1
|
Kandell J, Milian S, Snyder R, Lakshmipathy U. Universal ddPCR-based assay for the determination of lentivirus infectious titer and lenti-modified cell vector copy number. Mol Ther Methods Clin Dev 2023; 31:101120. [PMID: 37841416 PMCID: PMC10568280 DOI: 10.1016/j.omtm.2023.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
The translation of cell-based therapies from research to clinical setting requires robust analytical methods that successfully adhere to current good manufacturing practices and regulatory guidelines. Lentiviral vectors are commonly used for gene delivery to generate genetically modified therapeutic cell products. For some cell therapy products, standardized characterization assays for potency and safety have gained momentum. Translational applications benefit from assays that can be deployed broadly, such as for lentiviral vectors with various transgenes of interest. Development of a universal method to determine lentivirus infectious titer and vector copy number (VCN) of lenti-modified cells was performed using droplet digital PCR (ddPCR). Established methods relied on a ubiquitous lenti-specific target and a housekeeping gene that demonstrated comparability among flow cytometry-based methods. A linearized plasmid control was used to determine assay linearity/range, sensitivity, accuracy, and limits of quantification. Implementing this assay, infectious titer was assessed for various production runs that demonstrated comparability to the flow cytometry titer. The ddPCR assay described here also indicates suitability in the determination of VCN for genetically modified CAR-T cell products. Overall, the development of these universal assays supports the implementation of standardized characterization methods for quality control.
Collapse
Affiliation(s)
- Jennifer Kandell
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, San Diego, CA 92121, USA
| | - Steven Milian
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, Alachua, FL 32615, USA
| | - Richard Snyder
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, Alachua, FL 32615, USA
| | - Uma Lakshmipathy
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, San Diego, CA 92121, USA
| |
Collapse
|
2
|
Chang J, Rader C, Peng H. A mammalian cell display platform based on scFab transposition. Antib Ther 2023; 6:157-169. [PMID: 37492588 PMCID: PMC10365156 DOI: 10.1093/abt/tbad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 07/27/2023] Open
Abstract
In vitro display technologies have been successfully utilized for the discovery and evolution of monoclonal antibodies (mAbs) for diagnostic and therapeutic applications, with phage display and yeast display being the most commonly used platforms due to their simplicity and high efficiency. As their prokaryotic or lower eukaryotic host organisms typically have no or different post-translational modifications, several mammalian cell-based display and screening technologies for isolation and optimization of mAbs have emerged and are being developed. We report here a novel and useful mammalian cell display platform based on the PiggyBac transposon system to display mAbs in a single-chain Fab (scFab) format on the surface of HEK293F cells. Immune rabbit antibody libraries encompassing ~7 × 107 independent clones were generated in an all-in-one transposon vector, stably delivered into HEK293F cells and displayed as an scFab with rabbit variable and human constant domains. After one round of magnetic activated cell sorting and two rounds of fluorescence activated cell sorting, mAbs with high affinity in the subnanomolar range and cross-reactivity to the corresponding human and mouse antigens were identified, demonstrating the power of this platform for antibody discovery. We developed a highly efficient mammalian cell display platform based on the PiggyBac transposon system for antibody discovery, which could be further utilized for humanization as well as affinity and specificity maturation.
Collapse
Affiliation(s)
- Jing Chang
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
3
|
Aoyama S, Yasuda S, Li H, Watanabe D, Umezawa Y, Okada K, Nogami A, Miura O, Kawamata N. A novel chimeric antigen receptor (CAR) system using an exogenous protease, in which activation of T cells is controlled by expression patterns of cell‑surface proteins on target cells. Int J Mol Med 2022; 49:42. [PMID: 35119085 PMCID: PMC8846940 DOI: 10.3892/ijmm.2022.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Anti-CD19 chimeric antigen receptor (CAR)-T cell therapy against refractory B-cell malignancies shows excellent therapeutic effects. However, there are some obstacles to be overcome in this treatment. Since current CAR-T cells target a single cell-surface protein on tumor cells, the CAR-T cells also attack normal cells expressing the protein. This is one of the major adverse effects of this therapy. To improve target-cell-specificity of this therapy, we established a novel CAR system, in which T-cell activation was controlled by expression patterns of proteins on target cells. Our novel CAR-T cells had two distinct CARs consisting of a 'Signal-CAR', recognizing a protein on tumor cells, and a 'Scissors-CAR', recognizing another protein on normal cells. The signal-CAR had a peptide sequence which was cleaved by the Scissors-CAR, and functional domains for cellular activation. The Scissors-CAR had a protease domain that cleaved its recognition peptide sequence in the Signal-CAR. When tumor cells expressed only the protein recognized by the Signal-CAR, the tumor cells were attacked. By contrast, normal cells expressing both the proteins induced inactivation of the Signal-CAR through cleavage of the recognition site when getting in contact with the CAR-T cells. To establish this system, we invented a Scissors-CAR that was dominantly localized on cell membranes and was activated only when the CAR-T cells were in contact with the normal cells. Using a T-cell line, Jurkat, and two proteins, CD19 and HER2, as target proteins, we showed that the anti-CD19-Signal-CAR was cleaved by the anti-HER2-Scissors-CAR when the CAR-T cells were co-cultivated with cells expressing both the proteins, CD19 and HER2. Furthermore, we demonstrated that primary CAR-T cells expressing both the CARs showed attenuated cytotoxicity againsT cells with both the target proteins. Our novel system would improve safety of the CAR-T cell therapy, leading to expansion of treatable diseases by this immunotherapy.
Collapse
Affiliation(s)
- Satoru Aoyama
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University (TMDU), Tokyo 113‑8510, Japan
| | - Shunichiro Yasuda
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University (TMDU), Tokyo 113‑8510, Japan
| | - Huixin Li
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University (TMDU), Tokyo 113‑8510, Japan
| | - Daisuke Watanabe
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University (TMDU), Tokyo 113‑8510, Japan
| | - Yoshihiro Umezawa
- Department of Hematology, Tokyo Medical and Dental University (TMDU), Tokyo 113‑8510, Japan
| | - Keigo Okada
- Department of Hematology, Tokyo Medical and Dental University (TMDU), Tokyo 113‑8510, Japan
| | | | - Osamu Miura
- Department of Hematology, Tokyo Medical and Dental University (TMDU), Tokyo 113‑8510, Japan
| | - Norihiko Kawamata
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University (TMDU), Tokyo 113‑8510, Japan
| |
Collapse
|
4
|
V-CARMA: A tool for the detection and modification of antigen-specific T cells. Proc Natl Acad Sci U S A 2022; 119:2116277119. [PMID: 35042811 PMCID: PMC8795542 DOI: 10.1073/pnas.2116277119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy is a promising approach to treat cancers, infectious diseases, and autoimmunity by harnessing the power of immune cells, especially T cells. To improve the precision and efficacy of immunotherapy, the ability to genetically modify antigen-specific T cells is needed but cannot be accomplished using current methods. Here, we present a method, V-CARMA (Viral ChimAeric Receptor MHC-Antigen), to generate lentiviruses displaying peptide-MHC complex to specifically target T cells that express cognate TCRs and subsequently deliver genes into target T cells for genetic modification. Our results demonstrate that V-CARMA is a versatile tool to detect and modify antigen-specific T cells. T cells promote our body’s ability to battle cancers and infectious diseases but can act pathologically in autoimmunity. The recognition of peptides presented by major histocompatibility complex (pMHC) molecules by T cell receptors (TCRs) enables T cell–mediated responses. To modify disease-relevant T cells, new tools to genetically modify T cells and decode their antigen recognition are needed. Here, we present an approach using viruses pseudotyped with peptides loaded on MHC called V-CARMA (Viral ChimAeric Receptor MHC-Antigen) to specifically target T cells expressing cognate TCRs for antigen discovery and T cell engineering. We show that lentiviruses displaying antigens on human leukocyte antigen (HLA) class I and class II molecules can robustly infect CD8+ and CD4+ T cells expressing cognate TCRs, respectively. The infection rates of the pseudotyped lentiviruses (PLVs) are correlated with the binding affinity of the TCR to its cognate antigen. Furthermore, peptide-HLA pseudotyped lentivirus V-CARMA constructs can identify target cells from a mixed T cell population, suppress PD-1 expression on CD8+ T cells via PDCD1 shRNA delivery, and induce apoptosis in autoreactive CD4+ T cells. Thus, V-CARMA is a versatile tool for TCR ligand identification and selective T cell manipulation.
Collapse
|
5
|
Wu E, Guo X, Teng X, Zhang R, Li F, Cui Y, Zhang D, Liu Q, Luo J, Wang J, Chen R. Discovery of Plasma Membrane-Associated RNAs through APEX-seq. Cell Biochem Biophys 2021; 79:905-917. [PMID: 34028638 DOI: 10.1007/s12013-021-00991-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
In addition to nucleic acids, a variety of other biomolecules have also been found on the plasma membrane. Although researchers have realized that RNA has the ability to bind to membrane vesicles in vitro, little is known about whether and how RNA connects to the plasma membrane of the cell. The combination of high-throughput sequencing and in situ labeling methods provides an innovative approach for large-scale identification of subcellular RNAs. Here, we applied the recently published method APEX-seq and identified 75 RNAs related to the plasma membrane, in which lncRNA PMAR72 (plasma membrane-associated RNA AL121772.1) has a considerable affinity with sphingomyelin (SM) and localizes within distinct membrane foci. Our findings will provide some new evidence to elaborate the relationship between RNA and the plasma membrane of mammalian cells.
Collapse
Affiliation(s)
- Erzhong Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xuzhen Guo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xueyi Teng
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ruijin Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fahui Li
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ya Cui
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Dongdong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qinghua Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jiangyun Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
6
|
Liu LD, Huang M, Dai P, Liu T, Fan S, Cheng X, Zhao Y, Yeap LS, Meng FL. Intrinsic Nucleotide Preference of Diversifying Base Editors Guides Antibody Ex Vivo Affinity Maturation. Cell Rep 2019; 25:884-892.e3. [PMID: 30355495 DOI: 10.1016/j.celrep.2018.09.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
Base editors (BEs) are emerging tools used for precision correction or diversifying mutation. It provides a potential way to recreate somatic hypermutations (SHM) for generating high-affinity antibody, which is usually screened from antigen-challenged animal models or synthetic combinatorial libraries. By comparing somatic mutations in the same genomic context, we screened engineered deaminases and CRISPR-deaminase coupling approaches and updated diversifying base editors (DBEs) to generate SHM. The deaminase used in DBEs retains its intrinsic nucleotide preference and mutates cytidines at its preferred motifs. DBE with AID targets the same hotspots as physiological AID does in vivo, while DBE with other deaminases generates distinct mutation profiles from the same DNA substrate. Downstream DNA repair pathways further diversified the sequence, while Cas9-nickase restricted mutation spreading. Finally, application of DBE in an antibody display system achieved antibody affinity maturation ex vivo. Our findings provide insight of DBE working mechanism and an alternative antibody engineering approach.
Collapse
Affiliation(s)
- Liu Daisy Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Min Huang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Pengfei Dai
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tingting Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shuangshuang Fan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
7
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
8
|
Efficacy and toxicity management of CAR-T-cell immunotherapy: a matter of responsiveness control or tumour-specificity? Biochem Soc Trans 2016; 44:406-11. [PMID: 27068947 DOI: 10.1042/bst20150286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Indexed: 02/05/2023]
Abstract
Chimaeric antigen receptor (CAR)-expressing T-cells have demonstrated potent clinical efficacy in patients with haematological malignancies. However, the use of CAR-T-cells targeting solid tumour-associated antigens (TAAs) has been limited by organ toxicities related to activation of T-cell effector functions through the CAR. Most existing CARs recognize TAAs, which are also found in normal tissues. CAR-T-cell-mediated destruction of normal tissues constitutes a major roadblock to CAR-T-cell therapy, and must be avoided or mitigated. There is a broad range of strategies for modulating antigen responsiveness of CAR-T-cells, with varying degrees of complexity. Some of them might ameliorate the acute and chronic toxicities associated with current CAR constructs. However, further embellishments to CAR therapy may complicate clinical implementation and possibly create new immunogenicity issues. In contrast, the development of CARs targeting truly tumour-specific antigens might circumvent on-target/off-tumour toxicities without adding additional complexity to CAR-T-cell therapies, but these antigens have been elusive and may require novel selection strategies for their discovery.
Collapse
|
9
|
Combinatorial antibody libraries: new advances, new immunological insights. Nat Rev Immunol 2016; 16:498-508. [DOI: 10.1038/nri.2016.67] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Li X, Kuang Y, Huang X, Zou L, Huang L, Yang T, Li W, Yang Y. Preparation and characterization of a new monoclonal antibody against CXCR4 using lentivirus vector. Int Immunopharmacol 2016; 36:100-105. [DOI: 10.1016/j.intimp.2016.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 11/27/2022]
|
11
|
Rosenfeld L, Heyne M, Shifman JM, Papo N. Protein Engineering by Combined Computational and In Vitro Evolution Approaches. Trends Biochem Sci 2016; 41:421-433. [PMID: 27061494 DOI: 10.1016/j.tibs.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/30/2022]
Abstract
Two alternative strategies are commonly used to study protein-protein interactions (PPIs) and to engineer protein-based inhibitors. In one approach, binders are selected experimentally from combinatorial libraries of protein mutants that are displayed on a cell surface. In the other approach, computational modeling is used to explore an astronomically large number of protein sequences to select a small number of sequences for experimental testing. While both approaches have some limitations, their combination produces superior results in various protein engineering applications. Such applications include the design of novel binders and inhibitors, the enhancement of affinity and specificity, and the mapping of binding epitopes. The combination of these approaches also aids in the understanding of the specificity profiles of various PPIs.
Collapse
Affiliation(s)
- Lior Rosenfeld
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael Heyne
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
12
|
Chang DK, Kurella VB, Biswas S, Avnir Y, Sui J, Wang X, Sun J, Wang Y, Panditrao M, Peterson E, Tallarico A, Fernandes S, Goodall M, Zhu Q, Brown JR, Jefferis R, Marasco WA. Humanized mouse G6 anti-idiotypic monoclonal antibody has therapeutic potential against IGHV1-69 germline gene-based B-CLL. MAbs 2016; 8:787-98. [PMID: 26963739 DOI: 10.1080/19420862.2016.1159365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In 10-20% of the cases of chronic lymphocytic leukemia of B-cell phenotype (B-CLL), the IGHV1-69 germline is utilized as VH gene of the B cell receptor (BCR). Mouse G6 (MuG6) is an anti-idiotypic monoclonal antibody discovered in a screen against rheumatoid factors (RFs) that binds with high affinity to an idiotope expressed on the 51p1 alleles of IGHV1-69 germline gene encoded antibodies (G6-id(+)). The finding that unmutated IGHV1-69 encoded BCRs are frequently expressed on B-CLL cells provides an opportunity for anti-idiotype monoclonal antibody immunotherapy. In this study, we first showed that MuG6 can deplete B cells encoding IGHV1-69 BCRs using a novel humanized GTL mouse model. Next, we humanized MuG6 and demonstrated that the humanized antibodies (HuG6s), especially HuG6.3, displayed ∼2-fold higher binding affinity for G6-id(+) antibody compared to the parental MuG6. Additional studies showed that HuG6.3 was able to kill G6-id(+) BCR expressing cells and patient B-CLL cells through antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Finally, both MuG6 and HuG6.3 mediate in vivo depletion of B-CLL cells in NSG mice. These data suggest that HuG6.3 may provide a new precision medicine to selectively kill IGHV1-69-encoding G6-id(+) B-CLL cells.
Collapse
Affiliation(s)
- De-Kuan Chang
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Vinodh B Kurella
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Subhabrata Biswas
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Yuval Avnir
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Jianhua Sui
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Xueqian Wang
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Jiusong Sun
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Yanyan Wang
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Madhura Panditrao
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Eric Peterson
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Aimee Tallarico
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Stacey Fernandes
- c Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Margaret Goodall
- d Division of Immunity and Infection, University of Birmingham, School of Medicine , Edgbaston, Birmingham , UK
| | - Quan Zhu
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Jennifer R Brown
- c Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Roy Jefferis
- d Division of Immunity and Infection, University of Birmingham, School of Medicine , Edgbaston, Birmingham , UK
| | - Wayne A Marasco
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA.,b Department of Medicine , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
13
|
Chen L, Kutskova YA, Hong F, Memmott JE, Zhong S, Jenkinson MD, Hsieh CM. Preferential germline usage and VH/VL pairing observed in human antibodies selected by mRNA display. Protein Eng Des Sel 2015; 28:427-35. [PMID: 26337062 DOI: 10.1093/protein/gzv042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/31/2015] [Indexed: 11/13/2022] Open
Abstract
Since the invention of phage display, in vitro antibody display technologies have revolutionized the field of antibody discovery. In combination with antibody libraries constructed with sequences of human origin, such technologies enable accelerated therapeutic antibody discovery while bypassing the laborious animal immunization and hybridoma generation processes. Many in vitro display technologies developed since aim to differentiate from phage display by displaying full-length IgG proteins, utilizing eukaryotic translation system and codons, increasing library size or real-time kinetic selection by fluorescent activated cell sorting. We report here the development of an mRNA display technology and an accompanying HCDR3 size spectratyping monitor for human antibody discovery. Importantly, the mRNA display technology maintains a monovalent linkage between the mRNA (genotype) and display binding protein (phenotype), which minimizes avidity effect common in other display systems and allows for a stringent affinity and off-rate selection. The mRNA display technology successfully identified 100 human antibodies in 15 different selections against various targets from naïve human antibody libraries. These antibodies in general have high affinity and diversity. By analyzing the germline usage and combination of antibodies selected by the mRNA display technology, we identified trends and determined the productivity of each germline subgroup in the libraries that could serve as the knowledge base for constructing fully synthetic, next generation antibody libraries.
Collapse
Affiliation(s)
- Lei Chen
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Yuliya A Kutskova
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Feng Hong
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - John E Memmott
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Suju Zhong
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Megan D Jenkinson
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Chung-Ming Hsieh
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| |
Collapse
|
14
|
Wang X, Kim HY, Wahlberg B, Edwards WB. Selection and characterization of high affinity VEGFR1 antibodies from a novel human binary code scFv phage library. Biochem Biophys Rep 2015; 3:169-174. [PMID: 26457328 PMCID: PMC4594834 DOI: 10.1016/j.bbrep.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
VEGFR1 is a receptor tyrosine kinase that has been implicated in cancer pathogenesis. It is upregulated in angiogenic endothelial cells and expressed on human tumor cells as well. VEGFR1 positive hematopoietic progenitor cells home to sites of distant metastases prior to the arrival of the tumor cells thus establishing a pre-metastatic niche. To discover high affinity human antibodies selective for VEGFR1 molecular imaging or for molecularly targeted therapy, a novel phage display scFv library was assembled and characterized. The library was constructed from the humanized 4D5 framework that was mostly comprised tyrosine and serine residues in four complimentarity determining regions (CDRs). The library produced diverse and functional antibodies against a panel of proteins, some of which are of biomedical interest including, CD44, VEGFA, and VEGFR1. After panning, these antibodies had affinity strong enough for molecular imaging or targeted drug delivery without the need for affinity maturation. One of the anti-VEGFR1 scFvs recognized its cognate receptor and was selective for the VEGFR1. VEGFR1 contributes to the pathogenesis cancer. To obtain VEGFR1 specific antibodies, a phage displayed scFv library was constructed. Four complimentarity determining regions were principally comprised of tyrosine and serine. High affinity antibody fragments were isolated and characterized. This is the first human antibody fragment specific for VEGFR1 from a phage displayed library.
Collapse
Affiliation(s)
- Xiaolei Wang
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15219
| | - Hye-Yeong Kim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520
| | - Brendon Wahlberg
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15219
| | - W Barry Edwards
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
15
|
Mammalian cell display technology coupling with AID induced SHM in vitro: an ideal approach to the production of therapeutic antibodies. Int Immunopharmacol 2014; 23:380-6. [PMID: 25281392 DOI: 10.1016/j.intimp.2014.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 11/21/2022]
Abstract
Traditional antibody production technology within non-mammalian cell expression systems has shown many unsatisfactory properties for the development of therapeutic antibodies. Nevertheless, mammalian cell display technology reaps the benefits of producing full-length all human antibodies. Together with the developed cytidine deaminase induced in vitro somatic hypermutation technology, mammalian cell display technology provides the opportunity to produce high affinity antibodies that might be ideal for therapeutic application. This review was concentrated on the development of the mammalian cell display technology as well as the activation-induced cytidine deaminase induced in vitro somatic hypermutation technology and their applications for the production of therapeutic antibodies.
Collapse
|
16
|
Farajnia S, Ahmadzadeh V, Tanomand A, Veisi K, Khosroshahi SA, Rahbarnia L. Development trends for generation of single-chain antibody fragments. Immunopharmacol Immunotoxicol 2014; 36:297-308. [DOI: 10.3109/08923973.2014.945126] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc Natl Acad Sci U S A 2014; 111:E2018-26. [PMID: 24778221 DOI: 10.1073/pnas.1402074111] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The newly emerging Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a Severe Acute Respiratory Syndrome-like disease with ∼43% mortality. Given the recent detection of virus in dromedary camels, zoonotic transfer of MERS-CoV to humans is suspected. In addition, little is known about the role of human neutralizing Ab (nAb) pressure as a driving force in MERS-CoV adaptive evolution. Here, we used a well-characterized nonimmune human Ab-phage library and a panning strategy with proteoliposomes and cells to identify seven human nAbs against the receptor-binding domain (RBD) of the MERS-CoV Spike protein. These nAbs bind to three different epitopes in the RBD and human dipeptidyl peptidase 4 (hDPP4) interface with subnanomolar/nanomolar binding affinities and block the binding of MERS-CoV Spike protein with its hDPP4 receptor. Escape mutant assays identified five amino acid residues that are critical for neutralization escape. Despite the close proximity of the three epitopes on the RBD interface, escape from one epitope did not have a major impact on neutralization with Abs directed to a different epitope. Importantly, the majority of escape mutations had negative impacts on hDPP4 receptor binding and viral fitness. To our knowledge, these results provide the first report on human nAbs against MERS-CoV that may contribute to MERS-CoV clearance and evolution. Moreover, in the absence of a licensed vaccine or antiviral for MERS, this panel of nAbs offers the possibility of developing human mAb-based immunotherapy, especially for health-care workers.
Collapse
|
18
|
Alonso-Camino V, Sánchez-Martín D, Compte M, Nuñez-Prado N, Diaz RM, Vile R, Alvarez-Vallina L. CARbodies: Human Antibodies Against Cell Surface Tumor Antigens Selected From Repertoires Displayed on T Cell Chimeric Antigen Receptors. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e93. [PMID: 23695536 PMCID: PMC4817937 DOI: 10.1038/mtna.2013.19] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A human single-chain variable fragment (scFv) antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs). The repertoire was fused to a first-generation T cell receptor ζ (TCRζ)-based chimeric antigen receptor (CAR). We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2) bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR) and the selection context (cell synapse), which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells.
Collapse
Affiliation(s)
- Vanesa Alonso-Camino
- 1] Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain [2] Current addresses: Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Urban JH, Merten CA. Retroviral display in gene therapy, protein engineering, and vaccine development. ACS Chem Biol 2011; 6:61-74. [PMID: 21171610 DOI: 10.1021/cb100285n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The display and analysis of proteins expressed on biological surfaces has become an attractive tool for the study of molecular interactions in enzymology, protein engineering, and high-throughput screening. Among the growing number of established display systems, retroviruses offer a unique and fully mammalian platform for the expression of correctly folded and post-translationally modified proteins in the context of cell plasma membrane-derived particles. This is of special interest for therapeutic applications such as gene therapy and vaccine development and also offers advantages for the engineering of mammalian proteins toward customized binding affinities and catalytic activities. This review critically summarizes the basic concepts and applications of retroviral display and analyses its benefits in comparison to other display techniques.
Collapse
Affiliation(s)
- Johannes H. Urban
- Duke Translational Research Institute and Department of Surgery, Duke University Medical Center, MSRBII, 106 Research Drive, Durham, North Carolina 27710, United States
| | - Christoph A. Merten
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| |
Collapse
|
20
|
Herschhorn A, Marasco WA, Hizi A. Antibodies and lentiviruses that specifically recognize a T cell epitope derived from HIV-1 Nef protein and presented by HLA-C. THE JOURNAL OF IMMUNOLOGY 2010; 185:7623-32. [PMID: 21076072 DOI: 10.4049/jimmunol.1001561] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV selectively downregulates HLA-A and -B from the surfaces of infected cells to avoid detection by the immune system. In contrast, the HLA-C molecules are highly resistant to this downregulation. High expression level of HLA-C on the cell surface, which correlates with a single nucleotide polymorphism, is also associated with lower viral loads and slower progression to AIDS. These findings strongly suggest that HIV-1-derived peptides are efficiently presented by HLA-C and trigger the elimination of infected cells. Accordingly, the ability to detect these HLA-C-peptide complexes may be used for therapeutic targeting of HIV-1-infected cells and for measuring effective presentation of vaccine candidates after immunization with HIV-1-related proteins or genes. However, low level of HLA-C expression on the cell surface has impeded the development of such complex-recognizing reagents. In this study, we describe the development of a high-affinity human Ab that specifically interacts, at low pM concentrations, with a conserved viral T cell epitope derived from HIV-1 Nef protein and presented by HLA-C. The human Ab selectively detects this complex on different cells and does not interact with a control complex that differed only in the presented peptide. Engineering lentiviruses to display this Ab endowed them with the same specificity as the Ab, whereas coexpressing the Ab and Fas ligand enables the lentiviruses to kill specifically Nef-presenting cells. Abs and pseudoviruses with such specificity are likely to be highly valuable as building blocks for specific targeting and killing of HIV-1-infected cells.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
21
|
Kaminer-Israeli Y, Shapiro J, Cohen S, Monsonego A. Stromal cell-induced immune regulation in a transplantable lymphoid-like cell constructs. Biomaterials 2010; 31:9273-84. [PMID: 20869768 DOI: 10.1016/j.biomaterials.2010.08.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/27/2010] [Indexed: 01/01/2023]
Abstract
Engineering of cell-based constructs for treating a variety of immune-related diseases by local transplantation of the cells in a pre-designed matrix is an emerging therapeutic approach, which can potentially reduce the side effects associated with systemic cell injection. Stromal cells have been shown to exert immunosuppressive properties and thus can be exploited for autoimmune regulation and cell transplantation. Here, we demonstrate the fabrication of a stromal cell-based construct, which serves as a lymphoid-like organ with immune regulatory characteristics. In the proposed system, stromal cells are co-seeded with dendritic cells (DC) in a macro-porous alginate scaffold containing the encephalitogenic myelin-derived peptide, proteolipid protein (PLP). We demonstrate that the presence of stromal cells attenuates DC maturation upon lipopolysaccharide stimulus. In vitro, we show that while the migration of pathogenic PLP-specific T cells to construct cultivated with or without stromal cells does not differ, their activation and proliferation are significantly suppressed in the presence of stromal cells. Upon in vivo transplantation, under the kidney capsule of mice, the pathogenic activation and proliferation of T cells which were drawn into the construct were suppressed in the co-seeded constructs. This system thus serves as a lymphoid-like organ with regulatory characteristics, which can be applied for local tolerance induction, for application in cell transplantations as well as autoimmune diseases.
Collapse
Affiliation(s)
- Yael Kaminer-Israeli
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
22
|
Alonso-Camino V, Sánchez-Martín D, Compte M, Álvarez-Vallina LSL. Lymphocyte display: a novel antibody selection platform based on T cell activation. PLoS One 2009; 4:e7174. [PMID: 19777065 PMCID: PMC2747005 DOI: 10.1371/journal.pone.0007174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/30/2009] [Indexed: 12/02/2022] Open
Abstract
Since their onset, display technologies have proven useful for the selection of antibodies against a variety of targets; however, most of the antibodies selected with the currently available platforms need to be further modified for their use in humans, and are restricted to accessible antigens. Furthermore, these platforms are not well suited for in vivo selections. We present here a novel cell based antibody display platform, which takes advantage of the functional capabilities of T lymphocytes. The display of antibodies on the surface of T lymphocytes, as a part of a chimeric-immune receptor (CIR) mediating signaling, may ideally link the antigen-antibody interaction to a demonstrable change in T cell phenotype, due to subsequent expression of the early T cell activation marker CD69. In this proof-of-concept, an in vitro selection was carried out using a human T cell line lentiviral-transduced to express a tumor-specific CIR on the surface, against a human tumor cell line expressing the carcinoembryonic antigen. Based on an effective interaction between the CIR and the tumor antigen, we demonstrated that combining CIR-mediated activation with FACS sorting of CD69+ T cells, it is possible to isolate binders to tumor specific cell surface antigen, with an enrichment factor of at least 103-fold after two rounds, resulting in a homogeneous population of T cells expressing tumor-specific CIRs.
Collapse
Affiliation(s)
- Vanesa Alonso-Camino
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - David Sánchez-Martín
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | |
Collapse
|