bacterial pathogens.
Collapse
|
21
|
Guinane CM, Ben Zakour NL, Tormo-Mas MA, Weinert LA, Lowder BV, Cartwright RA, Smyth DS, Smyth CJ, Lindsay JA, Gould KA, Witney A, Hinds J, Bollback JP, Rambaut A, Penadés JR, Fitzgerald JR. Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol Evol 2010; 2:454-66. [PMID: 20624747 PMCID: PMC2997551 DOI: 10.1093/gbe/evq031] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phenotypic biotyping has traditionally been used to differentiate bacteria occupying distinct ecological niches such as host species. For example, the capacity of Staphylococcus aureus from sheep to coagulate ruminant plasma, reported over 60 years ago, led to the description of small ruminant and bovine S. aureus ecovars. The great majority of small ruminant isolates are represented by a single, widespread clonal complex (CC133) of S. aureus, but its evolutionary origin and the molecular basis for its host tropism remain unknown. Here, we provide evidence that the CC133 clone evolved as the result of a human to ruminant host jump followed by adaptive genome diversification. Comparative whole-genome sequencing revealed molecular evidence for host adaptation including gene decay and diversification of proteins involved in host–pathogen interactions. Importantly, several novel mobile genetic elements encoding virulence proteins with attenuated or enhanced activity in ruminants were widely distributed in CC133 isolates, suggesting a key role in its host-specific interactions. To investigate this further, we examined the activity of a novel staphylococcal pathogenicity island (SaPIov2) found in the great majority of CC133 isolates which encodes a variant of the chromosomally encoded von Willebrand-binding protein (vWbpSov2), previously demonstrated to have coagulase activity for human plasma. Remarkably, we discovered that SaPIov2 confers the ability to coagulate ruminant plasma suggesting an important role in ruminant disease pathogenesis and revealing the origin of a defining phenotype of the classical S. aureus biotyping scheme. Taken together, these data provide broad new insights into the origin and molecular basis of S. aureus ruminant host specificity.
Collapse
Affiliation(s)
- Caitriona M Guinane
- The Roslin Institute and Centre for Infectious Diseases, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Conservation of genomic localization and sequence content of Sau3AI-like restriction-modification gene cassettes among Listeria monocytogenes epidemic clone I and selected strains of serotype 1/2a. Appl Environ Microbiol 2010; 76:5577-84. [PMID: 20581194 DOI: 10.1128/aem.00648-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a food-borne pathogen with a clonal population structure and apparently limited gene flow between strains of different lineages. Strains of epidemic clone I (ECI) have been responsible for numerous outbreaks and invariably have DNA that is resistant to digestion by Sau3AI, suggesting methylation of cytosine at GATC sites. A putative restriction-modification (RM) gene cassette has been identified in the genome of the ECI strain F2365 and all other tested ECI strains but is absent from other strains of the same serotype (4b). Homologous RM cassettes have not been reported among L. monocytogenes isolates of other serotypes. Furthermore, conclusive evidence for the involvement of this RM cassette in the Sau3AI resistance phenotype of ECI strains has been lacking. In this study, we describe a highly conserved RM cassette in certain strains of serotypes 1/2a and 4a that have Sau3AI-resistant DNA. In these strains the RM cassette was in the same genomic location as in the ECI reference strain F2365. The cassette included a gene encoding a putative recombinase, suggesting insertion via site-specific recombination. Deletion of the RM cassette in the ECI strain F2365 and the serotype 1/2a strain A7 rendered the DNA of both strains susceptible to Sau3AI digestion, providing conclusive evidence that the cassette includes a gene required for methylation of cytosine at GATC sites in both strains. The findings suggest that, in addition to its presence in ECI strains, this RM cassette and the accompanying genomic DNA methylation is also encountered among selected strains of other lineages.
Collapse
|
23
|
Genetic variation among Staphylococcus aureus strains from bovine milk and their relevance to methicillin-resistant isolates from humans. J Clin Microbiol 2010; 48:2130-9. [PMID: 20392913 DOI: 10.1128/jcm.01940-09] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In genetic analysis of bovine Staphylococcus aureus isolates that are recognized as an important pathogenic bacterium in bovine mastitis, multilocus sequence typing (MLST) showed strong correlation to the results of pulsed-field gel electrophoresis, coa PCR-restriction fragment length polymorphism (RFLP), spa typing, and the coagulase serotyping method. According to MLST results, strains derived from sequence type 97 (ST97) and ST705 were suggested as not only dominant bovine S. aureus lineages in Japan but also pandemic bovine S. aureus lineages. Although both lineages seem to be distantly related to each other by phylogenetic analysis, both had common characteristics, i.e., lukM/lukF'-PV and coagulase serotype VI. These characteristics were very rare among minor bovine strains and human strains and may contribute to the host specificity of these lineages. Four methicillin-resistant S. aureus (MRSA) isolates were first confirmed from bovine milk in Japan; these isolates showed geno- and serotypes that were identical or similar to those of human MRSA isolates in Japan (ST5, staphylococcal cassette chromosome mec type II [SCCmec II], Spa type t002 or t375, and coagulase serotype II, and ST89, SCCmec IIIa, Spa type t5266, and coagulase serotype I). ST5 and ST89 are uncommon among bovine isolates in the world, whereas these STs are common among human MRSA isolates in Japan.
Collapse
|
24
|
Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2893-902. [PMID: 19560847 DOI: 10.1016/j.envpol.2009.05.051] [Citation(s) in RCA: 961] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 05/21/2009] [Accepted: 05/25/2009] [Indexed: 05/23/2023]
Abstract
Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations.
Collapse
Affiliation(s)
- Jose Luis Martinez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, and CIBERESP, Spain.
| |
Collapse
|