1
|
Modulation of Glycoprotein VI and Its Downstream Signaling Pathways as an Antiplatelet Target. Int J Mol Sci 2022; 23:ijms23179882. [PMID: 36077280 PMCID: PMC9456422 DOI: 10.3390/ijms23179882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Antiplatelet therapy aims to reduce the risk of thrombotic events while maintaining hemostasis. A promising current approach is the inhibition of platelet glycoprotein GPVI-mediated adhesion pathways; pathways that do not involve coagulation. GPVI is a signaling receptor integral for collagen-induced platelet activation and participates in the thrombus consolidation process, being a suitable target for thrombosis prevention. Considering this, the blocking or antibody-mediated depletion of GPVI is a promising antiplatelet therapy for the effective and safe treatment of thrombotic diseases without a significant risk of bleeding and impaired hemostatic plug formation. This review describes the current knowledge concerning pharmaceutical approaches to platelet GPVI modulation and its downstream signaling pathways in this context.
Collapse
|
2
|
Limami Y, Senhaji N, Zaid N, Khalki L, Naya A, Hajjaj-Hassouni N, Jalali F, Oudghiri M, Zaid Y. PKC-Delta-Dependent Pathways Contribute to the Exacerbation of the Platelet Activity in Crohn's Disease. Semin Thromb Hemost 2021; 48:246-250. [PMID: 34749401 DOI: 10.1055/s-0041-1736571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Youness Limami
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca.,Department of Medicine, Research Center of Abulcasis University of Health Sciences, Rabat, Morocco
| | - Nezha Senhaji
- Faculty of Medicine, Laboratory of Genetic and Molecular Pathology, Hassan II University, Casablanca, Morocco
| | - Nabil Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Loubna Khalki
- Faculty of Medicine, Research Center, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Abdallah Naya
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca
| | | | - Farid Jalali
- Department of Gastroenterology, Saddleback Medical Group, Laguna Hills, California
| | - Mounia Oudghiri
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca
| | - Younes Zaid
- Department of Biology, Faculty of Sciences Ain Chock, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca.,Department of Medicine, Research Center of Abulcasis University of Health Sciences, Rabat, Morocco.,Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Wang L, Liu G, Wu N, Dai B, Han S, Liu Q, Huang F, Chen Z, Xu W, Xia D, Gao C. mTOR regulates GPVI-mediated platelet activation. J Transl Med 2021; 19:201. [PMID: 33971888 PMCID: PMC8111939 DOI: 10.1186/s12967-021-02756-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Due to mTOR (mammalian/mechanistic target of rapamycin) gene-loss mice die during embryonic development, the role of mTOR in platelets has not been evaluated using gene knockout technology. Methods A mouse model with megakaryocyte/platelet-specific deletion of mTOR was established, and be used to evaluate the role of mTOR in platelet activation and thrombus formation. Results mTOR−/− platelets were deficient in thrombus formation when grown on low-concentration collagen-coated surfaces; however, no deficiency in thrombus formation was observed when mTOR−/− platelets were perfused on higher concentration collagen-coated surfaces. In FeCl3-induced mouse mesenteric arteriole thrombosis models, wild-type (WT) and mTOR−/− mice displayed significantly different responses to low-extent injury with respect to the ratio of occluded mice, especially within the first 40 min. Additionally, mTOR−/− platelets displayed reduced aggregation and dense granule secretion (ATP release) in response to low doses of the glycoprotein VI (GPVI) agonist collagen related peptide (CRP) and the protease-activated receptor-4 (PAR4) agonist GYPGKF-NH2; these deficiencies were overcame by stimulation with higher concentration agonists, suggesting dose dependence of the response. At low doses of GPVI or PAR agonist, the activation of αIIbβ3 in mTOR−/− platelets was reduced. Moreover, stimulation of mTOR−/− platelets with low-dose CRP attenuated the phosphorylation of S6K1, S6 and Akt Ser473, and increased the phosphorylation of PKCδ Thr505 and PKCε Ser729. Using isoform-specific inhibitors of PKCs (δ, ɛ, and α/β), we established that PKCδ/ɛ, and especially PKCδ but not PKCα/β or PKCθ, may be involved in low-dose GPVI-mediated/mTOR-dependent signaling. Conclusion These observations indicate that mTOR plays an important role in GPVI-dependent platelet activation and thrombus formation.
Collapse
Affiliation(s)
- Longsheng Wang
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Gang Liu
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.,Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Nannan Wu
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Baiyun Dai
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Shuang Han
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Qiaoyun Liu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Fang Huang
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Zhihua Chen
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Weihong Xu
- Zhejiang Hospital, 12 Lingyin Road, Hangzhou, 310013, China
| | - Dajing Xia
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Cunji Gao
- Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China. .,Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Milwaukee, WI, 53201, USA.
| |
Collapse
|
4
|
Carubbi C, Masselli E, Pozzi G, Mattioli M, Martini S, Goldoni M, Aloe R, Cervellin G, Vitale M, Gobbi G. Combination of Platelet expression of PKCepsilon and cardiac troponin-I for early diagnosis of chest pain patients in the emergency department. Sci Rep 2019; 9:2125. [PMID: 30765820 PMCID: PMC6375996 DOI: 10.1038/s41598-019-38624-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/28/2018] [Indexed: 01/02/2023] Open
Abstract
A rapid differential diagnosis of the clinical conditions underlying chest pain is a relevant clinical issue. Specifically, a fast rule-in or -out of acute myocardial infarction (AMI) is mandatory to improve diagnostic outcome and cost-effectiveness of patient management. We demonstrated that Protein Kinase C (PKC) epsilon is selectively expressed by platelets from AMI patients, accounting for increased platelet activation. Thus, we hypothesized that PKCepsilon-expressing platelets may represent a pathophysiological marker of AMI that could be utilized in combination with troponin-I, the conventional marker of cardiac injury, to add diagnostic information in chest pain workup. In 94 chest pain patients consecutively admitted to Parma University Hospital, we tested the diagnostic performance of flow-cytometric detection of PKCepsilon expressing platelets in discriminating AMI vs. non-AMI conditions. We demonstrated that PKCepsilon-expressing platelets were significantly higher in patients with AMI. Flow cytometry detection of PKCepsilon-expressing platelets showed high sensitivity and specificity (87.5% and 84.4%, respectively) and good diagnostic accuracy (AUC: 0.875). The combination of PKCepsilon expressing platelets and cardiac troponin clearly discriminates patients with 100% and 0% of probability to be affected by AMI. Overall, we highlighted a dual marker strategy potentially useful for a rapid rule-in or -out of myocardial infarction in chest pain patients.
Collapse
Affiliation(s)
- Cecilia Carubbi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elena Masselli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giulia Pozzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Mattioli
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Silvia Martini
- Protein Phosphorylation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosalia Aloe
- Dipartimento di Biochimica ad Elevata Automazione, Dipartimento Diagnostico, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Sport and exercise medicine center (SEM), University of Parma, Parma, Italy.
- CoreLab, Azienda Ospedaliero-Universitaria di Parma, University of Parma, Parma, Italy.
| | - Giuliana Gobbi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Sport and exercise medicine center (SEM), University of Parma, Parma, Italy
| |
Collapse
|
5
|
|
6
|
Unsworth AJ, Bombik I, Pinto-Fernandez A, McGouran JF, Konietzny R, Zahedi RP, Watson SP, Kessler BM, Pears CJ. Human Platelet Protein Ubiquitylation and Changes following GPVI Activation. Thromb Haemost 2018; 119:104-116. [PMID: 30597505 PMCID: PMC6327716 DOI: 10.1055/s-0038-1676344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Platelet activators stimulate post-translational modification of signalling proteins to change their activity or their molecular interactions leading to signal propagation. One covalent modification is attachment of the small protein ubiquitin to lysine residues in target proteins. Modification by ubiquitin can either target proteins for degradation by the proteasome or act as a scaffold for other proteins. Pharmacological inhibition of deubiquitylases or the proteasome inhibition of platelet activation by collagen, demonstrating a role for ubiquitylation, but relatively few substrates for ubiquitin have been identified and the molecular basis of inhibition is not established. Here, we report the ubiquitome of human platelets and changes in ubiquitylated proteins following stimulation by collagen-related peptide (CRP-XL). Using platelets from six individuals over three independent experiments, we identified 1,634 ubiquitylated peptides derived from 691 proteins, revealing extensive ubiquitylation in resting platelets. Note that 925 of these peptides show an increase of more than twofold following stimulation with CRP-XL. Multiple sites of ubiquitylation were identified on several proteins including Syk, filamin and integrin heterodimer sub-units. This work reveals extensive protein ubiquitylation during activation of human platelets and opens the possibility of novel therapeutic interventions targeting the ubiquitin machinery.
Collapse
Affiliation(s)
- Amanda J Unsworth
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.,Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Izabela Bombik
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Adan Pinto-Fernandez
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Joanna F McGouran
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Rebecca Konietzny
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - René P Zahedi
- JGH Proteomics Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Catherine J Pears
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Liverani E, Mondrinos MJ, Sun S, Kunapuli SP, Kilpatrick LE. Role of Protein Kinase C-delta in regulating platelet activation and platelet-leukocyte interaction during sepsis. PLoS One 2018; 13:e0195379. [PMID: 29617417 PMCID: PMC5884571 DOI: 10.1371/journal.pone.0195379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/21/2018] [Indexed: 12/25/2022] Open
Abstract
Sepsis is characterized by an intense systemic inflammatory response activating a cascade of proinflammatory events resulting in leukocyte dysregulation and host tissue damage. The lung is particularly susceptible to systemic inflammation, leading to acute lung injury. Key to inflammation-induced lung damage is the excessive migration of neutrophils across the vascular endothelium. The mechanisms which regulate neutrophil activation and migration in sepsis are not well defined but there is growing evidence that platelets are actively involved and play a key role in microvascular permeability and neutrophil-mediated organ damage. We previously identified PKC-delta (PKCδ) as a critical regulator of the inflammatory response in sepsis and demonstrated PKCδ inhibition was lung protective. However, the role of PKCδ in sepsis-induced platelet activation and platelet-leukocyte interactions is not known. In this study, rats underwent sham surgery or cecal ligation and puncture (CLP) to induce sepsis. Following surgeries, a PKCδ inhibitor (200μg/kg) or vehicle (PBS) was administered intra-tracheally. At 24 hours post-surgeries, lung tissue, BAL fluid, and blood samples were collected. While sepsis caused thrombocytopenia, the remaining circulating platelets were activated as demonstrated by increased p-selectin expression, elevated plasma PF4, and enhanced platelet-leukocyte aggregate formation compared to Sham animals. Platelet activation was associated with increased platelet PKCδ activity. Inhibition of PKCδ attenuated sepsis-induced platelet activation, secretion and aggregate formation. Sepsis-induced thrombocytopenia was also significantly reduced and circulating platelet numbers were similar to sham animals. In the lung, sepsis induced significant influx of platelets and neutrophils and the development of lung injury. Administration of the PKCδ inhibitor decreased platelet and neutrophil influx, and was lung protective. Thus, PKCδ inhibition modulated platelet activity both locally and systemically, decreased neutrophil influx into the lung, and was lung protective. We demonstrate for the first time that PKCδ plays an important role in platelet activation and platelet-neutrophil interaction during sepsis.
Collapse
Affiliation(s)
- Elisabetta Liverani
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Mark J. Mondrinos
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Shuang Sun
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Satya P. Kunapuli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Laurie E. Kilpatrick
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Inflammation, Translational and Clinical Lung Research, Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
8
|
Martini S, Pozzi G, Carubbi C, Masselli E, Galli D, Di Nuzzo S, Banchini A, Gobbi G, Vitale M, Mirandola P. PKCε promotes human Th17 differentiation: Implications in the pathophysiology of psoriasis. Eur J Immunol 2018; 48:644-654. [DOI: 10.1002/eji.201747102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 12/01/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Silvia Martini
- Department of Medicine & Surgery (DiMeC); University of Parma; Parma IT
- CoreLab; Azienda Ospedaliero-Universitaria di Parma; Parma IT
| | - Giulia Pozzi
- Department of Medicine & Surgery (DiMeC); University of Parma; Parma IT
| | - Cecilia Carubbi
- Department of Medicine & Surgery (DiMeC); University of Parma; Parma IT
- CoreLab; Azienda Ospedaliero-Universitaria di Parma; Parma IT
| | - Elena Masselli
- Department of Medicine & Surgery (DiMeC); University of Parma; Parma IT
| | - Daniela Galli
- Department of Medicine & Surgery (DiMeC); University of Parma; Parma IT
| | - Sergio Di Nuzzo
- Department of Medicine & Surgery (DiMeC); University of Parma; Parma IT
| | - Antonio Banchini
- Department of Medicine & Surgery (DiMeC); University of Parma; Parma IT
| | - Giuliana Gobbi
- Department of Medicine & Surgery (DiMeC); University of Parma; Parma IT
- CoreLab; Azienda Ospedaliero-Universitaria di Parma; Parma IT
| | - Marco Vitale
- Department of Medicine & Surgery (DiMeC); University of Parma; Parma IT
- CoreLab; Azienda Ospedaliero-Universitaria di Parma; Parma IT
| | - Prisco Mirandola
- Department of Medicine & Surgery (DiMeC); University of Parma; Parma IT
- CoreLab; Azienda Ospedaliero-Universitaria di Parma; Parma IT
| |
Collapse
|
9
|
Beck S, Leitges M, Stegner D. Protein kinase Cι/λ is dispensable for platelet function in thrombosis and hemostasis in mice. Cell Signal 2017; 38:223-229. [PMID: 28739484 DOI: 10.1016/j.cellsig.2017.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/05/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022]
Abstract
Platelet activation at sites of vascular injury is crucial for hemostasis, but it may also cause myocardial infarction or ischemic stroke. Upon platelet activation, cytoskeletal reorganization is essential for platelet secretion and thrombus formation. Members of the protein kinase C family, which includes 12 isoforms, are involved in most platelet responses required for thrombus formation. The atypical protein kinase Cι/λ (PKCι/λ) has been implicated as an important mediator of cell polarity, carcinogenesis and immune cell responses. PKCι/λ is known to be associated with the small GTPase Cdc42, an important mediator of multiple platelet functions; however, its exact function in platelets is not known. To study the role of PKCι/λ, we generated platelet- and megakaryocyte-specific PKCι/λ knockout mice (Prkcifl/fl, Pf4-Cre) and used them to investigate the function of PKCι/λ in platelet activation and aggregation in vitro and in vivo. Surprisingly, lack of PKCι/λ had no detectable effect on platelet spreading and function in vitro and in vivo under all tested conditions. These results indicate that PKCι/λ is dispensable for Cdc42-triggered processes and for thrombosis and hemostasis in mice.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | | | - David Stegner
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
10
|
Masselli E, Carubbi C, Pozzi G, Martini S, Aversa F, Galli D, Gobbi G, Mirandola P, Vitale M. Platelet expression of PKCepsilon oncoprotein in myelofibrosis is associated with disease severity and thrombotic risk. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:273. [PMID: 28758099 DOI: 10.21037/atm.2017.06.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Myelofibrosis (MF) is the most aggressive Philadelphia-negative chronic myeloproliferative neoplasm (MPN) with high morbidity and mortality due to thrombo-hemorrhagic complications and leukemic transformation. MF is characterized by profound alterations of megakaryocytopoiesis, with consequent abnormalities in platelet number and function. We recently showed that the overexpression of the oncoprotein PKCepsilon plays a key role in the aberrant differentiation of MF megakaryocyte clone and that its levels correlate with disease burden. Moreover, our group previously demonstrated that PKCepsilon is over-expressed in platelets from patients with acute myocardial infarction (MI) and accounts for their increased reactivity. On these bases, we investigated here the activation state and PKCepsilon expression of MF platelets, testing potential correlations with thrombotic risk and disease aggressiveness. METHODS Platelets were isolated from peripheral blood samples of MF patients and healthy donors (HDs). Patients were stratified according to the IPSS/DIPSS risk category and history of cardiovascular events. Platelet activation was assessed by flow cytometry. PKCepsilon mRNA and protein levels were determined by real time-PCR and western blot. RESULTS MF platelets circulate in an activated status and display significantly higher levels of PKCepsilon compared to HDs. In MF patients, PKCepsilon platelet levels were associated with high-risk disease as well as with a positive history of major cardiovascular events. CONCLUSIONS PKCepsilon is configuring as the common denominator of neoplastic transformation and thrombus formation in MF. Overall, our data pinpoint PKCepsilon as a potential novel biomarker of disease aggressiveness and thrombotic risk in this hematologic neoplasm.
Collapse
Affiliation(s)
- Elena Masselli
- Department of Medicine and Surgery, University of Parma, Ospedale Maggiore, Parma 43126, Italy
| | - Cecilia Carubbi
- Department of Medicine and Surgery, University of Parma, Ospedale Maggiore, Parma 43126, Italy
| | - Giulia Pozzi
- Department of Medicine and Surgery, University of Parma, Ospedale Maggiore, Parma 43126, Italy
| | - Silvia Martini
- Department of Medicine and Surgery, University of Parma, Ospedale Maggiore, Parma 43126, Italy
| | - Franco Aversa
- Hematology and BMT Center, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Daniela Galli
- Department of Medicine and Surgery, University of Parma, Ospedale Maggiore, Parma 43126, Italy
| | - Giuliana Gobbi
- Department of Medicine and Surgery, University of Parma, Ospedale Maggiore, Parma 43126, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery, University of Parma, Ospedale Maggiore, Parma 43126, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Ospedale Maggiore, Parma 43126, Italy.,CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
11
|
Unsworth AJ, Bye AP, Gibbins JM. Platelet-Derived Inhibitors of Platelet Activation. PLATELETS IN THROMBOTIC AND NON-THROMBOTIC DISORDERS 2017. [PMCID: PMC7123044 DOI: 10.1007/978-3-319-47462-5_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Tsai JY, Rédei D, Forgo P, Li Y, Vasas A, Hohmann J, Wu CC. Isolation of Phorbol Esters from Euphorbia grandicornis and Evaluation of Protein Kinase C- and Human Platelet-Activating Effects of Euphorbiaceae Diterpenes. JOURNAL OF NATURAL PRODUCTS 2016; 79:2658-2666. [PMID: 27731641 DOI: 10.1021/acs.jnatprod.6b00603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Human platelets contain conventional (α and β) and novel isoforms of PKC (δ and θ), and PKC activation can result in platelet aggregation and secretion reaction that are important for thrombus formation. Several tumor-promoting Euphorbiaceae diterpenes are known to act as direct activators of PKC, but many types of such diterpenes have not been studied as platelet stimulators. In the present study, two new and five known phorbol esters were isolated from Euphorbia grandicornis. Two of the isolated phorbol esters together with compounds representing ingenane, jatrophane, and myrsinane structural types were studied on PKC activation and platelet stimulation. The investigated phorbol esters and ingenane esters induced blood platelet aggregation and ATP secretion. PKC activation was demonstrated by inducing membrane translocation of PKCs, phosphorylation of PKC substrates, and activation of PKC signaling pathways. The PKC-activating effect of the compounds correlated well with their efficacy to cause platelet stimulation. Moreover, by using an isoform-specific PKC inhibitor, it was found that besides conventional PKCs novel PKCs also play a positive role in platelet activation caused by phorbol/ingenane esters, especially in regulating platelet aggregation. The present results suggest that platelets afford a useful model for studying PKC activators of natural origin or their chemical derivatives.
Collapse
Affiliation(s)
- Ju-Ying Tsai
- Graduate Institute of Natural Products and ‡Research Center for Natural Products and Drug Development, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pharmacognosy and ⊥Interdisciplinary Centre for Natural Products, University of Szeged , Eötvös u. 6, H-6720 Szeged, Hungary
| | - Dóra Rédei
- Graduate Institute of Natural Products and ‡Research Center for Natural Products and Drug Development, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pharmacognosy and ⊥Interdisciplinary Centre for Natural Products, University of Szeged , Eötvös u. 6, H-6720 Szeged, Hungary
| | - Peter Forgo
- Graduate Institute of Natural Products and ‡Research Center for Natural Products and Drug Development, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pharmacognosy and ⊥Interdisciplinary Centre for Natural Products, University of Szeged , Eötvös u. 6, H-6720 Szeged, Hungary
| | - Yu Li
- Graduate Institute of Natural Products and ‡Research Center for Natural Products and Drug Development, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pharmacognosy and ⊥Interdisciplinary Centre for Natural Products, University of Szeged , Eötvös u. 6, H-6720 Szeged, Hungary
| | - Andrea Vasas
- Graduate Institute of Natural Products and ‡Research Center for Natural Products and Drug Development, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pharmacognosy and ⊥Interdisciplinary Centre for Natural Products, University of Szeged , Eötvös u. 6, H-6720 Szeged, Hungary
| | - Judit Hohmann
- Graduate Institute of Natural Products and ‡Research Center for Natural Products and Drug Development, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pharmacognosy and ⊥Interdisciplinary Centre for Natural Products, University of Szeged , Eötvös u. 6, H-6720 Szeged, Hungary
| | - Chin-Chung Wu
- Graduate Institute of Natural Products and ‡Research Center for Natural Products and Drug Development, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pharmacognosy and ⊥Interdisciplinary Centre for Natural Products, University of Szeged , Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
13
|
Carubbi C, Masselli E, Martini S, Galli D, Aversa F, Mirandola P, Italiano JE, Gobbi G, Vitale M. Human thrombopoiesis depends on Protein kinase Cδ/protein kinase Cε functional couple. Haematologica 2016; 101:812-20. [PMID: 27081176 DOI: 10.3324/haematol.2015.137984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/12/2016] [Indexed: 01/12/2023] Open
Abstract
A deeper understanding of the molecular events driving megakaryocytopoiesis and thrombopoiesis is essential to regulate in vitro and in vivo platelet production for clinical applications. We previously documented the crucial role of PKCε in the regulation of human and mouse megakaryocyte maturation and platelet release. However, since several data show that different PKC isoforms fulfill complementary functions, we targeted PKCε and PKCδ, which show functional and phenotypical reciprocity, at the same time as boosting platelet production in vitro. Results show that PKCδ, contrary to PKCε, is persistently expressed during megakaryocytic differentiation, and a forced PKCδ down-modulation impairs megakaryocyte maturation and platelet production. PKCδ and PKCε work as a functional couple with opposite roles on thrombopoiesis, and the modulation of their balance strongly impacts platelet production. Indeed, we show an imbalance of PKCδ/PKCε ratio both in primary myelofibrosis and essential thrombocythemia, featured by impaired megakaryocyte differentiation and increased platelet production, respectively. Finally, we demonstrate that concurrent molecular targeting of both PKCδ and PKCε represents a strategy for in vitro platelet factories.
Collapse
Affiliation(s)
- Cecilia Carubbi
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Elena Masselli
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Silvia Martini
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Daniela Galli
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Franco Aversa
- Department of Clinical and Experimental Medicine, University of Parma, Italy
| | - Prisco Mirandola
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Joseph E Italiano
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Giuliana Gobbi
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| | - Marco Vitale
- Department of Biomedical, Biotechnological and Translational Sciences (SBiBiT), University of Parma, Italy
| |
Collapse
|
14
|
Zaid Y, Senhaji N, Naya A, Fadainia C, Kojok K. PKCs in thrombus formation. ACTA ACUST UNITED AC 2015; 63:268-71. [PMID: 26476932 DOI: 10.1016/j.patbio.2015.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/01/2015] [Indexed: 10/22/2022]
Abstract
The protein kinase C (PKC) family has been implicated in several physiological processes regulating platelet activation. Each isoform of PKC expressed on platelets, may have a positive and/or negative role depending on the nature and concentration of the agonist. Mice lacking PKCα show much reduced thrombus formation in vivo, while PKCθ(-/-) showed inhibition of aggregation in response to PAR4. On the other hand, PKCδ by associating with Fyn, inhibits platelet aggregation. In addition, PKCβ by interacting with its receptor RACK1 has been implicated in the primary phases of signaling via the αIIbβ3 and finally PKCɛ appears to be involved in platelet function downstream GPVI. The present review discusses the latest observations relevant to the role of individual PKC isoforms in platelet activation and thrombus formation.
Collapse
Affiliation(s)
- Y Zaid
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, H1T 1C8 Quebec, Canada.
| | - N Senhaji
- Laboratory of Genetic and Molecular Pathology (LGPM), Medical School, Hassan II University, Casablanca, Morocco
| | - A Naya
- Laboratory of Physiology and Molecular Genetic, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - C Fadainia
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, H1T 1C8 Quebec, Canada
| | - K Kojok
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montreal, H1T 1C8 Quebec, Canada
| |
Collapse
|
15
|
Nakayama M, Niki Y, Kawasaki T, Takeda Y, Ikegami H, Toyama Y, Miyamoto T. IL-32-PAR2 axis is an innate immunity sensor providing alternative signaling for LPS-TRIF axis. Sci Rep 2013; 3:2960. [PMID: 24129891 PMCID: PMC3797434 DOI: 10.1038/srep02960] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/01/2013] [Indexed: 12/22/2022] Open
Abstract
Interleukin (IL)-32 is known to exert adujvant effects on innate immune response, however, receptors and downstream signaling pathways remain to be clarified. Here we found that IL-32γ upregulated serine protease activity of proteinase-3 (PR3), in turn triggering protease-activated receptor 2 (PAR2) signaling. Interestingly, silencing of PR3 or PAR2 using siRNA markedly diminished IL-32γ-induced TNFα and IFN-β mRNA expression. IL-32γ-PAR2 axis utilized TRIF and Ras-Raf-1 pathways. On stimulation with lipopolysaccharide (LPS), differential activation of protein kinase C isoforms modulated the balance between LPS-TLR4-TRIF and IL-32-PAR2-TRIF axes, because LPS was a strong inducer of IL-32γ. IL-32-PAR2-TRIF axis might serve not only as an extracellular sensor of bacterial and autologous proteases, but also as a modulator of innate and adaptive immunity during infection.
Collapse
Affiliation(s)
- Masanori Nakayama
- Department of Orthopaedic Surgery, Keio University, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Buitrago L, Bhavanasi D, Dangelmaier C, Manne BK, Badolia R, Borgognone A, Tsygankov AY, McKenzie SE, Kunapuli SP. Tyrosine phosphorylation on spleen tyrosine kinase (Syk) is differentially regulated in human and murine platelets by protein kinase C isoforms. J Biol Chem 2013; 288:29160-9. [PMID: 23960082 DOI: 10.1074/jbc.m113.464107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein kinase C (PKC) isoforms differentially regulate platelet functional responses downstream of glycoprotein VI (GPVI) signaling, but the role of PKCs regulating upstream effectors such as Syk is not known. We investigated the role of PKC on Syk tyrosine phosphorylation using the pan-PKC inhibitor GF109203X (GFX). GPVI-mediated phosphorylation on Syk Tyr-323, Tyr-352, and Tyr-525/526 was rapidly dephosphorylated, but GFX treatment inhibited this dephosphorylation on Tyr-525/526 in human platelets but not in wild type murine platelets. GFX treatment did not affect tyrosine phosphorylation on FcRγ chain or Src family kinases. Phosphorylation of Lat Tyr-191 and PLCγ2 Tyr-759 was also increased upon treatment with GFX. We evaluated whether secreted ADP is required for such dephosphorylation. Exogenous addition of ADP to GFX-treated platelets did not affect tyrosine phosphorylation on Syk. FcγRIIA- or CLEC-2-mediated Syk tyrosine phosphorylation was also potentiated with GFX in human platelets. Because potentiation of Syk phosphorylation is not observed in murine platelets, PKC-deficient mice cannot be used to identify the PKC isoform regulating Syk phosphorylation. We therefore used selective inhibitors of PKC isoforms. Only PKCβ inhibition resulted in Syk hyperphosphorylation similar to that in platelets treated with GFX. This result indicates that PKCβ is the isoform responsible for Syk negative regulation in human platelets. In conclusion, we have elucidated a novel pathway of Syk regulation by PKCβ in human platelets.
Collapse
|
17
|
Carubbi C, Mirandola P, Mattioli M, Galli D, Marziliano N, Merlini PA, Lina D, Notarangelo F, Cozzi MR, Gesi M, Ardissino D, De Marco L, Vitale M, Gobbi G. Protein kinase C ε expression in platelets from patients with acute myocardial infarction. PLoS One 2012; 7:e46409. [PMID: 23071564 PMCID: PMC3465320 DOI: 10.1371/journal.pone.0046409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 01/16/2023] Open
Abstract
Objective Platelets play crucial roles in the pathophysiology of thrombosis and myocardial infarction. Protein kinase C ε (PKCε) is virtually absent in human platelets and its expression is precisely regulated during human megakaryocytic differentiation. On the basis of what is known on the role of platelet PKCε in other species, we hypothesized that platelets from myocardial infarction patients might ectopically express PKCε with a pathophysiological role in the disease. Methods and Results We therefore studied platelet PKCε expression from 24 patients with myocardial infarction, 24 patients with stable coronary artery disease and 24 healthy subjects. Indeed, platelets from myocardial infarction patients expressed PKCε with a significant frequency as compared to both stable coronary artery disease and healthy subjects. PKCε returned negative during patient follow-up. The forced expression of PKCε in normal donor platelets significantly increased their response to adenosine diphosphate-induced activation and adhesion to subendothelial collagen. Conclusions Our data suggest that platelet generations produced before the acute event retain PKCε-mRNA that is not down-regulated during terminal megakaryocyte differentiation. Results are discussed in the perspective of peri-infarctual megakaryocytopoiesis as a critical component of myocardial infarction pathophysiology.
Collapse
Affiliation(s)
- Cecilia Carubbi
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Prisco Mirandola
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Maria Mattioli
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Daniela Galli
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | | | | | - Daniela Lina
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Maria Rita Cozzi
- Department of Laboratory Medicine, CRO National Cancer Institute, Aviano, Italy
| | - Marco Gesi
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa, Italy
| | - Diego Ardissino
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Luigi De Marco
- Department of Laboratory Medicine, CRO National Cancer Institute, Aviano, Italy
| | - Marco Vitale
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
- * E-mail:
| | - Giuliana Gobbi
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| |
Collapse
|
18
|
UNSWORTH AJ, FINNEY BA, NAVARRO-NUNEZ L, SEVERIN S, WATSON SP, PEARS CJ. Protein kinase Cε and protein kinase Cθ double-deficient mice have a bleeding diathesis. J Thromb Haemost 2012; 10:1887-94. [PMID: 22812584 PMCID: PMC3532618 DOI: 10.1111/j.1538-7836.2012.04857.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/10/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND In comparison to the classical isoforms of protein kinase C (PKC), the novel isoforms are thought to play minor or inhibitory roles in the regulation of platelet activation and thrombosis. OBJECTIVES To measure the levels of PKCθ and PKCε and to investigate the phenotype of mice deficient in both novel PKC isoforms. METHODS Tail bleeding and platelet activation assays were monitored in mice and platelets from mice deficient in both PKCθ and PKCε. RESULTS PKCε plays a minor role in supporting aggregation and secretion following stimulation of the collagen receptor GPVI in mouse platelets but has no apparent role in spreading on fibrinogen. PKCθ, in contrast, plays a minor role in supporting adhesion and filopodial generation on fibrinogen but has no apparent role in aggregation and secretion induced by GPVI despite being expressed at over 10 times the level of PKCε. Platelets deficient in both novel isoforms have a similar pattern of aggregation downstream of GPVI and spreading on fibrinogen as the single null mutants. Strikingly, a marked reduction in aggregation on collagen under arteriolar shear conditions is observed in blood from the double but not single-deficient mice along with a significant increase in tail bleeding. CONCLUSIONS These results reveal a greater than additive role for PKCθ and PKCε in supporting platelet activation under shear conditions and demonstrate that, in combination, the two novel PKCs support platelet activation.
Collapse
Affiliation(s)
- A J UNSWORTH
- Department of Biochemistry, University of OxfordOxford
| | - B A FINNEY
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - L NAVARRO-NUNEZ
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - S SEVERIN
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - S P WATSON
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - C J PEARS
- Department of Biochemistry, University of OxfordOxford
| |
Collapse
|
19
|
Bradley SJ, Challiss RAJ. Defining protein kinase/phosphatase isoenzymic regulation of mGlu₅ receptor-stimulated phospholipase C and Ca²⁺ responses in astrocytes. Br J Pharmacol 2012; 164:755-71. [PMID: 21486279 DOI: 10.1111/j.1476-5381.2011.01421.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Cyclical phosphorylation and dephosphorylation of a key residue within the C-terminal domain of the activated type 5 metabotropic glutamate (mGlu₅) receptor is believed to cause the synchronous, oscillatory changes in inositol 1,4,5-trisphosphate and Ca²⁺ levels observed in a variety of cell types. Here, we have attempted to better define the kinase and phosphatase enzymes involved in this modulation. EXPERIMENTAL APPROACH Ca²⁺ and [³H]inositol phosphate ([³H]IP(x) ) measurements in astrocyte preparations have been used to evaluate the effects of pharmacological inhibition of protein kinase C (PKC) and protein phosphatase activities and small interfering RNA-mediated specific PKC isoenzymic knock-down on mGlu₅ receptor signalling. KEY RESULTS Ca²⁺ oscillation frequency or [³H]IP(x) accumulation in astrocytes stimulated by mGlu₅ receptors, was concentration-dependently decreased by protein phosphatase-1/2A inhibition or by PKC activation. PKC inhibition also increased [³H]IP(x) accumulation two- to threefold and changed the Ca²⁺ response into a peak-plateau response. However, selective inhibition of conventional PKC isoenzymes or preventing changes in [Ca²⁺](i) concentration by BAPTA-AM loading was without effect on mGlu₅ receptor-stimulated [³H]IP(x) accumulation. Selective knock-down of PKCδ was without effect on glutamate-stimulated Ca²⁺ responses; however, selective PKCε knock-down in astrocytes changed Ca²⁺ responses from oscillatory into peak-plateau type. CONCLUSION AND IMPLICATIONS These data confirm the acute regulation of mGlu₅ receptor signalling by protein kinases and protein phosphatases and provide novel data pinpointing the isoenzymic dependence of this regulation in the native mGlu₅ receptor-expressing rat cortical astrocyte. These data also highlight a potential alternative mechanism by which mGlu₅ receptor signalling might be therapeutically manipulated.
Collapse
Affiliation(s)
- S J Bradley
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | | |
Collapse
|
20
|
Bynagari-Settipalli YS, Lakhani P, Jin J, Bhavaraju K, Rico MC, Kim S, Woulfe D, Kunapuli SP. Protein kinase C isoform ε negatively regulates ADP-induced calcium mobilization and thromboxane generation in platelets. Arterioscler Thromb Vasc Biol 2012; 32:1211-9. [PMID: 22362759 DOI: 10.1161/atvbaha.111.242388] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Members of the protein kinase C (PKC) family are shown to positively and negatively regulate platelet activation. Although positive regulatory roles are extensively studied, negative regulatory roles of PKCs are poorly understood. We investigated the mechanism and specific isoforms involved in PKC-mediated negative regulation of ADP-induced functional responses. METHODS AND RESULTS A pan-PKC inhibitor, GF109203X, potentiated ADP-induced cPLA(2) phosphorylation and thromboxane generation as well as ERK activation and intracellular calcium (Ca(2+)(i)) mobilization, 2 signaling molecules, upstream of cPLA(2) activation. Thus, PKCs inhibit cPLA(2) activation by inhibiting ERK and Ca(2+)(i) mobilization. Because the inhibitor of classic PKC isoforms, GO-6976, did not affect ADP-mediated thromboxane generation, we investigated the role of novel class of PKC isoforms. ADP-induced thromboxane generation, calcium mobilization, and ERK phosphorylation were potentiated in PKCε null murine platelets compared with platelets from wild-type littermates. Interestingly, when thromboxane release is blocked, ADP-induced aggregation in PKCε knockout and wild-type was similar, suggesting that PKCε does not affect ADP-induced aggregation directly. PKCε knockout mice exhibited shorter times to occlusion in an FeCl(3)-induced arterial injury model and shorter bleeding times in tail-bleeding experiments. CONCLUSIONS We conclude that PKCε negatively regulates ADP-induced thromboxane generation in platelets and offers protection against thrombosis.
Collapse
|
21
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|
22
|
Mirandola P, Gobbi G, Masselli E, Micheloni C, Di Marcantonio D, Queirolo V, Chiodera P, Meschi T, Vitale M. Protein kinase Cε regulates proliferation and cell sensitivity to TGF-1β of CD4+ T lymphocytes: implications for Hashimoto thyroiditis. THE JOURNAL OF IMMUNOLOGY 2011; 187:4721-32. [PMID: 21964026 DOI: 10.4049/jimmunol.1003258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have studied the functional role of protein kinase Cε (PKCε) in the control of human CD4(+) T cell proliferation and in their response to TGF-1β. We demonstrate that PKCε sustains CD4(+) T cell proliferation triggered in vitro by CD3 stimulation. Transient knockdown of PKCε expression decreases IL-2R chain transcription, and consequently cell surface expression levels of CD25. PKCε silencing in CD4 T cells potentiates the inhibitory effects of TGF-1β, whereas in contrast, the forced expression of PKCε virtually abrogates the inhibitory effects of TGF-1β. Being that PKCε is therefore implicated in the response of CD4 T cells to both CD3-mediated proliferative stimuli and TGF-1β antiproliferative signals, we studied it in Hashimoto thyroiditis (HT), a pathology characterized by abnormal lymphocyte proliferation and activation. When we analyzed CD4 T cells from HT patients, we found a significant increase of PKCε expression, accounting for their enhanced survival, proliferation, and decreased sensitivity to TGF-1β. The increased expression of PKCε in CD4(+) T cells of HT patients, which is described for the first time, to our knowledge, in this article, viewed in the perspective of the physiological role of PKCε in normal Th lymphocytes, adds knowledge to the molecular pathophysiology of HT and creates potentially new pharmacological targets for the therapy of this disease.
Collapse
Affiliation(s)
- Prisco Mirandola
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Parma, 43126 Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Protein kinase C-theta in platelet activation. FEBS Lett 2011; 585:3208-15. [DOI: 10.1016/j.febslet.2011.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/20/2011] [Accepted: 09/12/2011] [Indexed: 02/05/2023]
|
24
|
Bhavanasi D, Kim S, Goldfinger LE, Kunapuli SP. Protein kinase Cδ mediates the activation of protein kinase D2 in platelets. Biochem Pharmacol 2011; 82:720-7. [PMID: 21736870 DOI: 10.1016/j.bcp.2011.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 01/25/2023]
Abstract
Protein kinase D (PKD) is a subfamily of serine/threonine specific family of kinases, comprised of PKD1, PKD2 and PKD3 (PKCμ, PKD2 and PKCv in humans). It is known that PKCs activate PKD, but the relative expression of isoforms of PKD or the specific PKC isoform/s responsible for its activation in platelets is not known. This study is aimed at investigating the pathway involved in activation of PKD in platelets. We show that PKD2 is the major isoform of PKD that is expressed in human as well as murine platelets but not PKD1 or PKD3. PKD2 activation induced by AYPGKF was abolished with a G(q) inhibitor YM-254890, but was not affected by Y-27632, a RhoA/p160ROCK inhibitor, indicating that PKD2 activation is G(q)-, but not G₁₂/₁₃-mediated Rho-kinase dependent. Calcium-mediated signals are also required for activation of PKD2 as dimethyl BAPTA inhibited its phosphorylation. GF109203X, a pan PKC inhibitor abolished PKD2 phosphorylation but Go6976, a classical PKC inhibitor had no effect suggesting that novel PKC isoforms are involved in PKD2 activation. Importantly, Rottlerin, a non-selective PKCδ inhibitor, inhibited AYPGKF-induced PKD2 activation in human platelets. Similarly, AYPGKF- and Convulxin-induced PKD2 phosphorylation was dramatically inhibited in PKCδ-deficient platelets, but not in PKCθ- or PKCɛ-deficient murine platelets compared to that of wild type platelets. Hence, we conclude that PKD2 is a common signaling target downstream of various agonist receptors in platelets and G(q)-mediated signals along with calcium and novel PKC isoforms, in particular, PKCδ activate PKD2 in platelets.
Collapse
Affiliation(s)
- Dheeraj Bhavanasi
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
25
|
Aktan Í, Dunkel B, Cunningham F. PKC isoenzymes in equine platelets and stimulus induced activation. Vet Immunol Immunopathol 2011; 141:276-82. [DOI: 10.1016/j.vetimm.2011.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/14/2011] [Accepted: 03/21/2011] [Indexed: 12/13/2022]
|
26
|
Heemskerk JW, Harper MT, Cosemans JM, Poole AW. Unravelling the different functions of protein kinase C isoforms in platelets. FEBS Lett 2011; 585:1711-6. [DOI: 10.1016/j.febslet.2011.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/28/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
|
27
|
Unsworth AJ, Smith H, Gissen P, Watson SP, Pears CJ. Submaximal inhibition of protein kinase C restores ADP-induced dense granule secretion in platelets in the presence of Ca2+. J Biol Chem 2011; 286:21073-82. [PMID: 21489985 PMCID: PMC3122168 DOI: 10.1074/jbc.m110.187138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases that play isoform-specific inhibitory and stimulatory roles in platelet activation. We show here that the pan-PKC inhibitor Ro31-8220 can be used to dissect these events following platelet activation by ADP. Submaximal concentrations of Ro31-8220 potentiated aggregation and dense granule secretion to ADP in plasma anticoagulated with citrate, in d-Phe-Pro-Arg-chloromethyl ketone-anticoagulated plasma, which has physiological levels of Ca2+, and in washed platelets. Potentiation was retained on inhibition of cyclooxygenase and was associated with an increase in intracellular Ca2+. Potentiation of aggregation and secretion was abolished by a maximally effective concentration of Ro31-8220, consistent with a critical role of PKC in secretion. ADP-induced secretion was potentiated in the presence of an inhibitor of PKCβ but not in the presence of available inhibitors of other PKC isoforms in human and mouse platelets. ADP-induced secretion was also potentiated in mouse platelets deficient in PKCϵ but not PKCθ. These results demonstrate that partial blockade of PKC potentiates aggregation and dense granule secretion by ADP in association with increased Ca2+. This provides a molecular explanation for the inability of ADP to induce secretion in plasma in the presence of physiological Ca2+ concentrations, and it reveals a novel role for PKC in inhibiting platelet activation by ADP in vivo. These results also demonstrate isoform-specific inhibitory effects of PKC in platelets.
Collapse
Affiliation(s)
- Amanda J Unsworth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Jalagadugula G, Mao G, Kaur G, Dhanasekaran DN, Rao AK. Platelet protein kinase C-theta deficiency with human RUNX1 mutation: PRKCQ is a transcriptional target of RUNX1. Arterioscler Thromb Vasc Biol 2011; 31:921-7. [PMID: 21252065 DOI: 10.1161/atvbaha.110.221879] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Mutations in the hematopoietic transcription factor RUNX1 cause thrombocytopenia and impaired platelet function. In a patient with a heterozygous mutation in RUNX1, we have described decreased platelet pleckstrin phosphorylation and protein kinase C- (PKC-, gene PRKCQ) associated with thrombocytopenia, impaired platelet aggregation, and dense granule secretion. Little is known regarding regulation of PKC- in megakaryocytes and platelets. We have addressed the hypothesis that PRKCQ is a direct transcriptional target of RUNX1. METHODS AND RESULTS In a chromatin immunoprecipitation assay using megakaryocytic cells, there was RUNX1 binding in vivo to PRKCQ promoter region -1225 to -1056 bp containing a RUNX1 consensus site ACCGCA at -1088 to -1069 bp; an electrophoretic mobility shift assay showed RUNX1 binding to the specific site. In RUNX1 overexpression studies, PKC- protein expression and promoter activity were enhanced; mutation of RUNX1 site showed decreased activity even with RUNX1 overexpression. Lastly, PRKCQ promoter activity and PKC- protein were decreased by short interfering RNA knockdown of RUNX1. CONCLUSIONS Our results provide the first evidence that PRKCQ is regulated at the transcriptional level by RUNX1 in megakaryocytic cells and a mechanism for PKC- deficiency associated with RUNX1 haplodeficiency.
Collapse
Affiliation(s)
- Gauthami Jalagadugula
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Upon vascular injury, platelets are activated by adhesion to adhesive proteins, such as von Willebrand factor and collagen, or by soluble platelet agonists, such as ADP, thrombin, and thromboxane A(2). These adhesive proteins and soluble agonists induce signal transduction via their respective receptors. The various receptor-specific platelet activation signaling pathways converge into common signaling events that stimulate platelet shape change and granule secretion and ultimately induce the "inside-out" signaling process leading to activation of the ligand-binding function of integrin α(IIb)β(3). Ligand binding to integrin α(IIb)β(3) mediates platelet adhesion and aggregation and triggers "outside-in" signaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction. It has become increasingly evident that agonist-induced platelet activation signals also cross talk with integrin outside-in signals to regulate platelet responses. Platelet activation involves a series of rapid positive feedback loops that greatly amplify initial activation signals and enable robust platelet recruitment and thrombus stabilization. Recent studies have provided novel insight into the molecular mechanisms of these processes.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Medicine, University of Kentucky
| | | | | | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago
| |
Collapse
|
30
|
Gilio K, Harper MT, Cosemans JMEM, Konopatskaya O, Munnix ICA, Prinzen L, Leitges M, Liu Q, Molkentin JD, Heemskerk JWM, Poole AW. Functional divergence of platelet protein kinase C (PKC) isoforms in thrombus formation on collagen. J Biol Chem 2010; 285:23410-9. [PMID: 20479008 PMCID: PMC2906332 DOI: 10.1074/jbc.m110.136176] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.
Collapse
Affiliation(s)
- Karen Gilio
- Department of Physiology and Pharmacology, School of Medical Sciences, Bristol University, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Harper MT, Poole AW. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J Thromb Haemost 2010; 8:454-62. [PMID: 20002545 DOI: 10.1111/j.1538-7836.2009.03722.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelet activation is a complex balance of positive and negative signaling pathways. The protein kinase C (PKC) family is a major regulator of platelet granule secretion, integrin activation, aggregation, spreading and procoagulant activity. As broad-spectrum PKC inhibitors reduce secretion and aggregation, the PKC family is generally considered to be a positive regulator of platelet activation. However, the individual members of the PKC family that are expressed in platelets are regulated in different ways, and an increasing body of evidence indicates that they have distinct, and often opposing, roles. Many of the recent advances in understanding the contributions of individual PKC isoforms have come from mouse gene knockout studies. PKCalpha, a classic isoform, is an essential positive regulator of granule secretion and thrombus formation, both in vitro and in vivo. Mice lacking PKCalpha show much reduced thrombus formation in vivo but do not have a bleeding defect, suggesting that PKCalpha could be an attractive antithrombotic target. Important, apparently non-redundant, roles, both positive and negative, for the novel PKC isoforms delta, theta and epsilon in granule secretion have also been proposed, indicating highly complex regulation of this essential process. Similarly, PKCbeta, PKCdelta and PKCtheta have non-redundant roles in platelet spreading, as absence of either PKCbeta or PKCtheta reduces spreading, whereas PKCdelta negatively regulates filopodial formation. This negative signaling by PKCdelta may reduce platelet aggregation and so restrict thrombus formation. In this review, we discuss the current understanding of the regulation and functions of individual PKC isoforms in platelet activation and thrombus formation.
Collapse
Affiliation(s)
- M T Harper
- Department of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | |
Collapse
|
32
|
Abstract
The C-type lectin receptor CLEC-2 activates platelets through Src and Syk tyrosine kinases, leading to tyrosine phosphorylation of downstream adapter proteins and effector enzymes, including phospholipase-C gamma2. Signaling is initiated through phosphorylation of a single conserved tyrosine located in a YxxL sequence in the CLEC-2 cytosolic tail. The signaling pathway used by CLEC-2 shares many similarities with that used by receptors that have 1 or more copies of an immunoreceptor tyrosine-based activation motif, defined by the sequence Yxx(L/I)x(6-12)Yxx(L/I), in their cytosolic tails or associated receptor chains. Phosphorylation of the conserved immunoreceptor tyrosine-based activation motif tyrosines promotes Syk binding and activation through binding of the Syk tandem SH2 domains. In this report, we present evidence using peptide pull-down studies, surface plasmon resonance, quantitative Western blotting, tryptophan fluorescence measurements, and competition experiments that Syk activation by CLEC-2 is mediated by the cross-linking through the tandem SH2 domains with a stoichiometry of 2:1. In support of this model, cross-linking and electron microscopy demonstrate that CLEC-2 is present as a dimer in resting platelets and converted to larger complexes on activation. This is a unique mode of activation of Syk by a single YxxL-containing receptor.
Collapse
|