1
|
El-Mayet FS, Santos VC, Wijesekera N, Lubbers S, Harrison KS, Sadeghi H, Jones C. Glucocorticoid receptor and specificity protein 1 (Sp1) or Sp3, but not the antibiotic Mithramycin A, stimulates human alphaherpesvirus 1 (HSV-1) replication. Antiviral Res 2024; 225:105870. [PMID: 38556059 PMCID: PMC11109923 DOI: 10.1016/j.antiviral.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Following acute human alphaherpesvirus 1 (HSV-1) infection of oral-facial mucosal surfaces, sensory neurons in trigeminal ganglia (TG) are important sites for life-long latency. Neurons in the central nervous system, including brainstem, also harbor viral genomes during latency. Periodically, certain cellular stressors trigger reactivation from latency, which can lead to recurrent HSV-1 disease: herpes labialis, herpes stromal keratitis, and encephalitis for example. Activation of the glucocorticoid receptor (GR) by stressful stimuli enhances HSV-1 gene expression, replication, and explant-induced reactivation. GR and certain stress-induced Krüppel like factors (KLF) cooperatively transactivate cis-regulatory modules (CRM) that drive expression of viral transcriptional regulatory proteins (ICP0, ICP4, and ICP27). These CRMs lack GR response elements (GRE); however, specificity protein 1 (Sp1) binding sites are crucial for GR and KLF15 or KLF4 mediated transactivation. Hence, we tested whether Sp1 or Sp3 regulate viral replication and transactivation of the ICP0 promoter. During early stages of explant-induced reactivation from latency, the number of Sp3+ TG neurons were significantly higher relative to TG from latently infected mice. Conversely, Sp1+ TG neurons were only increased in females, but not male mice, during explant-induced reactivation. Sp1 siRNA significantly reduced HSV-1 replication in cultured mouse (Neuro-2A) and monkey (CV-1) cells. Mithramycin A, an antibiotic that has anti-tumor activity preferentially interacts with GC-rich DNA, including Sp1 binding sites, significantly reduced HSV-1 replication indicating it has antiviral activity. GR and Sp1 or Sp3 transactivated the HSV-1 ICP0 promoter in Neuro-2A and CV-1 cells confirming these transcription factors enhance viral replication and gene expression.
Collapse
Affiliation(s)
- Fouad S El-Mayet
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, USA; Benha University, Faculty of Veterinary Medicine, Department of Virology, Moshtohor, 13736, Kaliobyia, Egypt
| | - Vanessa Claire Santos
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Nishani Wijesekera
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Sydney Lubbers
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Kelly S Harrison
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Hafez Sadeghi
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK, USA.
| |
Collapse
|
2
|
Lambring CB, Fiadjoe H, Behera SK, Basha R. Docking and molecular dynamic simulations of Mithramycin-A and Tolfenamic acid against Sp1 and survivin. Process Biochem 2024; 137:207-216. [PMID: 38912413 PMCID: PMC11192519 DOI: 10.1016/j.procbio.2023.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Therapeutic targeting of Sp1 transcription factor and survivin, are studied in various cancers due to their consistent overexpression. These markers result in poorer cancer prognoses and their downregulation has been investigated as an effective treatment approach. Mithramycin-A and Tolfenamic acid are two drugs with innate anti-cancer properties and are suggested to be able to target Sp1 through GC/GT DNA binding interference, however in-depth binding and mechanistic studies are lacking. Through docking analysis, we investigated Mithramycin-A and Tolfenamic acid in terms of their specific binding interactions with Sp1 and survivin. Through further molecular dynamics simulations including Root Mean Square (RMS) Fluctuation and RMS Deviation, rGYr, and H-bond analysis, we identified critical residues involved in drug interactions with each protein in question. We show Mithramycin-A as the superior binding candidate to each protein and found that it exhibited stronger binding with Sp1, and then survivin. Subsequent molecular dynamics simulations followed the same trend as initial binding energy calculations and showed crucial amino acids involved in each Mithramycin-A-protein complex. Our findings warrant further investigation into Mithramycin-A and its specific interaction with Sp1 and their downstream targets giving a better understanding of Mithramycin-A and its potential as an effective cancer treatment.
Collapse
Affiliation(s)
| | - Hope Fiadjoe
- UNT Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | | - Riyaz Basha
- UNT Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Wei L, Deng C, Zhang B, Wang G, Meng Y, Qin H. SP4 Facilitates Esophageal Squamous Cell Carcinoma Progression by Activating PHF14 Transcription and Wnt/Β-Catenin Signaling. Mol Cancer Res 2024; 22:55-69. [PMID: 37768180 PMCID: PMC10758695 DOI: 10.1158/1541-7786.mcr-22-0835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/13/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Specificity protein 4 transcription factor (SP4), a member of the Sp/Krüppel-like family (KLF), could bind to GT and GC box promoters, and plays an essential role in transcriptional activating. Despite SP4 having been detected to be highly expressed in a variety of human tumors, its biological effect and underlying molecular mechanism in esophageal squamous cell carcinoma (ESCC) remains unclear. Our research discovered that high SP4 expression is detected in primary ESCC specimens and cell lines and is strongly associated with the ESCC tumor grade and poor prognosis. In vitro, knockdown of SP4 suppressed cell proliferation and cell-cycle progression and promoted apoptosis, whereas overexpression of SP4 did the opposite. In vivo, inhibiting SP4 expression in ESCC cells suppresses tumor growth. Subsequently, we demonstrated that SP4 acts as the transcriptional upstream of PHF14, which binds to PHF14 promoter region, thus promoting PHF14 transcription. PHF14 was also significantly expressed in patient tissues and various ESCC cell lines and its expression promoted cell proliferation and inhibited apoptosis. Moreover, knockdown of SP4 inhibited the Wnt/β-catenin signaling pathway, whereas overexpression of PHF14 eliminated the effects of SP4 knockdown in ESCC cells. These results demonstrate that SP4 activates the Wnt/β-catenin signaling pathway by driving PHF14 transcription, thereby promoting ESCC progression, which indicates that SP4 might act as a prospective prognostic indicator or therapeutic target for patients with ESCC. IMPLICATIONS This study identified SP4/PH14 axis as a new mechanism to promote the progression of ESCC, which may serve as a novel therapeutic target for patients with ESCC.
Collapse
Affiliation(s)
- Li Wei
- Department of Surgery and Anesthesia, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chaowei Deng
- Department of Cell Biology and Genetics/Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Bo Zhang
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yan Meng
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hao Qin
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
4
|
Safe S. Specificity Proteins (Sp) and Cancer. Int J Mol Sci 2023; 24:5164. [PMID: 36982239 PMCID: PMC10048989 DOI: 10.3390/ijms24065164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Caspase-Mediated Cleavage of the Transcription Factor Sp3: Possible Relevance to Cancer and the Lytic Cycle of Kaposi's Sarcoma-Associated Herpesvirus. Microbiol Spectr 2022; 10:e0146421. [PMID: 35019687 PMCID: PMC8754129 DOI: 10.1128/spectrum.01464-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The open reading frame 50 (ORF50) protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is the master regulator essential for initiating the viral lytic cycle. Previously, we have demonstrated that the ORF50 protein can cooperate with Sp3 to synergistically activate a set of viral and cellular gene promoters through highly conserved ORF50-responsive elements that harbor a Sp3-binding motif. Herein, we show that Sp3 undergoes proteolytic cleavage during the viral lytic cycle, and the cleavage of Sp3 is dependent on caspase activation. Since similar cleavage patterns of Sp3 could be detected in both KSHV-positive and KSHV-negative lymphoma cells undergoing apoptosis, the proteolytic cleavage of Sp3 could be a common event during apoptosis. Mutational analysis identifies 12 caspase cleavage sites in Sp3, which are situated at the aspartate (D) positions D17, D19, D180, D273, D275, D293, D304 (or D307), D326, D344, D530, D543, and D565. Importantly, we noticed that three stable Sp3 C-terminal fragments generated through cleavage at D530, D543, or D565 encompass an intact DNA-binding domain. Like the full-length Sp3, the C-terminal fragments of Sp3 could still retain the ability to cooperate with ORF50 protein to activate specific viral and cellular gene promoters synergistically. Collectively, our findings suggest that despite the proteolytic cleavage of Sp3 under apoptotic conditions, the resultant Sp3 fragments may retain biological activities important for the viral lytic cycle or for cellular apoptosis. IMPORTANCE The ORF50 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is the key viral protein that controls the switch from latency to lytic reactivation. It is a potent transactivator that can activate target gene promoters via interacting with other cellular DNA-binding transcription factors, such as Sp3. In this report, we show that Sp3 is proteolytically cleaved during the viral lytic cycle, and up to 12 caspase cleavage sites are identified in Sp3. Despite the proteolytic cleavage of Sp3, several resulting C-terminal fragments that have intact zinc-finger DNA-binding domains still retain substantial influence in the synergy with ORF50 to activate specific gene promoters. Overall, our studies elucidate the caspase-mediated cleavage of Sp3 and uncover how ORF50 utilizes the cleavage fragments of Sp3 to transactivate specific viral and cellular gene promoters.
Collapse
|
6
|
Safe S, Shrestha R, Mohankumar K, Howard M, Hedrick E, Abdelrahim M. Transcription factors specificity protein and nuclear receptor 4A1 in pancreatic cancer. World J Gastroenterol 2021; 27:6387-6398. [PMID: 34720529 PMCID: PMC8517783 DOI: 10.3748/wjg.v27.i38.6387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Specificity protein (Sp) transcription factors (TFs) Sp1, Sp3 and Sp4, and the orphan nuclear receptor 4A1 (NR4A1) are highly expressed in pancreatic tumors and Sp1 is a negative prognostic factor for pancreatic cancer patient survival. Results of knockdown and overexpression of Sp1, Sp3 and Sp4 in pancreatic and other cancer lines show that these TFs are individually pro-oncogenic factors and loss of one Sp TF is not compensated by other members. NR4A1 is also a pro-oncogenic factor and both NR4A1 and Sp TFs exhibit similar functions in pancreatic cancer cells and regulate cell growth, survival, migration and invasion. There is also evidence that Sp TFs and NR4A1 regulate some of the same genes including survivin, epidermal growth factor receptor, PAX3-FOXO1, α5- and α6-integrins, β1-, β3- and β4-integrins; this is due to NR4A1 acting as a cofactor and mediating NR4A1/Sp1/4-regulated gene expression through GC-rich gene promoter sites. Several studies show that drugs targeting Sp downregulation or NR4A1 antagonists are highly effective inhibitors of Sp/NR4A1-regulated pathways and genes in pancreatic and other cancer cells, and the triterpenoid celastrol is a novel dual-acting agent that targets both Sp TFs and NR4A1.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77845, United States
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77845, United States
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77845, United States
| | - Marcell Howard
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77845, United States
| | - Erik Hedrick
- Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Maen Abdelrahim
- Department of Medical Oncology, Houston Methodist Hospital Cancer Center, Houston, TX 77030, United States
| |
Collapse
|
7
|
Tepe B, Hill MC, Pekarek BT, Hunt PJ, Martin TJ, Martin JF, Arenkiel BR. Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular Heterogeneity and Activity-Dependent Molecular Census of Adult-Born Neurons. Cell Rep 2019; 25:2689-2703.e3. [PMID: 30517858 PMCID: PMC6342206 DOI: 10.1016/j.celrep.2018.11.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/18/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
Cellular heterogeneity within the mammalian brain poses a challenge
toward understanding its complex functions. Within the olfactory bulb, odor
information is processed by subtypes of inhibitory interneurons whose
heterogeneity and functionality are influenced by ongoing adult neurogenesis. To
investigate this cellular heterogeneity and better understand adult-born neuron
development, we utilized single-cell RNA sequencing and computational modeling
to reveal diverse and transcriptionally distinct neuronal and nonneuronal cell
types. We also analyzed molecular changes during adult-born interneuron
maturation and uncovered developmental programs within their gene expression
profiles. Finally, we identified that distinct neuronal subtypes are
differentially affected by sensory experience. Together, these data provide a
transcriptome-based foundation for investigating subtype-specific neuronal
function in the olfactory bulb (OB), charting the molecular profiles that arise
during the maturation and integration of adult-born neurons and how they
dynamically change in an activity-dependent manner. Using single-cell sequencing, Tepe et al. describe cellular heterogeneity
in the mouse olfactory bulb, uncover markers for each cell type, and reveal
differentially regulated genes in adult-born neurons. These findings provide a
framework for studying cell-type-specific functions and circuit integration in
the mammalian brain.
Collapse
Affiliation(s)
- Burak Tepe
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon T Pekarek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick J Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas J Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; The Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Yeo IJ, Lee CK, Han SB, Yun J, Hong JT. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol Ther 2019; 203:107394. [PMID: 31356910 DOI: 10.1016/j.pharmthera.2019.107394] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Chitinase 3-like 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly increased by various inflammatory and immunological conditions, including rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, and several cancers. However, its physiological and pathophysiological roles in the development of cancer and neurodegenerative and inflammatory diseases remain unclear. Several studies have reported that CHI3L1 promotes cancer proliferation, inflammatory cytokine production, and microglial activation, and that multiple receptors, such as advanced glycation end product, syndecan-1/αVβ3, and IL-13Rα2, are involved. In addition, the pro-inflammatory action of CHI3L1 may be mediated via the protein kinase B and phosphoinositide-3 signaling pathways and responses to various pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 could contribute to a vast array of inflammatory diseases. In this article, we review recent findings regarding the roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of cancers, neurodegenerative diseases, and inflammatory diseases.
Collapse
Affiliation(s)
- In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
9
|
Tange R, Tomatsu T, Sato T. Transcription of human β4-galactosyltransferase 3 is regulated by differential DNA binding of Sp1/Sp3 in SH-SY5Y human neuroblastoma and A549 human lung cancer cell lines. Glycobiology 2019; 29:211-221. [PMID: 30561605 DOI: 10.1093/glycob/cwy109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/02/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022] Open
Abstract
Poor prognosis of neuroblastoma patients has been shown to be associated with increased expression of β4-galactosyltransferase (β4GalT) 3. To address the underlying mechanism of the increased expression of β4GalT3, the transcriptional regulation of the human β4GalT3 gene was investigated in SH-SY5Y human neuroblastoma cell line comparing with A549 human lung cancer cell line, in which the β4GalT3 gene expression was the lowest among four cancer cell lines examined. The core promoter region was identified between nucleotides -69 and -6 relative to the transcriptional start site, and the same region was utilized in both cell lines. The promoter region contained two Specificity protein (Sp)1/3-binding sites at nucleotide positions -39/-30 and -19/-10, and the sites were crucial for the promoter activity. Although the gene expression of Sp family transcription factors Sp1 and Sp3 was comparable in each cell line, Sp3 bound to the promoter region in SH-SY5Y cells whereas Sp1 bound to the region in A549 cells. The promoter activities were enhanced by Sp1 and Sp3 in SH-SY5Y cells. In contrast, the promoter activities were enhanced by Sp1 but reduced by Sp3 in A549 cells. Furthermore, the function of each Sp1/3-binding site differed between SH-SY5Y and A549 cells due to the differential binding of Sp1/Sp3. These findings suggest that the transcription of the β4GalT3 gene is regulated by differential DNA binding of Sp3 and Sp1 in neuroblastoma and lung cancer. The increased expression of β4GalT3 in neuroblastoma may be ascribed to the enhanced expression of Sp3, which is observed for various cancers.
Collapse
Affiliation(s)
- Riho Tange
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takuya Tomatsu
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
10
|
Beug ST, Cheung HH, Sanda T, St-Jean M, Beauregard CE, Mamady H, Baird SD, LaCasse EC, Korneluk RG. The transcription factor SP3 drives TNF-α expression in response to Smac mimetics. Sci Signal 2019; 12:12/566/eaat9563. [PMID: 30696705 DOI: 10.1126/scisignal.aat9563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The controlled production and downstream signaling of the inflammatory cytokine tumor necrosis factor-α (TNF-α) are important for immunity and its anticancer effects. Although chronic stimulation with TNF-α is detrimental to the health of the host in several autoimmune and inflammatory disorders, TNF-α-contrary to what its name implies-leads to cancer formation by promoting cell proliferation and survival. Smac mimetic compounds (SMCs), small-molecule antagonists of inhibitor of apoptosis proteins (IAPs), switch the TNF-α signal from promoting survival to promoting death in cancer cells. Using a genome-wide siRNA screen to identify factors required for SMC-to-TNF-α-mediated cancer cell death, we identified the transcription factor SP3 as a critical molecule in both basal and SMC-induced production of TNF-α by engaging the nuclear factor κB (NF-κB) transcriptional pathway. Moreover, the promotion of TNF-α expression by SP3 activity confers differential sensitivity of cancer versus normal cells to SMC treatment. The key role of SP3 in TNF-α production and signaling will help us further understand TNF-α biology and provide insight into mechanisms relevant to cancer and inflammatory disease.
Collapse
Affiliation(s)
- Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Herman H Cheung
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Tarun Sanda
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Martine St-Jean
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Caroline E Beauregard
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Hapsatou Mamady
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Stephen D Baird
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Eric C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.
| | - Robert G Korneluk
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
11
|
Kasiappan R, Jutooru I, Mohankumar K, Karki K, Lacey A, Safe S. Reactive Oxygen Species (ROS)-Inducing Triterpenoid Inhibits Rhabdomyosarcoma Cell and Tumor Growth through Targeting Sp Transcription Factors. Mol Cancer Res 2019; 17:794-805. [PMID: 30610105 DOI: 10.1158/1541-7786.mcr-18-1071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Methyl 2-trifluoromethyl-3,11-dioxo-18β-olean-1,12-dien-3-oate (CF3DODA-Me) is derived synthetically from glycyrrhetinic acid, a major component of licorice, and this compound induced reactive oxygen species (ROS) in RD and Rh30 rhabdomyosarcoma (RMS) cells. CF3DODA-Me also inhibited growth and invasion and induced apoptosis in RMS cells, and these responses were attenuated after cotreatment with the antioxidant glutathione, demonstrating the effective anticancer activity of ROS in RMS. CF3DODA-Me also downregulated expression of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 and prooncogenic Sp-regulated genes including PAX3-FOXO1 (in Rh30 cells). The mechanism of CF3DODA-Me-induced Sp-downregulation involved ROS-dependent repression of c-Myc and cMyc-regulated miR-27a and miR-17/20a, and this resulted in induction of the miRNA-regulated Sp repressors ZBTB4, ZBTB10, and ZBTB34. The cell and tumor growth effects of CF3DODA-Me further emphasize the sensitivity of RMS cells to ROS inducers and their potential clinical applications for treating this deadly disease. IMPLICATIONS: CF3DODA-Me and HDAC inhibitors that induce ROS-dependent Sp downregulation could be developed for clinical applications in treating rhabdomyosarcoma.
Collapse
Affiliation(s)
- Ravi Kasiappan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Indira Jutooru
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Alexandra Lacey
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
12
|
Safe S, Abbruzzese J, Abdelrahim M, Hedrick E. Specificity Protein Transcription Factors and Cancer: Opportunities for Drug Development. Cancer Prev Res (Phila) 2018; 11:371-382. [PMID: 29545399 DOI: 10.1158/1940-6207.capr-17-0407] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Specificity protein (Sp) transcription factors (TFs) such as Sp1 are critical for early development but their expression decreases with age and there is evidence that transformation of normal cells to cancer cells is associated with upregulation of Sp1, Sp3, and Sp4, which are highly expressed in cancer cells and tumors. Sp1 is a negative prognostic factor for pancreatic, colon, glioma, gastric, breast, prostate, and lung cancer patients. Functional studies also demonstrate that Sp TFs regulate genes responsible for cancer cell growth, survival, migration/invasion, inflammation and drug resistance, and Sp1, Sp3 and Sp4 are also nononcogene addiction (NOA) genes and important drug targets. The mechanisms of drug-induced downregulation of Sp TFs and pro-oncogenic Sp-regulated genes are complex and include ROS-dependent epigenetic pathways that initially decrease expression of the oncogene cMyc. Many compounds such as curcumin, aspirin, and metformin that are active in cancer prevention also exhibit chemotherapeutic activity and these compounds downregulate Sp TFs in cancer cell lines and tumors. The effects of these compounds on downregulation of Sp TFs in normal cells and the contribution of this response to their chemopreventive activity have not yet been determined. Cancer Prev Res; 11(7); 371-82. ©2018 AACR.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - James Abbruzzese
- Department of Medicine, Division of Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Maen Abdelrahim
- GI Medical Oncology, Cockrell Center for Advanced Therapeutics, Houston Methodist Cancer Center and Institute of Academic Medicine, Houston, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
13
|
A CRISPR/Cas9 Functional Screen Identifies Rare Tumor Suppressors. Sci Rep 2016; 6:38968. [PMID: 27982060 PMCID: PMC5159885 DOI: 10.1038/srep38968] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/15/2016] [Indexed: 11/08/2022] Open
Abstract
An enormous amount of tumor sequencing data has been generated through large scale sequencing efforts. The functional consequences of the majority of mutations identified by such projects remain an open, unexplored question. This problem is particularly complicated in the case of rare mutations where frequency of occurrence alone or prediction of functional consequences are insufficient to distinguish driver from passenger or bystander mutations. We combine genome editing technology with a powerful mouse cancer model to uncover previously unsuspected rare oncogenic mutations in Burkitt's lymphoma. We identify two candidate tumor suppressors whose loss cooperate with MYC over-expression to accelerate lymphomagenesis. Our results highlight the utility of in vivo CRISPR/Cas9 screens combined with powerful mouse models to identify and validate rare oncogenic modifier events from tumor mutational data.
Collapse
|
14
|
Safe S, Kasiappan R. Natural Products as Mechanism-based Anticancer Agents: Sp Transcription Factors as Targets. Phytother Res 2016; 30:1723-1732. [DOI: 10.1002/ptr.5669] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology; Texas A&M University; College Station TX 77843-4466 USA
| | - Ravi Kasiappan
- Department of Veterinary Physiology and Pharmacology; Texas A&M University; College Station TX 77843-4466 USA
| |
Collapse
|
15
|
Hedrick E, Cheng Y, Jin UH, Kim K, Safe S. Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are non-oncogene addiction genes in cancer cells. Oncotarget 2016; 7:22245-56. [PMID: 26967243 PMCID: PMC5008359 DOI: 10.18632/oncotarget.7925] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022] Open
Abstract
Specificity protein (Sp) transcription factor (TF) Sp1 is overexpressed in multiple tumors and is a negative prognostic factor for patient survival. Sp1 and also Sp3 and Sp4 are highly expressed in cancer cells and in this study, we have used results of RNA interference (RNAi) to show that the three TFs individually play a role in the growth, survival and migration/invasion of breast, kidney, pancreatic, lung and colon cancer cell lines. Moreover, tumor growth in athymic nude mice bearing L3.6pL pancreatic cancer cells as xenografts were significantly decreased in cells depleted for Sp1, Sp3 and Sp4 (combined) or Sp1 alone. Ingenuity Pathway Analysis (IPA) of changes in gene expression in Panc1 pancreatic cancer cells after individual knockdown of Sp1, Sp3 and Sp4 demonstrates that these TFs regulate genes and pathways that correlated with the functional responses observed after knockdown but also some genes and pathways that inversely correlated with the functional responses. However, causal IPA analysis which integrates all pathway-dependent changes in all genes strongly predicted that Sp1-, Sp3- and Sp4-regulated genes were associated with the pro-oncogenic activity. These functional and genomic results coupled with overexpression of Sp transcription factors in tumor vs. non-tumor tissues and decreased Sp1 expression with age indicate that Sp1, Sp3 and Sp4 are non-oncogene addiction (NOA) genes and are attractive drug targets for individual and combined cancer chemotherapies.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yating Cheng
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Kyounghyun Kim
- Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Huang Y, Shen P, Chen X, Chen Z, Zhao T, Chen N, Gong J, Nie L, Xu M, Li X, Zeng H, Zhou Q. Transcriptional regulation of BNIP3 by Sp3 in prostate cancer. Prostate 2015; 75:1556-67. [PMID: 26012884 DOI: 10.1002/pros.23029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/05/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND The transcription factors Sp3/Sp1 are expressed in a various types of cancers and BNIP3 is overexpressed in prostate cancer. Although it has been demonstrated that BNIP3 is transcriptionally regulated by HIF-1α and is post-transcriptionally regulated by miR145, our previous data indicated that there might be some other transcription factors regulating BNIP3 in prostate cancer. This study is conducted to investigate whether BNIP3 expression is directly regulated by Sp3/Sp1 or not. MATERIALS AND METHODS Bioinformatics analysis shows that BNIP3 promoter contains several potential Sp3/Sp1 binding sites. And then it is demonstrated that SP3 could regulate the BNIP3 transcriptionally by binding to the predicted sites by dual reporter gene assays, ChIP, and EMSA. The biological effects of SP3 regulating BNIP3 on prostate cancer cells proliferation are measured by MTT, TUNEL, and flow cytometry. RESULTS Our data show that Sp3 but not Sp1, is positively related to BNIP3 overexpression in prostate cancer. Sp3 can directly regulate BNIP3 transcription by mainly binding to the Sp3 binding sites (-624~-615 and -350~-343) of BNIP3 promoter. Knockdown of Sp3 by RNA interference could reduce cells growth and lead to cells apoptosis in PC-3 and DU145. Sp3-dependent BNIP3 overexpression might be an important mechanism to promote prostate cancer cells proliferation. CONCLUSION This is the first study to provide direct evidence of Sp3-dependent BNIP3 expression. Sp3 might be the major transcriptional regulator of BNIP3 in prostate cancer and it is worthy to further study. The regulation of BNIP3 by Sp3 may be a new cancer-specific therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, China
| | - Pengfei Shen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueqin Chen
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhibin Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhao
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Chen
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Gong
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Nie
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Xu
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinglan Li
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Zhou
- Department of Pathology and Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
de Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I, Merrow M, Brachmann A, Hughes DP. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics 2015; 16:620. [PMID: 26285697 PMCID: PMC4545319 DOI: 10.1186/s12864-015-1812-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Adaptive manipulation of animal behavior by parasites functions to increase parasite transmission through changes in host behavior. These changes can range from slight alterations in existing behaviors of the host to the establishment of wholly novel behaviors. The biting behavior observed in Carpenter ants infected by the specialized fungus Ophiocordyceps unilateralis s.l. is an example of the latter. Though parasitic manipulation of host behavior is generally assumed to be due to the parasite's gene expression, few studies have set out to test this. RESULTS We experimentally infected Carpenter ants to collect tissue from both parasite and host during the time period when manipulated biting behavior is experienced. Upon observation of synchronized biting, samples were collected and subjected to mixed RNA-Seq analysis. We also sequenced and annotated the O. unilateralis s.l. genome as a reference for the fungal sequencing reads. CONCLUSIONS Our mixed transcriptomics approach, together with a comparative genomics study, shows that the majority of the fungal genes that are up-regulated during manipulated biting behavior are unique to the O. unilateralis s.l. genome. This study furthermore reveals that the fungal parasite might be regulating immune- and neuronal stress responses in the host during manipulated biting, as well as impairing its chemosensory communication and causing apoptosis. Moreover, we found genes up-regulated during manipulation that putatively encode for proteins with reported effects on behavioral outputs, proteins involved in various neuropathologies and proteins involved in the biosynthesis of secondary metabolites such as alkaloids.
Collapse
Affiliation(s)
- Charissa de Bekker
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Goethestrasse 31, 80336, Munich, Germany.
- Department of Entomology and Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA.
| | - Robin A Ohm
- Microbiology, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Raquel G Loreto
- Department of Entomology and Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília, 70040-020, DF, Brazil
| | - Aswathy Sebastian
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
| | - Istvan Albert
- Bioinformatics Consulting Center, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Goethestrasse 31, 80336, Munich, Germany
| | - Andreas Brachmann
- Faculty of Biology, Section Genetics, Ludwig-Maximilians-University Munich, Grosshaderner Strasse 2-4, 82152, Martinsried, Germany
| | - David P Hughes
- Department of Entomology and Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, State College, Pennsylvania, 16802, PA, USA.
| |
Collapse
|
18
|
Vizcaíno C, Mansilla S, Portugal J. Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol Ther 2015; 152:111-24. [PMID: 25960131 DOI: 10.1016/j.pharmthera.2015.05.008] [Citation(s) in RCA: 272] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 11/25/2022]
Abstract
Sp1 (specificity protein 1) is a well-known member of a family of transcription factors that also includes Sp2, Sp3 and Sp4, which are implicated in an ample variety of essential biological processes and have been proven important in cell growth, differentiation, apoptosis and carcinogenesis. Sp1 activates the transcription of many cellular genes that contain putative CG-rich Sp-binding sites in their promoters. Sp1 and Sp3 proteins bind to similar, if not the same, DNA tracts and compete for binding, thus they can enhance or repress gene expression. Evidences exist that the Sp-family of proteins regulates the expression of genes that play pivotal roles in cell proliferation and metastasis of various tumors. In patients with a variety of cancers, high levels of Sp1 protein are considered a negative prognostic factor. A plethora of compounds can interfere with the trans-activating activities of Sp1 and other Sp proteins on gene expression. Several pathways are involved in the down-regulation of Sp proteins by compounds with different mechanisms of action, which include not only the direct interference with the binding of Sp proteins to their putative DNA binding sites, but also promoting the degradation of Sp protein factors. Down-regulation of Sp transcription factors and Sp1-regulated genes is drug-dependent and it is determined by the cell context. The acknowledgment that several of those compounds are safe enough might accelerate their introduction into clinical usage in patients with tumors that over-express Sp1.
Collapse
Affiliation(s)
- Carolina Vizcaíno
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | - Sylvia Mansilla
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | - José Portugal
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain.
| |
Collapse
|
19
|
Aung HH, Tsoukalas A, Rutledge JC, Tagkopoulos I. A systems biology analysis of brain microvascular endothelial cell lipotoxicity. BMC SYSTEMS BIOLOGY 2014; 8:80. [PMID: 24993133 PMCID: PMC4112729 DOI: 10.1186/1752-0509-8-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/23/2014] [Indexed: 02/08/2023]
Abstract
Background Neurovascular inflammation is associated with a number of neurological diseases including vascular dementia and Alzheimer’s disease, which are increasingly important causes of morbidity and mortality around the world. Lipotoxicity is a metabolic disorder that results from accumulation of lipids, particularly fatty acids, in non-adipose tissue leading to cellular dysfunction, lipid droplet formation, and cell death. Results Our studies indicate for the first time that the neurovascular circulation also can manifest lipotoxicity, which could have major effects on cognitive function. The penetration of integrative systems biology approaches is limited in this area of research, which reduces our capacity to gain an objective insight into the signal transduction and regulation dynamics at a systems level. To address this question, we treated human microvascular endothelial cells with triglyceride-rich lipoprotein (TGRL) lipolysis products and then we used genome-wide transcriptional profiling to obtain transcript abundances over four conditions. We then identified regulatory genes and their targets that have been differentially expressed through analysis of the datasets with various statistical methods. We created a functional gene network by exploiting co-expression observations through a guilt-by-association assumption. Concomitantly, we used various network inference algorithms to identify putative regulatory interactions and we integrated all predictions to construct a consensus gene regulatory network that is TGRL lipolysis product specific. Conclusion System biology analysis has led to the validation of putative lipid-related targets and the discovery of several genes that may be implicated in lipotoxic-related brain microvascular endothelial cell responses. Here, we report that activating transcription factors 3 (ATF3) is a principal regulator of TGRL lipolysis products-induced gene expression in human brain microvascular endothelial cell.
Collapse
Affiliation(s)
| | | | | | - Ilias Tagkopoulos
- UC Davis Genome Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
20
|
Safe S, Imanirad P, Sreevalsan S, Nair V, Jutooru I. Transcription factor Sp1, also known as specificity protein 1 as a therapeutic target. Expert Opin Ther Targets 2014; 18:759-69. [PMID: 24793594 DOI: 10.1517/14728222.2014.914173] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Specificity protein (Sp) transcription factors (TFs) are members of the Sp/Kruppel-like factor family, and Sp proteins play an important role in embryonic and early postnatal development. Sp1 has been the most extensively investigated member of this family, and expression of this protein decreases with age, whereas Sp1 and other family members (Sp3 and Sp4) are highly expressed in tumors and cancer cell lines. AREA COVERED The prognostic significance of Sp1 in cancer patients and the functional pro-oncogenic activities of Sp1, Sp3 and Sp4 in cancer cell lines are summarized. Several different approaches have been used to target downregulation of Sp TFs and Sp-regulated genes, and this includes identification of different structural classes of antineoplastic agents including NSAIDs, natural products and their synthetic analogs and several well-characterized drugs including arsenic trioxide, aspirin and metformin. The multiple pathways involved in drug-induced Sp downregulation are also discussed. EXPERT OPINION The recognition by the scientific and clinical community that experimental and clinically used antineoplastic agents downregulate Sp1, Sp3 and Sp4, and pro-oncogenic Sp-regulated genes will facilitate future clinical applications for individual drug and drug combination therapies that take advantage of their unusual effects.
Collapse
Affiliation(s)
- Stephen Safe
- Texas A&M University, Veterinary Physiology and Pharmacology , 4466 TAMU, College Station, TX 77843-4466 , USA
| | | | | | | | | |
Collapse
|
21
|
Kajita Y, Kato T, Tamaki S, Furu M, Takahashi R, Nagayama S, Aoyama T, Nishiyama H, Nakamura E, Katagiri T, Nakamura Y, Ogawa O, Toguchida J. The transcription factor Sp3 regulates the expression of a metastasis-related marker of sarcoma, actin filament-associated protein 1-like 1 (AFAP1L1). PLoS One 2013; 8:e49709. [PMID: 23326307 PMCID: PMC3541374 DOI: 10.1371/journal.pone.0049709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/12/2012] [Indexed: 11/19/2022] Open
Abstract
We previously identified actin filament-associated protein 1-like 1 (AFAP1L1) as a metastasis-predicting marker from the gene-expression profiles of 65 spindle cell sarcomas, and demonstrated the up-regulation of AFAP1L1 expression to be an independent risk factor for distant metastasis in multivariate analyses. Little is known, however, about how the expression of AFAP1L1 is regulated. Luciferase reporter assays showed tandem binding motives of a specificity protein (Sp) located at −85 to −75 relative to the transcriptional start site to be essential to the promoter activity. Overexpression of Sp1 and Sp3 proteins transactivated the proximal AFAP1L1 promoter construct, and electrophoretic mobility shift assays showed that both Sp1 and Sp3 were able to bind to this region in vitro. Chromatin immunoprecipitation experiments, however, revealed that Sp3 is the major factor binding to the proximal promoter region of the AFAP1L1 gene in AFAP1L1- positive cells. Treatment with mithramycin A, an inhibitor of proteins binding to GC-rich regions, prevented Sp3 from binding to the proximal promoter region of AFAP1L1 and decreased its expression in a dose-dependent manner. Finally, knocking down Sp3 using small inhibitory RNA duplex (siRNA) reduced AFAP1L1 expression significantly, which was partially restored by expressing siRNA-resistant Sp3. These findings indicate a novel role for Sp3 in sarcomas as a driver for expression of the metastasis-related gene AFAP1L1.
Collapse
Affiliation(s)
- Yoichiro Kajita
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohisa Kato
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sakura Tamaki
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Moritoshi Furu
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Takahashi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Nagayama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eijiro Nakamura
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyomasa Katagiri
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junya Toguchida
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
22
|
Mo WJ, Li J, Lu HP, Feng ZB. Expression of Sp3 and VEGF in hepatocellular carcinoma and their correlation. Shijie Huaren Xiaohua Zazhi 2012; 20:3101-3106. [DOI: 10.11569/wcjd.v20.i32.3101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of transcription factor Sp3 and vascular endothelial growth factor (VEGF) in hepatocellular carcinoma (HCC) and their correlation.
METHODS: Immunohistochemical method was used to detect the expression of Sp3 and VEGF in 111 cases of HCC and tumor-adjacent liver tissue. The correlations between Sp3 and VEGF expression, and between these two indices and clinicopathologic characteristics of HCC were analyzed.
RESULTS: The positive rate of moderate or strong Sp3 expression in HCC was significantly higher than that in tumor-adjacent liver tissue (82.9% vs 29.7%, P = 0.000). There is a positive correlation between Sp3 and VEGF expression in HCC (r = 0.352, P = 0.000). Both Sp3 and VEGF expression was related with tumor differentiation. In addition, expression of Sp3 was related with tumor size, and expression of VEGF was related with TNM stage. The prognosis of cases with high Sp3 expression was poorer than those with low Sp3 expression (P = 0.041).
CONCLUSION: Sp3 is expected to be an index for diagnosis of HCC. Combined detection of Sp3 and VEGF expression may be used to evaluate the malignant degree of HCC.
Collapse
|
23
|
Predictive value of Sp1/Sp3/FLIP signature for prostate cancer recurrence. PLoS One 2012; 7:e44917. [PMID: 23028678 PMCID: PMC3441693 DOI: 10.1371/journal.pone.0044917] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/09/2012] [Indexed: 01/20/2023] Open
Abstract
Prediction of prostate cancer prognosis is challenging and predictive biomarkers of recurrence remain elusive. Although prostate specific antigen (PSA) has high sensitivity (90%) at a PSA level of 4.0 ng/mL, its low specificity leads to many false positive results and considerable overtreatment of patients and its performance at lower ranges is poor. Given the histopathological and molecular heterogeneity of prostate cancer, we propose that a panel of markers will be a better tool than a single marker. We tested a panel of markers composed of the anti-apoptotic protein FLIP and its transcriptional regulators Sp1 and Sp3 using prostate tissues from 64 patients with recurrent and non-recurrent cancer who underwent radical prostatectomy as primary treatment for prostate cancer and were followed with PSA measurements for at least 5 years. Immunohistochemical staining for Sp1, Sp3, and FLIP was performed on these tissues and scored based on the proportion and intensity of staining. The predictive value of the FLIP/Sp1/Sp3 signature for clinical outcome (recurrence vs. non-recurrence) was explored with logistic regression, and combinations of FLIP/Sp1/Sp3 and Gleason score were analyzed with a stepwise (backward and forward) logistic model. The discrimination of the markers was identified by sensitivity-specificity analysis and the diagnostic value of FLIP/Sp1/Sp3 was determined using area under the curve (AUC) for receiver operator characteristic curves. The AUCs for FLIP, Sp1, Sp3, and Gleason score for predicting PSA failure and non-failure were 0.71, 0.66, 0.68, and 0.76, respectively. However, this increased to 0.93 when combined. Thus, the “biomarker signature” of FLIP/Sp1/Sp3 combined with Gleason score predicted disease recurrence and stratified patients who are likely to benefit from more aggressive treatment.
Collapse
|
24
|
Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med 2012; 4:41. [PMID: 22548828 PMCID: PMC3506907 DOI: 10.1186/gm340] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/22/2012] [Accepted: 05/01/2012] [Indexed: 12/15/2022] Open
Abstract
Background Altered networks of gene regulation underlie many complex conditions, including cancer. Inferring gene regulatory networks from high-throughput microarray expression data is a fundamental but challenging task in computational systems biology and its translation to genomic medicine. Although diverse computational and statistical approaches have been brought to bear on the gene regulatory network inference problem, their relative strengths and disadvantages remain poorly understood, largely because comparative analyses usually consider only small subsets of methods, use only synthetic data, and/or fail to adopt a common measure of inference quality. Methods We report a comprehensive comparative evaluation of nine state-of-the art gene regulatory network inference methods encompassing the main algorithmic approaches (mutual information, correlation, partial correlation, random forests, support vector machines) using 38 simulated datasets and empirical serous papillary ovarian adenocarcinoma expression-microarray data. We then apply the best-performing method to infer normal and cancer networks. We assess the druggability of the proteins encoded by our predicted target genes using the CancerResource and PharmGKB webtools and databases. Results We observe large differences in the accuracy with which these methods predict the underlying gene regulatory network depending on features of the data, network size, topology, experiment type, and parameter settings. Applying the best-performing method (the supervised method SIRENE) to the serous papillary ovarian adenocarcinoma dataset, we infer and rank regulatory interactions, some previously reported and others novel. For selected novel interactions we propose testable mechanistic models linking gene regulation to cancer. Using network analysis and visualization, we uncover cross-regulation of angiogenesis-specific genes through three key transcription factors in normal and cancer conditions. Druggabilty analysis of proteins encoded by the 10 highest-confidence target genes, and by 15 genes with differential regulation in normal and cancer conditions, reveals 75% to be potential drug targets. Conclusions Our study represents a concrete application of gene regulatory network inference to ovarian cancer, demonstrating the complete cycle of computational systems biology research, from genome-scale data analysis via network inference, evaluation of methods, to the generation of novel testable hypotheses, their prioritization for experimental validation, and discovery of potential drug targets.
Collapse
|
25
|
Shin SC, Lee KM, Kang YM, Kim K, Lim SA, Yang KH, Kim JY, Nam SY, Kim HS. Differential expression of immune-associated cancer regulatory genes in low- versus high-dose-rate irradiated AKR/J mice. Genomics 2011; 97:358-63. [PMID: 21266193 DOI: 10.1016/j.ygeno.2011.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/15/2010] [Accepted: 01/16/2011] [Indexed: 11/26/2022]
Abstract
AKR/J mice carrying leukemia viral inserts develop thymic lymphoma. Recently, we demonstrated that the incidence of thymic lymphoma was decreased when these mice were raised in a low-dose-rate γ-irradiation facility. In contrast, mice irradiated at a high-dose rate developed severe thymic lymphoma and died much earlier. To understand the genetic changes occurred by low- versus high-dose-rate γ-irradiation whole genome microarray was performed. Both groups of mice demonstrated up-regulation of Ifng, Igbp1, and IL7 in their thymuses, however, mice exposed to high-dose-rate γ-irradiation exhibited marked down-regulation of Sp3, Il15, Traf6, IL2ra, Pik3r1, and Hells. In contrast, low-dose-rate irradiated mice demonstrated up-regulation of Il15 and Jag2. These gene expression profiles imply the impaired immune signaling pathways by high-dose-rate γ-irradiation while the facilitation of anti-tumor immune responses by low-dose-rate γ-irradiation. Therefore, our data delineate common and distinct immune-associated pathways downstream of low- versus high-dose-rate irradiation in the process of cancer progression in AKR/J mice.
Collapse
Affiliation(s)
- Suk Chul Shin
- Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., SSangmun-dong, Dobong-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cdc25B phosphatases function as key players in G2/M cell cycle progression by activating the CDK1-cyclinB1 complexes. They also have an essential role in recovery from the G2/M checkpoint activated in response to DNA damage. Overexpression of Cdc25B results in bypass of the G2/M checkpoint and illegitimate entry into mitosis, and also causes replicative stress, leading to genomic instability. Thus, fine-tuning of Cdc25B expression level is critical for correct cell cycle progression and G2 checkpoint recovery. However, the transcriptional regulation of Cdc25B remains largely unknown. Earlier studies have shown that the tumor suppressor p53 overexpression transcriptionally represses Cdc25B; however, the molecular mechanism of this repression has not yet been elucidated, although it was suggested to occur through the induction of p21. Here we show that Cdc25B is downregulated by the basal level of p53 in multiple cell types. This downregulation also occurs in p21-/- cell lines, indicating that p21 is not required for p53-mediated regulation of Cdc25B. Deletion and mutation analyses of the Cdc25B promoter revealed that downregulation by p53 is dependent on the presence of functional Sp1/Sp3 and NF-Y binding sites. Furthermore, chromatin immunoprecipitation analyses show that p53 binds to the Cdc25B promoter and mediates transcriptional attenuation through the Sp1 and NF-Y transcription factors. Our results suggest that the inability to downregulate Cdc25B after loss of p53 might contribute to tumorigenesis.
Collapse
|
27
|
Ban K, Kozar RA. Glutamine protects against apoptosis via downregulation of Sp3 in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1344-53. [PMID: 20884886 PMCID: PMC3006244 DOI: 10.1152/ajpgi.00334.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glutamine plays a key role in intestinal growth and maintenance of gut function, and as we have shown protects the postischemic gut (Kozar RA, Scultz SG, Bick RJ, Poindexter BJ, Desoigne R, Weisbrodt NW, Haber MM, Moore FA. Shock 21: 433-437, 2004). However, the precise mechanisms of the gut protective effects of glutamine have not been well elucidated. In the present study, RNA microarray was performed to obtain differentially expressed genes in intestinal epithelial IEC-6 cells following either 2 mM or 10 mM glutamine. The result demonstrated that specificity protein 3 (Sp3) mRNA expression was downregulated 3.1-fold. PCR and Western blot confirmed that Sp3 expression was decreased by glutamine in a time- and dose-dependent fashion. To investigate the role of Sp3, Sp3 gene siRNA silencing was performed and apoptosis was assessed. Silencing of Sp3 demonstrated a significant increase in Bcl-2 and decrease in Bax protein expression, as well as a decrease in caspase-3, -8, and -9 protein expression and activity. The protein expression of apoptosis-related proteins after hypoxia/reoxygenation was similar to that of normoxia and correlated with a decrease in DNA fragmentation. Importantly, the addition of glutamine to Sp3-silenced cells did not further lessen apoptosis, suggesting that Sp3 plays a major role in the inhibitory effect of glutamine on apoptosis. This novel finding may explain in part the gut-protective effects of glutamine.
Collapse
Affiliation(s)
- Kechen Ban
- Department of Surgery, University of Texas Medical School, Houston, 77030, USA.
| | | |
Collapse
|
28
|
Sachrajda I, Ratajewski M. Mithramycin A suppresses expression of the human melanoma-associated gene ABCB8. Mol Genet Genomics 2010; 285:57-65. [PMID: 21046154 DOI: 10.1007/s00438-010-0586-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/17/2010] [Indexed: 11/24/2022]
Abstract
The role of the ABCB8 gene in human cells is poorly understood, although it has been suggested to be involved in multidrug resistance in some types of cancers (e.g., melanomas). In this study, the main mechanism of transcriptional regulation of the ABCB8 gene was characterized. EMSA and ChIP assays revealed that the transcription factor Sp1 binds to the ABCB8 core promoter region, and Sp1 consensus elements were crucial for promoter activity in a luciferase reporter gene assay. Mithramycin A, an inhibitor of Sp1 binding, downregulated the expression of ABCB8 (and other ABC genes) in a concentration-dependent manner and sensitized a melanoma cell line to doxorubicin treatment. These findings may have therapeutic applications in at least a subset of melanoma patients.
Collapse
Affiliation(s)
- Iwona Sachrajda
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | | |
Collapse
|
29
|
|
30
|
Essafi-Benkhadir K, Pouysségur J, Pagès G. Implication of the ERK pathway on the post-transcriptional regulation of VEGF mRNA stability. Methods Mol Biol 2010; 661:451-69. [PMID: 20812001 DOI: 10.1007/978-1-60761-795-2_28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vascular Endothelial Growth Factor-A (VEGF-A) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the ERK pathway and over-expression of VEGF-A are common denominators of tumours of different origins. Understanding VEGF-A regulation is of primary importance to better comprehend pathological angiogenesis. VEGF-A expression is regulated at all steps of its synthesis including transcription, mRNA stability, an under estimated way of VEGF regulation and translation. In this chapter, we present the link between VEGF mRNA stability through AU-rich sequences present in its 3'-untranslated region (3'-UTR) and the ERK pathway. We present several methods that have been used to demonstrate that ERKs increase VEGF mRNA half-life. This mRNA-stabilising effect is partly due to reduction of the mRNA destabilising effects of Tristetraprolin (TTP), an AU-Rich binding protein which binds to VEGF-A mRNA 3'-UTR.
Collapse
|