1
|
Patel VK, Das A, Kumari R, Kajla S. Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
2
|
Gomide MDS, Leitão MDC, Coelho CM. Biocircuits in plants and eukaryotic algae. FRONTIERS IN PLANT SCIENCE 2022; 13:982959. [PMID: 36212277 PMCID: PMC9545776 DOI: 10.3389/fpls.2022.982959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
As one of synthetic biology's foundations, biocircuits are a strategy of genetic parts assembling to recognize a signal and to produce a desirable output to interfere with a biological function. In this review, we revisited the progress in the biocircuits technology basis and its mandatory elements, such as the characterization and assembly of functional parts. Furthermore, for a successful implementation, the transcriptional control systems are a relevant point, and the computational tools help to predict the best combinations among the biological parts planned to be used to achieve the desirable phenotype. However, many challenges are involved in delivering and stabilizing the synthetic structures. Some research experiences, such as the golden crops, biosensors, and artificial photosynthetic structures, can indicate the positive and limiting aspects of the practice. Finally, we envision that the modulatory structural feature and the possibility of finer gene regulation through biocircuits can contribute to the complex design of synthetic chromosomes aiming to develop plants and algae with new or improved functions.
Collapse
Affiliation(s)
- Mayna da Silveira Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
- School of Medicine, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Matheus de Castro Leitão
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| |
Collapse
|
3
|
Rochaix JD, Surzycki R, Ramundo S. Regulated Chloroplast Gene Expression in Chlamydomonas. Methods Mol Biol 2021; 2317:305-318. [PMID: 34028778 DOI: 10.1007/978-1-0716-1472-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes, thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/ repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter or the vitamin-controlled MetE promoter and TPP riboswitch drive the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5' untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or trans-gene by placing it under the control of the psbD 5'untranslated region.
Collapse
Affiliation(s)
- Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland.
| | | | - Silvia Ramundo
- School of Medicine, UC San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Zhang MP, Wang M, Wang C. Nuclear transformation of Chlamydomonas reinhardtii: A review. Biochimie 2020; 181:1-11. [PMID: 33227342 DOI: 10.1016/j.biochi.2020.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/14/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Chlamydomonas reinhardtii is a model organism with three sequenced genomes capable of genetic transformation. C. reinhardtii has the advantages of being low cost, non-toxic, and having a post-translational modification system that ensures the recombinant proteins have the same activity as natural proteins, thus making it a great platform for application in molecular biology and other fields. In this review, we summarize the existing methods for nuclear transformation of C. reinhardtii, genes for selection, examples of foreign protein expression, and factors affecting transformation efficiency, to provide insights into effective strategies for the nuclear transformation of C. reinhardtii.
Collapse
Affiliation(s)
- Meng-Ping Zhang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China
| | - Mou Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China
| | - Chuan Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China.
| |
Collapse
|
5
|
From economy to luxury: Copper homeostasis in Chlamydomonas and other algae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118822. [PMID: 32800924 DOI: 10.1016/j.bbamcr.2020.118822] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Plastocyanin and cytochrome c6, abundant proteins in photosynthesis, are readouts for cellular copper status in Chlamydomonas and other algae. Their accumulation is controlled by a transcription factor copper response regulator (CRR1). The replacement of copper-containing plastocyanin with heme-containing cytochrome c6 spares copper and permits preferential copper (re)-allocation to cytochrome oxidase. Under copper-replete situations, the quota depends on abundance of various cuproproteins and is tightly regulated, except under zinc-deficiency where acidocalcisomes over-accumulate Cu(I). CRR1 has a transcriptional activation domain, a Zn-dependent DNA binding SBP-domain with a nuclear localization signal, and a C-terminal Cys-rich region that represses the zinc regulon. CRR1 activates >60 genes in Chlamydomonas through GTAC-containing CuREs; transcriptome differences are recapitulated in the proteome. The differentially-expressed genes encode assimilatory copper transporters of the CTR/SLC31 family including a novel soluble molecule, redox enzymes in the tetrapyrrole pathway that promote chlorophyll biosynthesis and photosystem 1 accumulation, and other oxygen-dependent enzymes, which may influence thylakoid membrane lipids, specifically polyunsaturated galactolipids and γ-tocopherol. CRR1 also down-regulates 2 proteins in Chlamydomonas: for plastocyanin, by activation of proteolysis, while for the di‑iron subunit of the cyclase in chlorophyll biosynthesis, through activation of an upstream promoter that generates a poorly-translated 5' extended transcript containing multiple short ORFs that inhibit translation. The functions of many CRR1-target genes are unknown, and the copper protein inventory in Chlamydomonas includes several whose functions are unexplored. The comprehensive picture of cuproproteins and copper homeostasis in this system is well-suited for reverse genetic analyses of these under-investigated components in copper biology.
Collapse
|
6
|
Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008944. [PMID: 32730252 PMCID: PMC7419008 DOI: 10.1371/journal.pgen.1008944] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient nuclear transgene expression in the green microalga Chlamydomonas reinhardtii is generally hindered by low transcription rates. Introns can increase transcript abundance by a process called Intron-Mediated Enhancement (IME) in this alga and has been broadly observed in other eukaryotes. However, the mechanisms of IME in microalgae are poorly understood. Here, we identified 33 native introns from highly expressed genes in C. reinhardtii selected from transcriptome studies as well as 13 non-native introns. We investigated their IME capacities and probed the mechanism of action by modification of splice sites, internal sequence motifs, and position within transgenes. Several introns were found to elicit strong IME and found to be broadly applicable in different expression constructs. We determined that IME in C. reinhardtii exclusively occurs from introns within transcribed ORFs regardless of the promoter and is not induced by traditional enhancers of transcription. Our results elucidate some mechanistic details of IME in C. reinhardtii, which are similar to those observed in higher plants yet underly distinctly different induction processes. Our findings narrow the focus of targets responsible for algal IME and provides evidence that introns are underestimated regulators of C. reinhardtii nuclear gene expression. Although many genetic tools and basic transformation strategies exist for the model microalga Chlamydomonas reinhardtii, high-level genetic engineering with this organism is hindered by its inherent recalcitrance to foreign gene expression and limited knowledge of responsible expression regulators. In this work, we characterized the dynamics of 33 endogenous and 13 non-native introns and their effect on gene expression as artificial insertions into codon optimized transgenes. We found that introns from different origins have the capacity to increase gene expression rates. Intron-mediated enhancement was observed exclusively when these elements were placed in transcripts but not outside of transcribed mRNA regions. Insertion of different endogenous introns into coding sequences was found to positively affect expression rates through a synergy of additive transcription enhancement and exon length reduction, similar to those natively found in the C. reinhardtii genome. Our results indicate that intensive mRNA processing plays an underestimated role in the regulation of native gene expression in C. reinhardtii. In addition to internal sequence motifs, the location of artificially introduced introns greatly affected transgene expression levels. This work is highly valuable to the greater microalgal and synthetic biology research communities and contributes to broadening our understanding of eukaryotic intron-mediated enhancement.
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Nick Jacobebbinghaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Kyle J. Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
7
|
Poliner E, Clark E, Cummings C, Benning C, Farre EM. A high-capacity gene stacking toolkit for the oleaginous microalga, Nannochloropsis oceanica CCMP1779. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101664] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Good News for Nuclear Transgene Expression in Chlamydomonas. Cells 2019; 8:cells8121534. [PMID: 31795196 PMCID: PMC6952782 DOI: 10.3390/cells8121534] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Chlamydomonas reinhardtii is a well-established model system for basic research questions ranging from photosynthesis and organelle biogenesis, to the biology of cilia and basal bodies, to channelrhodopsins and photoreceptors. More recently, Chlamydomonas has also been recognized as a suitable host for the production of high-value chemicals and high-value recombinant proteins. However, basic and applied research have suffered from the inefficient expression of nuclear transgenes. The combined efforts of the Chlamydomonas community over the past decades have provided insights into the mechanisms underlying this phenomenon and have resulted in mutant strains defective in some silencing mechanisms. Moreover, many insights have been gained into the parameters that affect nuclear transgene expression, like promoters, introns, codon usage, or terminators. Here I critically review these insights and try to integrate them into design suggestions for the construction of nuclear transgenes that are to be expressed at high levels.
Collapse
|
9
|
Vavitsas K, Crozet P, Vinde MH, Davies F, Lemaire SD, Vickers CE. The Synthetic Biology Toolkit for Photosynthetic Microorganisms. PLANT PHYSIOLOGY 2019; 181:14-27. [PMID: 31262955 PMCID: PMC6716251 DOI: 10.1104/pp.19.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/09/2019] [Indexed: 05/10/2023]
Abstract
Photosynthetic microorganisms offer novel characteristics as synthetic biology chassis, and the toolbox of components and techniques for cyanobacteria and algae is rapidly increasing.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, CSIRO Land & Water, Brisbane, Queensland 4001, Australia
| | - Pierre Crozet
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226, Centre National de la Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Marcos Hamborg Vinde
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, CSIRO Land & Water, Brisbane, Queensland 4001, Australia
| | - Fiona Davies
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 8226, Centre National de la Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, CSIRO Land & Water, Brisbane, Queensland 4001, Australia
| |
Collapse
|
10
|
A novel salt-inducible CrGPDH3 promoter of the microalga Chlamydomonas reinhardtii for transgene overexpression. Appl Microbiol Biotechnol 2019; 103:3487-3499. [DOI: 10.1007/s00253-019-09733-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 01/02/2023]
|
11
|
Barjona do Nascimento Coutinho P, Friedl C, Heilmann M, Buchholz R, Stute SC. Validated Nuclear-Based Transgene Expression Regulated by the Fea1 Iron-Responsive Promoter in the Green Alga Chlamydomonas reinhardtii. Mol Biotechnol 2019; 61:305-316. [DOI: 10.1007/s12033-018-00148-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Baier T, Wichmann J, Kruse O, Lauersen KJ. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res 2018; 46:6909-6919. [PMID: 30053227 PMCID: PMC6061784 DOI: 10.1093/nar/gky532] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Among green freshwater microalgae, Chlamydomonas reinhardtii has the most comprehensive and developed molecular toolkit, however, advanced genetic and metabolic engineering driven from the nuclear genome is generally hindered by inherently low transgene expression levels. Progressive strain development and synthetic promoters have improved the capacity of transgene expression; however, the responsible regulatory mechanisms are still not fully understood. Here, we elucidate the sequence specific dynamics of native regulatory element insertion into nuclear transgenes. Systematic insertions of the first intron of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit 2 (rbcS2i1) throughout codon-optimized coding sequences (CDS) generates optimized algal transgenes which express reliably in C. reinhardtii. The optimal rbcS2i1 insertion site for efficient splicing was systematically determined and improved gene expression rates were shown using a codon-optimized sesquiterpene synthase CDS. Sequential insertions of rbcS2i1 were found to have a step-wise additive effect on all levels of transgene expression, which is likely correlated to a synergy of transcriptional machinery recruitment and mimicking the short average exon lengths natively found in the C. reinhardtii genome. We further demonstrate the value of this optimization with five representative transgene examples and provide guidelines for the design of any desired sequence with this strategy.
Collapse
MESH Headings
- Abies/enzymology
- Abies/genetics
- Chlamydomonas reinhardtii/genetics
- Codon/genetics
- DNA, Plant/genetics
- DNA, Recombinant/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Synthetic
- Introns
- Isomerases/biosynthesis
- Isomerases/genetics
- Mutagenesis, Insertional
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Pogostemon/enzymology
- Pogostemon/genetics
- Protein Engineering
- RNA Splicing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/biosynthesis
- Ribulose-Bisphosphate Carboxylase/genetics
- Transgenes
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Julian Wichmann
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Kyle J Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
13
|
Poliner E, Takeuchi T, Du ZY, Benning C, Farré EM. Nontransgenic Marker-Free Gene Disruption by an Episomal CRISPR System in the Oleaginous Microalga, Nannochloropsis oceanica CCMP1779. ACS Synth Biol 2018; 99:112-127. [PMID: 29518315 PMCID: PMC6616531 DOI: 10.1111/tpj.14314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 04/25/2023]
Abstract
Utilization of microalgae has been hampered by limited tools for creating loss-of-function mutants. Furthermore, modified strains for deployment into the field must be free of antibiotic resistance genes and face fewer regulatory hurdles if they are transgene free. The oleaginous microalga, Nannochloropsis oceanica CCMP1779, is an emerging model for microalgal lipid metabolism. We present a one-vector episomal CRISPR/Cas9 system for N. oceanica that enables the generation of marker-free mutant lines. The CEN/ARS6 region from Saccharomyces cerevisiae was included in the vector to facilitate its maintenance as circular extrachromosal DNA. The vector utilizes a bidirectional promoter to produce both Cas9 and a ribozyme flanked sgRNA. This system efficiently generates targeted mutations, and allows the loss of episomal DNA after the removal of selection pressure, resulting in marker-free nontransgenic engineered lines. To test this system, we disrupted the nitrate reductase gene ( NR) and subsequently removed the CRISPR episome to generate nontransgenic marker-free nitrate reductase knockout lines (NR-KO).
Collapse
Affiliation(s)
- Eric Poliner
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan
| | - Tomomi Takeuchi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan
- Biochemistry and Molecular Department, Michigan State University, East Lansing, Michigan
| | - Zhi-Yan Du
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan
- Biochemistry and Molecular Department, Michigan State University, East Lansing, Michigan
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan
- Biochemistry and Molecular Department, Michigan State University, East Lansing, Michigan
- Plant Biology Department, Michigan State University, East Lansing, Michigan
| | - Eva M. Farré
- Plant Biology Department, Michigan State University, East Lansing, Michigan
- Corresponding Author: Eva M. Farré (), Phone: +1-517-353-5215
| |
Collapse
|
14
|
Mini P, Demurtas OC, Valentini S, Pallara P, Aprea G, Ferrante P, Giuliano G. Agrobacterium-mediated and electroporation-mediated transformation of Chlamydomonas reinhardtii: a comparative study. BMC Biotechnol 2018; 18:11. [PMID: 29454346 PMCID: PMC5816537 DOI: 10.1186/s12896-018-0416-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/15/2018] [Indexed: 11/17/2022] Open
Abstract
Background Chlamydomonas reinhardtii is an unicellular green alga used for functional genomics studies and heterologous protein expression. A major hindrance in these studies is the low level and instability of expression of nuclear transgenes, due to their rearrangement and/or silencing over time. Results We constructed dedicated vectors for Agrobacterium-mediated transformation carrying, within the T-DNA borders, the Paromomycin (Paro) selectable marker and an expression cassette containing the Luciferase (Luc) reporter gene. These vectors and newly developed co-cultivation methods were used to compare the efficiency, stability and insertion sites of Agrobacterium- versus electroporation-mediated transformation. The influence of different transformation methods, of the cell wall, of the virulence of different Agrobacterium strains, and of transgene orientation with respect to T-DNA borders were assessed. False positive transformants were more frequent in Agrobacterium-mediated transformation compared to electroporation, compensating for the slightly lower proportion of silenced transformants observed in Agrobacterium-mediated transformation than in electroporation. The proportion of silenced transformants remained stable after 20 cycles of subculture in selective medium. Next generation sequencing confirmed the nuclear insertion points, which occurred in exons or untraslated regions (UTRs) for 10 out of 10 Agrobacterium-mediated and 9 out of 13 of electroporation-mediated insertions. Electroporation also resulted in higher numbers of insertions at multiple loci. Conclusions Due to its labor-intensive nature, Agrobacterium transformation of Chlamydomonas does not present significant advantages over electroporation, with the possible exception of its use in insertional mutagenesis, due to the higher proportion of within-gene, single-locus insertions. Our data indirectly support the hypothesis that rearrangement of transforming DNA occurs in the Chlamydomonas cell, rather than in the extracellular space as previously proposed. Electronic supplementary material The online version of this article (10.1186/s12896-018-0416-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Mini
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy
| | - Olivia Costantina Demurtas
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy
| | - Silvia Valentini
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.,University of Rome "La Sapienza", Piazzale Aldo Moro, 5, 00185, Rome, Italy
| | - Patrizia Pallara
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy
| | - Giuseppe Aprea
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy
| | - Paola Ferrante
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| | - Giovanni Giuliano
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, 00123, Rome, Italy.
| |
Collapse
|
15
|
Düner M, Lambertz J, Mügge C, Hemschemeier A. The soluble guanylate cyclase CYG12 is required for the acclimation to hypoxia and trophic regimes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:311-337. [PMID: 29161457 DOI: 10.1111/tpj.13779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
Oxygenic phototrophs frequently encounter environmental conditions that result in intracellular energy crises. Growth of the unicellular green alga Chlamydomonas reinhardtii in hypoxia in the light depends on acclimatory responses of which the induction of photosynthetic cyclic electron flow is essential. The microalga cannot grow in the absence of molecular oxygen (O2 ) in the dark, although it possesses an elaborate fermentation metabolism. Not much is known about how the microalga senses and signals the lack of O2 or about its survival strategies during energy crises. Recently, nitric oxide (NO) has emerged to be required for the acclimation of C. reinhardtii to hypoxia. In this study, we show that the soluble guanylate cyclase (sGC) CYG12, a homologue of animal NO sensors, is also involved in this response. CYG12 is an active sGC, and post-transcriptional down-regulation of the CYG12 gene impairs hypoxic growth and gene expression in C. reinhardtii. However, it also results in a disturbed photosynthetic apparatus under standard growth conditions and the inability to grow heterotrophically. Transcriptome profiles indicate that the mis-expression of CYG12 results in a perturbation of responses that, in the wild-type, maintain the cellular energy budget. We suggest that CYG12 is required for the proper operation of the photosynthetic apparatus which, in turn, is essential for survival in hypoxia and darkness.
Collapse
Affiliation(s)
- Melis Düner
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Jan Lambertz
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carolin Mügge
- Junior Research Group for Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
16
|
Blaby-Haas CE, Castruita M, Fitz-Gibbon ST, Kropat J, Merchant SS. Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii. Metallomics 2017; 8:679-91. [PMID: 27172123 DOI: 10.1039/c6mt00063k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The selectivity of metal sensors for a single metal ion is critical for cellular metal homeostasis. A suite of metal-responsive regulators is required to maintain a prescribed balance of metal ions ensuring that each apo-protein binds the correct metal. However, there are cases when non-essential metals ions disrupt proper metal sensing. An analysis of the Ni-responsive transcriptome of the green alga Chlamydomonas reinhardtii reveals that Ni artificially turns on the CRR1-dependent Cu-response regulon. Since this regulon also responds to hypoxia, a combinatorial transcriptome analysis was leveraged to gain insight into the mechanisms by which Ni interferes with the homeostatic regulation of Cu and oxygen status. Based on parallels with the effect of Ni on the hypoxic response in animals, we propose that a possible link between Cu, oxygen and Ni sensing is an as yet uncharacterized prolyl hydroxylase that regulates a co-activator of CRR1. This analysis also identified transcriptional responses to the pharmacological activation of the Cu-deficiency regulon. Although the Ni-responsive CRR1 regulon is composed of 56 genes (defined as the primary response), 259 transcripts responded to Ni treatment only when a copy of the wild-type CRR1 gene was present. The genome-wide impact of CRR1 target genes on the transcriptome was also evident from the 210 transcripts that were at least 2-fold higher in the crr1 strain, where the abundance of many CRR1 targets was suppressed. Additionally, we identified 120 transcripts that responded to Ni independent of CRR1 function. The putative functions of the proteins encoded by these transcripts suggest that high Ni results in protein damage.
Collapse
Affiliation(s)
- Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Madeli Castruita
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Sorel T Fitz-Gibbon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA. and Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA. and Institute for Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Barjona do Nascimento Coutinho P, Friedl C, Buchholz R, Stute SC. Chemical regulation of Fea1 driven transgene expression in Chlamydomonas reinhardtii. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Alkaline phosphatase promoter as an efficient driving element for exogenic recombinant in the marine diatom Phaeodactylum tricornutum. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Ostroukhova M, Zalutskaya Z, Ermilova E. New insights into AOX2 transcriptional regulation in Chlamydomonas reinhardtii. Eur J Protistol 2017; 58:1-8. [DOI: 10.1016/j.ejop.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
|
20
|
Activation of Autophagy by Metals in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2015; 14:964-73. [PMID: 26163317 DOI: 10.1128/ec.00081-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/05/2015] [Indexed: 12/31/2022]
Abstract
Autophagy is an intracellular self-degradation pathway by which eukaryotic cells recycle their own material in response to specific stress conditions. Exposure to high concentrations of metals causes cell damage, although the effect of metal stress on autophagy has not been explored in photosynthetic organisms. In this study, we investigated the effect of metal excess on autophagy in the model unicellular green alga Chlamydomonas reinhardtii. We show in cells treated with nickel an upregulation of ATG8 that is independent of CRR1, a global regulator of copper signaling in Chlamydomonas. A similar effect on ATG8 was observed with copper and cobalt but not with cadmium or mercury ions. Transcriptome sequencing data revealed an increase in the abundance of the protein degradation machinery, including that responsible for autophagy, and a substantial overlap of that increased abundance with the hydrogen peroxide response in cells treated with nickel ions. Thus, our results indicate that metal stress triggers autophagy in Chlamydomonas and suggest that excess nickel may cause oxidative damage, which in turn activates degradative pathways, including autophagy, to clear impaired components and recover cellular homeostasis.
Collapse
|
21
|
Plucinak TM, Horken KM, Jiang W, Fostvedt J, Nguyen ST, Weeks DP. Improved and versatile viral 2A platforms for dependable and inducible high-level expression of dicistronic nuclear genes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:717-729. [PMID: 25846675 DOI: 10.1111/tpj.12844] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
A significantly improved viral 2A peptide system for dependable high-level expression of dicistronic genes in Chlamydomonas reinhardtii has been developed. Data are presented demonstrating that use of an especially proficient 'extended FMDV 2A' coding region allows production of two independent protein products from a dicistronic gene with almost complete efficiency. Importantly, results are also presented that demonstrate the utility of this 2A system for efficient high-level expression of foreign genes in C. reinhardtii, which has not previously been reliably achievable in this algal model system. To expand the versatility of the 2A expression system, a number of commonly used selectable marker proteins were assessed for their compatibility with the extended FMDV 2A peptide. Additional experiments demonstrate the feasibility and utility of 2A-containing dicistronic systems that rely on a strong conditional promoter for transcriptional control and a low-expression marker gene for selection. This strategy allows easy and efficient delivery of genes of interest whose expression levels require regulation either to mitigate potential toxicity or allow differential expression under controlled experimental conditions. Finally, as an additional practical demonstration of the utility of the extended FMDV 2A system, confocal fluorescence microscopy is used to demonstrate that native and foreign proteins of interest bearing post-translational remnants of the extended FMDV 2A peptide localize correctly to various cellular compartments, including a striking demonstration of the almost exclusive localization of the Rubisco small subunit protein to the pyrenoid of the C. reinhardtii chloroplast in cells maintained under ambient CO2 concentrations.
Collapse
Affiliation(s)
- Thomas M Plucinak
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| | - Kempton M Horken
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| | - Wenzhi Jiang
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| | - Jessica Fostvedt
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| | - Sanh Tan Nguyen
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| | - Donald P Weeks
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588-0664, USA
| |
Collapse
|
22
|
Sawyer AL, Hankamer BD, Ross IL. Sulphur responsiveness of the Chlamydomonas reinhardtii LHCBM9 promoter. PLANTA 2015; 241:1287-1302. [PMID: 25672503 DOI: 10.1007/s00425-015-2249-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
A 44-base-pair region in the Chlamydomonas reinhardtii LHCBM9 promoter is essential for sulphur responsiveness. The photosynthetic light-harvesting complex (LHC) proteins play essential roles both in light capture, the first step of photosynthesis, and in photoprotective mechanisms. In contrast to the other LHC proteins and the majority of photosynthesis proteins, the Chlamydomonas reinhardtii photosystem II-associated LHC protein, LHCBM9, was recently reported to be up-regulated under sulphur deprivation conditions, which also induce hydrogen production. Here, we examined the sulphur responsiveness of the LHCBM9 gene at the transcriptional level, through promoter deletion analysis. The LHCBM9 promoter was found to be responsive to sulphur deprivation, with a 44-base-pair region between nucleotide positions -136 and -180 relative to the translation start site identified as essential for this response. Anaerobiosis was found to enhance promoter activity under sulphur deprivation conditions, however, alone was unable to induce promoter activity. The study of LHCBM9 is of biological and biotechnological importance, as its expression is linked to photobiological hydrogen production, theoretically the most efficient process for biofuel production, while the simplicity of using an S-deprivation trigger enables the development of a novel C. reinhardtii-inducible promoter system based on LHCBM9.
Collapse
Affiliation(s)
- Anne L Sawyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | |
Collapse
|
23
|
Rochaix JD, Surzycki R, Ramundo S. Tools for regulated gene expression in the chloroplast of Chlamydomonas. Methods Mol Biol 2014; 1132:413-24. [PMID: 24599871 DOI: 10.1007/978-1-62703-995-6_28] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The green unicellular alga Chlamydomonas reinhardtii has emerged as a very attractive model system for chloroplast genetic engineering. Algae can be transformed readily at the chloroplast level through bombardment of cells with a gene gun, and transformants can be selected using antibiotic resistance or phototrophic growth. An inducible chloroplast gene expression system could be very useful for several reasons. First, it could be used to elucidate the function of essential chloroplast genes required for cell growth and survival. Second, it could be very helpful for expressing proteins which are toxic to the algal cells. Third, it would allow for the reversible depletion of photosynthetic complexes thus making it possible to study their biogenesis in a controlled fashion. Fourth, it opens promising possibilities for hydrogen production in Chlamydomonas. Here we describe an inducible/repressible chloroplast gene expression system in Chlamydomonas in which the copper-regulated Cyc6 promoter drives the expression of the nuclear Nac2 gene encoding a protein which is targeted to the chloroplast where it acts specifically on the chloroplast psbD 5'-untranslated region and is required for the stable accumulation of the psbD mRNA and photosystem II. The system can be used for any chloroplast gene or transgene by placing it under the control of the psbD 5'-untranslated region.
Collapse
Affiliation(s)
- Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
24
|
Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories. J Biotechnol 2014; 201:28-42. [PMID: 25160918 DOI: 10.1016/j.jbiotec.2014.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/31/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022]
Abstract
Microalgae represent promising organisms for the sustainable production of commodities, chemicals or fuels. Future use of such systems, however, requires increased productivity of microalgal mass cultures in order to reach an economic viability for microalgae-based production schemes. The efficiency of sunlight-to-biomass conversion that can be observed in bulk cultures is generally far lower (35-80%) than the theoretical maximum, because energy losses occur at multiple steps during the light-driven conversion of carbon dioxide to organic carbon. The light-harvesting system is a major source of energy losses and thus a prime target for strain engineering. Truncation of the light-harvesting antenna in the algal model organism Chlamydomonas reinhardtii was shown to be an effective way of increasing culture productivity at least under saturating light conditions. Furthermore engineering of the Calvin-Benson cycle or the creation of photorespiratory bypasses in A. thaliana proved to be successful in terms of achieving higher biomass productivities. An efficient generation of novel microalgal strains with improved sunlight conversion efficiencies by targeted engineering in the future will require an expanded molecular toolkit. In the meantime random mutagenesis coupled to high-throughput screening for desired phenotypes can be used to provide engineered microalgae.
Collapse
|
25
|
Method for assembling and expressing multiple genes in the nucleus of microalgae. Biotechnol Lett 2013; 36:561-6. [DOI: 10.1007/s10529-013-1378-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
|
26
|
Pape M, Lambertz C, Happe T, Hemschemeier A. Differential expression of the Chlamydomonas [FeFe]-hydrogenase-encoding HYDA1 gene is regulated by the copper response regulator1. PLANT PHYSIOLOGY 2012; 159:1700-12. [PMID: 22669892 PMCID: PMC3425207 DOI: 10.1104/pp.112.200162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/02/2012] [Indexed: 05/20/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii adapts to anaerobic or hypoxic conditions by developing a complex fermentative metabolism including the production of molecular hydrogen by [FeFe]-hydrogenase isoform1 (HYDA1). HYDA1 transcript and hydrogenase protein accumulate in the absence of oxygen or copper (Cu). Factors regulating this differential gene expression have been unknown so far. In this study, we report on the isolation of a Chlamydomonas mutant strain impaired in HYDA1 gene expression by screening an insertional mutagenesis library for HYDA1 promoter activity using the arylsulfatase-encoding ARYLSULFATASE2 gene as a selection marker. The mutant strain has a deletion of the COPPER RESPONSE REGULATOR1 (CRR1) gene encoding for CRR1, indicating that this SQUAMOSA-PROMOTER BINDING PROTEIN (SBP) domain transcription factor is involved in the regulation of HYDA1 transcription. Treating the C. reinhardtii wild type with mercuric ions, which were shown to inhibit the binding of the SBP domain to DNA, prevented or deactivated HYDA1 gene expression. Reporter gene analyses of the HYDA1 promoter revealed that two GTAC motifs, which are known to be the cores of CRR1 binding sites, are necessary for full promoter activity in hypoxic conditions or upon Cu starvation. However, mutations of the GTAC sites had a much stronger impact on reporter gene expression in Cu-deficient cells. Electrophoretic mobility shift assays showed that the CRR1 SBP domain binds to one of the GTAC cores in vitro. These combined results prove that CRR1 is involved in HYDA1 promoter activation.
Collapse
|
27
|
Rosales-Mendoza S, Paz-Maldonado LMT, Soria-Guerra RE. Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. PLANT CELL REPORTS 2012; 31:479-94. [PMID: 22080228 DOI: 10.1007/s00299-011-1186-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 05/03/2023]
Abstract
Chlamydomonas reinhardtii has many advantages compared with traditional systems for the molecular farming of recombinant proteins. These include low production costs, rapid scalability at pilot level, absence of human pathogens and the ability to fold and assemble complex proteins accurately. Currently, the successful expression of several proteins with pharmaceutical relevance has been reported from the nuclear and the chloroplastic genome of this alga, demonstrating its usefulness for biotechnological applications. However, several factors affect the level of recombinant protein expression in Chlamydomonas such as enhancer elements, codon dependency, sensitivity to proteases and transformation-associated genotypic modification. The present review outlines a number of strategies to increase protein yields and summarizes recent achievements in algal protein production including biopharmaceuticals such as vaccines, antibodies, hormones and enzymes with implications on health-related approaches. The current status of bioreactor developments for algal culture and the challenges of scale-up and optimization processes are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, SLP, Mexico.
| | | | | |
Collapse
|
28
|
Abstract
Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, 975 North Warson Rd., St. Louis, MO 63132 USA
| | - Bradley J S C Olson
- Molecular Cellular and Developmental Biology, Ecological Genomics Institute, Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
29
|
Bonente G, Formighieri C, Mantelli M, Catalanotti C, Giuliano G, Morosinotto T, Bassi R. Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors. PHOTOSYNTHESIS RESEARCH 2011; 108:107-20. [PMID: 21547493 DOI: 10.1007/s11120-011-9660-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 04/24/2011] [Indexed: 05/11/2023]
Abstract
Microalgae have a valuable potential for biofuels production. As a matter of fact, algae can produce different molecules with high energy content, including molecular hydrogen (H(2)) by the activity of a chloroplastic hydrogenase fueled by reducing power derived from water and light energy. The efficiency of this reaction, however, is limited and depends from an intricate relationships between oxygenic photosynthesis and mitochondrial respiration. The way toward obtaining algal strains with high productivity in photobioreactors requires engineering of their metabolism at multiple levels in a process comparable to domestication of crops that were derived from their wild ancestors through accumulation of genetic traits providing improved productivity under conditions of intensive cultivation as well as improved nutritional/industrial properties. This holds true for the production of any biofuels from algae: there is the need to isolate multiple traits to be combined and produce organisms with increased performances. Among the different limitations in H(2) productivity, we identified three with a major relevance, namely: (i) the light distribution through the mass culture; (ii) the strong sensitivity of the hydrogenase to even very low oxygen concentrations; and (iii) the presence of alternative pathways, such as the cyclic electron transport, competing for reducing equivalents with hydrogenase and H(2) production. In order to identify potentially favorable mutations, we generated a collection of random mutants in Chlamydomonas reinhardtii which were selected through phenotype analysis for: (i) a reduced photosynthetic antenna size, and thus a lower culture optical density; (ii) an altered photosystem II activity as a tool to manipulate the oxygen concentration within the culture; and (iii) State 1-State 2 transition mutants, for a reduced cyclic electron flow and maximized electrons flow toward the hydrogenase. Such a broad approach has been possible thanks to the high throughput application of absorption/fluorescence optical spectroscopy methods. Strong and weak points of this approach are discussed.
Collapse
Affiliation(s)
- Giulia Bonente
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Kropat J, Hong-Hermesdorf A, Casero D, Ent P, Castruita M, Pellegrini M, Merchant SS, Malasarn D. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:770-80. [PMID: 21309872 PMCID: PMC3101321 DOI: 10.1111/j.1365-313x.2011.04537.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interest in exploiting algae as a biofuel source and the role of inorganic nutrient deficiency in inducing triacylglyceride (TAG) accumulation in cells necessitates a strategy to efficiently formulate species-specific culture media that can easily be manipulated. Using the reference organism Chlamydomonas reinhardtii, we tested the hypothesis that modeling trace element supplements after the cellular ionome would result in optimized cell growth. We determined the trace metal content of several commonly used Chlamydomonas strains in various culture conditions and developed a revised trace element solution to parallel these measurements. Comparison of cells growing in the revised supplement versus a traditional trace element solution revealed faster growth rates and higher maximum cell densities with the revised recipe. RNA-seq analysis of cultures growing in the traditional versus revised medium suggest that the variation in transcriptomes was smaller than that found between different wild-type strains grown in traditional Hutner's supplement. Visual observation did not reveal defects in cell motility or mating efficiency in the new supplement. Ni²⁺-inducible expression from the CYC6 promoter remained a useful tool, albeit with an increased requirement for Ni²⁺ because of the introduction of an EDTA buffer system in the revised medium. Other advantages include more facile preparation of trace element stock solutions, a reduction in total chemical use, a more consistent batch-to-batch formulation and long-term stability (tested up to 5 years). Under the new growth regime, we analyzed cells growing under different macro- and micronutrient deficiencies. TAG accumulation in N deficiency is comparable in the new medium. Fe and Zn deficiency also induced TAG accumulation, as suggested by Nile Red staining. This approach can be used to efficiently optimize culture conditions for other algal species to improve growth and to assay cell physiology.
Collapse
Affiliation(s)
- Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Anne Hong-Hermesdorf
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - David Casero
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095-1569, USA
| | - Petr Ent
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Madeli Castruita
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095-1569, USA
- Institutes of Genomic and Proteomics, University of California, Los Angeles, CA 90095-1569, USA
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
- Institutes of Genomic and Proteomics, University of California, Los Angeles, CA 90095-1569, USA
| | - Davin Malasarn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
- Corresponding author: Davin Malasarn, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, (310) 825-3661,
| |
Collapse
|
31
|
Ferrante P, Diener DR, Rosenbaum JL, Giuliano G. Nickel and low CO₂-controlled motility in Chlamydomonas through complementation of a paralyzed flagella mutant with chemically regulated promoters. BMC PLANT BIOLOGY 2011; 11:22. [PMID: 21266063 PMCID: PMC3038898 DOI: 10.1186/1471-2229-11-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/25/2011] [Indexed: 05/09/2023]
Abstract
BACKGROUND Chlamydomonas reinhardtii is a model system for the biology of unicellular green algae. Chemically regulated promoters, such as the nickel-inducible CYC6 or the low CO₂-inducible CAH1 promoter, may prove useful for expressing, at precise times during its cell cycle, proteins with relevant biological functions, or complementing mutants in genes encoding such proteins. To this date, this has not been reported for the above promoters. RESULTS We fused the CYC6 and CAH1 promoters to an HA-tagged RSP3 gene, encoding a protein of the flagellar radial spoke complex. The constructs were used for chemically regulated complementation of the pf14 mutant, carrying an ochre mutation in the RSP3 gene. 7 to 8% of the transformants showed cells with restored motility after induction with nickel or transfer to low CO₂ conditions, but not in non-inducing conditions. Maximum complementation (5% motile cells) was reached with very different kinetics (5-6 hours for CAH1, 48 hours for CYC6). The two inducible promoters drive much lower levels of RSP3 protein expression than the constitutive PSAD promoter, which shows almost complete rescue of motility. CONCLUSIONS To our knowledge, this is the first example of the use of the CYC6 or CAH1 promoters to perform a chemically regulated complementation of a Chlamydomonas mutant. Based on our data, the CYC6 and CAH1 promoters should be capable of fully complementing mutants in genes whose products exert their biological activity at low concentrations.
Collapse
Affiliation(s)
- Paola Ferrante
- ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Dennis R Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, 06511 New Haven, CT, USA
| | - Joel L Rosenbaum
- Department of Molecular, Cellular and Developmental Biology, Yale University, 06511 New Haven, CT, USA
| | - Giovanni Giuliano
- ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
32
|
Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 2010; 32:1373-83. [PMID: 20556634 PMCID: PMC2941057 DOI: 10.1007/s10529-010-0326-5] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/07/2010] [Indexed: 12/03/2022]
Abstract
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.
Collapse
Affiliation(s)
- Elizabeth Specht
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| | - Shigeki Miyake-Stoner
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| | - Stephen Mayfield
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368 USA
| |
Collapse
|
33
|
Specht E, Miyake-Stoner S, Mayfield S. Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 2010; 32:1373-1383. [PMID: 20556634 DOI: 10.1007/s10529-010-0326-325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/07/2010] [Indexed: 05/28/2023]
Abstract
A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.
Collapse
Affiliation(s)
- Elizabeth Specht
- San Diego Center for Algae Biotechnology, Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0368, USA
| | | | | |
Collapse
|
34
|
Anaerobic expression of the ferredoxin-encoding FDX5 gene of Chlamydomonas reinhardtii is regulated by the Crr1 transcription factor. EUKARYOTIC CELL 2010; 9:1747-54. [PMID: 20833896 DOI: 10.1128/ec.00127-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has a complex anaerobic metabolism and reacts to hypoxic or anaerobic conditions with the induced expression of many genes. One gene which is upregulated particularly strongly is the FDX5 gene, encoding one of at least six ferredoxin isoforms in C. reinhardtii. Fdx5 is a typical plant-type 2Fe2S protein that is located in the chloroplast. The FDX5 promoter region contains three GTAC motifs, which are known to be the binding sites for copper response regulator 1 (Crr1) and other SQUAMOSA promoter binding proteins (SBPs). This study shows that two of these GTAC sites are essential to confer oxygen and also copper responsiveness to a reporter gene. The SBP domain of Crr1 is able to bind to both of these GTAC sites in in vitro binding assays. Moreover, in a Crr1-deficient C. reinhardtii strain, FDX5 is not expressed. These results clearly indicate that Crr1 is involved in the transcriptional regulation of the FDX5 gene in the absence of oxygen or copper.
Collapse
|
35
|
Bullerjahn GS, Boyanapalli R, Rozmarynowycz MJ, McKay RML. Cyanobacterial bioreporters as sensors of nutrient availability. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 118:165-188. [PMID: 20091289 DOI: 10.1007/10_2009_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Due to their ubiquity in aquatic environments and their contribution to total biomass, especially in oligotrophic systems, cyanobacteria can be viewed as a proxy for primary productivity in both marine and fresh waters. In this chapter we describe the development and use of picocyanobacterial bioreporters to measure the bioavailability of nutrients that may constrain total photosynthesis in both lacustrine and marine systems. Issues pertaining to bioreporter construction, performance and field applications are discussed. Specifically, luminescent Synechococcus spp. and Synechocystis spp. bioreporters are described that allow the bioavailability of phosphorus, nitrogen and iron to be accurately measured in environmental samples.
Collapse
Affiliation(s)
- George S Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | | | | | | |
Collapse
|