1
|
McMullan P, Maye P, Root SH, Yang Q, Edie S, Rowe D, Kalajzic I, Germain-Lee EL. Hair follicle-resident progenitor cells are a major cellular contributor to heterotopic subcutaneous ossifications in a mouse model of Albright hereditary osteodystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599506. [PMID: 38948860 PMCID: PMC11213030 DOI: 10.1101/2024.06.18.599506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Heterotopic ossifications (HOs) are the pathologic process by which bone inappropriately forms outside of the skeletal system. Despite HOs being a persistent clinical problem in the general population, there are no definitive strategies for their prevention and treatment due to a limited understanding of the cellular and molecular mechanisms contributing to lesion development. One disease in which the development of heterotopic subcutaneous ossifications (SCOs) leads to morbidity is Albright hereditary osteodystrophy (AHO). AHO is caused by heterozygous inactivation of GNAS, the gene that encodes the α-stimulatory subunit (Gαs) of G proteins. Previously, we had shown using our laboratory's AHO mouse model that SCOs develop around hair follicles (HFs). Here we show that SCO formation occurs due to inappropriate expansion and differentiation of HF-resident stem cells into osteoblasts. We also show in AHO patients and mice that Secreted Frizzled Related Protein 2 (SFRP2) expression is upregulated in regions of SCO formation and that elimination of Sfrp2 in male AHO mice exacerbates SCO development. These studies provide key insights into the cellular and molecular mechanisms contributing to SCO development and have implications for potential therapeutic modalities not only for AHO patients but also for patients suffering from HOs with other etiologies.
Collapse
Affiliation(s)
- Patrick McMullan
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Peter Maye
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Sierra H. Root
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Qingfen Yang
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | | | - David Rowe
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Emily L. Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
- Albright Center, Division of Endocrinology & Diabetes, Connecticut Children’s, Farmington, CT
| |
Collapse
|
2
|
Son Y, Paton CM. A Review of free fatty acid-induced cell signaling, angiopoietin-like protein 4, and skeletal muscle differentiation. Front Physiol 2022; 13:987977. [PMID: 36148297 PMCID: PMC9485487 DOI: 10.3389/fphys.2022.987977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal skeletal muscle differentiation from quiescent satellite cells is a highly regulated process, although our understanding of the contribution of nutritional factors in myogenesis is limited. Free fatty acids (FFAs) are known to cause detrimental effects to differentiated skeletal muscle cells by increasing oxidative stress which leads to muscle wasting and insulin resistance in skeletal muscle. In addition, FFAs are thought to act as inhibitors of skeletal muscle differentiation. However, the precise molecular mechanisms underlying the effects of FFAs on skeletal muscle differentiation remains to be elucidated. There is a clear relationship between dietary FFAs and their ability to suppress myogenesis and we propose the hypothesis that the FFA-mediated increase in angiopoietin-like protein 4 (ANGPTL4) may play a role in the inhibition of differentiation. This review discusses the role of FFAs in skeletal muscle differentiation to-date and proposes potential mechanisms of FFA-induced ANGPTL4 mediated inhibition of skeletal muscle differentiation.
Collapse
Affiliation(s)
- Yura Son
- Department Nutritional Sciences, Athens, GA, United States
| | - Chad M. Paton
- Department Nutritional Sciences, Athens, GA, United States
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
- *Correspondence: Chad M. Paton,
| |
Collapse
|
3
|
Evaluation of Hedgehog Pathway Inhibition on Nevoid Basal Cell Carcinoma Syndrome Fibroblasts and Basal Cell Carcinoma-Associated Fibroblasts: Are Vismodegib and Sonidegib Useful to Target Cancer-Prone Fibroblasts? Cancers (Basel) 2021; 13:cancers13225858. [PMID: 34831015 PMCID: PMC8616531 DOI: 10.3390/cancers13225858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Activating mutations in the Hh pathway underlies the development of sporadic and familial skin BCC. For these oncogenic proliferations displaying ligand-independent activation of the intracellular pathway, two molecules have been approved for therapeutic purposes: vismodegib and sonidegib. Improper Hh signalling occurs in many human tumours also via a paracrine mechanism (ligand-dependent) in which the secretion of Hh ligands by stromal cells support tumour growth. On the other hand, the mobilization of neoplastic stroma by cancer cells is sustained by the activation of Hh signalling in surrounding fibroblasts suggesting a central role of this bidirectional crosstalk in carcinogenesis. Additionally, loss-of-function mutations in the PTCH1 gene in the context of NBCCS, an autosomal dominant disorder predisposing to multiple BCCs, determine tumour permissive phenotypes in dermal fibroblasts. Here, profiling syndromic and BCC-associated fibroblasts unveiled an extraordinary similarity characterized by overexpression of several Hh target genes and a marked pro-inflammatory outline. Both cell types exposed to Hh inhibitors displayed reversion of the tumour-prone phenotype. Under vismodegib and sonidegib treatment, the Wnt/β-catenin pathway, frequently over-active in tumour stroma, resulted down-regulated by pAKT-GSK3β axis and consequent increase of β-catenin turnover. Overall, this study demonstrated that vismodegib and sonidegib impacting on fibroblast tumour supportive functions might be considered in therapy for BCC independently to the mutation status of Hh components in neoplastic cells.
Collapse
|
4
|
Modeling SHH-driven medulloblastoma with patient iPS cell-derived neural stem cells. Proc Natl Acad Sci U S A 2020; 117:20127-20138. [PMID: 32747535 PMCID: PMC7443968 DOI: 10.1073/pnas.1920521117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Here we describe and utilize a model of medulloblastoma, a malignancy accounting for 20% of all childhood brain cancers. We used iPS-derived neural stem cells with a familial mutation causing aberrant SHH signaling. We show that these cells, when transplanted into mouse cerebellum, form tumors that mimics SHH-driven medulloblastoma, demonstrating the development of cancer from healthy neural stem cells in vivo. Our results show that reprogramming of somatic cells carrying familial cancer mutations can be used to model the initiation and progression of childhood cancer. Medulloblastoma is the most common malignant brain tumor in children. Here we describe a medulloblastoma model using Induced pluripotent stem (iPS) cell-derived human neuroepithelial stem (NES) cells generated from a Gorlin syndrome patient carrying a germline mutation in the sonic hedgehog (SHH) receptor PTCH1. We found that Gorlin NES cells formed tumors in mouse cerebellum mimicking human medulloblastoma. Retransplantation of tumor-isolated NES (tNES) cells resulted in accelerated tumor formation, cells with reduced growth factor dependency, enhanced neurosphere formation in vitro, and increased sensitivity to Vismodegib. Using our model, we identified LGALS1 to be a GLI target gene that is up-regulated in both Gorlin tNES cells and SHH-subgroup of medulloblastoma patients. Taken together, we demonstrate that NES cells derived from Gorlin patients can be used as a resource to model medulloblastoma initiation and progression and to identify putative targets.
Collapse
|
5
|
Gonçalves-Maia M, Gache Y, Basante M, Cosson E, Salavagione E, Muller M, Bernerd F, Avril MF, Schaub S, Sarasin A, Braud VM, Magnaldo T. NK Cell and Fibroblast-Mediated Regulation of Skin Squamous Cell Carcinoma Invasion by CLEC2A Is Compromised in Xeroderma Pigmentosum. J Invest Dermatol 2020; 140:1723-1732. [PMID: 32061658 DOI: 10.1016/j.jid.2020.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
The ability of cancer cells to invade and disseminate can be affected by components of the surrounding microenvironment. To identify dermal components that regulate the growth of epidermal carcinomas, we studied the genetic disease called xeroderma pigmentosum that bears mutations in genes involved in the nucleotide excision repair of DNA. Patients with xeroderma pigmentosum are more prone to develop cutaneous tumors than the general population and their dermal fibroblasts display the features of dermal cancer-associated fibroblasts, which promote the invasion of keratinocytes. Here, we report that 3-dimensional dermal cultures of fibroblasts from healthy donors but not from patients with xeroderma pigmentosum complementation group C express CLEC2A, which is the ligand of the activating NK cell receptor NKp65. A similar loss of CLEC2A was observed in sporadic dermal cancer-associated fibroblasts and upon the culture of fibroblasts with cutaneous squamous cell carcinoma-conditioned medium. Using an innovative 3-dimensional organotypic skin culture model that contain NK cells in addition to fibroblasts and squamous cell carcinoma cells, we unveiled a key role of CLEC2A that orchestrates a crosstalk between fibroblasts and NK cells, thereby leading to the control of squamous cell carcinoma invasion. These findings indicate that CLEC2A-expressing dermal fibroblasts play a major role in immune surveillance of the skin.
Collapse
Affiliation(s)
- Maria Gonçalves-Maia
- Université Côte d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging, Nice, U1081, UMR7284, Nice, France
| | - Yannick Gache
- Université Côte d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging, Nice, U1081, UMR7284, Nice, France
| | - Miguel Basante
- Université Côte d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging, Nice, U1081, UMR7284, Nice, France; Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Estelle Cosson
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Valbonne, Sophia Antipolis, France
| | - Emie Salavagione
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Valbonne, Sophia Antipolis, France
| | - Margot Muller
- Université Côte d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging, Nice, U1081, UMR7284, Nice, France
| | | | - Marie Françoise Avril
- Assistance Publique-Hôpitaux de Paris, Department of Dermatology, Hospital Cochin, University Paris Descartes, Paris, France
| | - Sébastien Schaub
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Alain Sarasin
- Université Paris-Sud, Institut Gustave Roussy, UMR8200, CNRS, F-94805, Villejuif, France
| | - Véronique M Braud
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Valbonne, Sophia Antipolis, France
| | - Thierry Magnaldo
- Université Côte d'Azur, INSERM, CNRS, Institute for Research on Cancer and Aging, Nice, U1081, UMR7284, Nice, France.
| |
Collapse
|
6
|
Bellei B, Caputo S, Carbone A, Silipo V, Papaccio F, Picardo M, Eibenschutz L. The Role of Dermal Fibroblasts in Nevoid Basal Cell Carcinoma Syndrome Patients: An Overview. Int J Mol Sci 2020; 21:E720. [PMID: 31979112 PMCID: PMC7037136 DOI: 10.3390/ijms21030720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS), also named Gorlin syndrome, is a rare multisystem genetic disorder characterized by marked predisposition to basal cell carcinomas (BCCs), childhood medulloblastomas, maxillary keratocysts, celebral calcifications, in addition to various skeletal and soft tissue developmental abnormalities. Mutations in the tumor suppressor gene PATCHED1 (PTCH1) have been found to be associated in the majority of NBCCS cases. PATCH1 somatic mutations and loss of heterozygosity are also very frequent in sporadic BCCs. Unlike non-syndromic patients, NBCCS patients develop multiple BCCs in sun-protected skin area starting from early adulthood. Recent studies suggest that dermo/epidermal interaction could be implicated in BCC predisposition. According to this idea, NBCCS fibroblasts, sharing with keratinocytes the same PTCH1 germline mutation and consequent constitutive activation of the Hh pathway, display features of carcinoma-associated fibroblasts (CAF). This phenotypic traits include the overexpression of growth factors, specific microRNAs profile, modification of extracellular matrix and basement membrane composition, increased cytokines and pro-angiogenic factors secretion, and a complex alteration of the Wnt/-catenin pathway. Here, we review studies about the involvement of dermal fibroblasts in BCC predisposition of Gorlin syndrome patients. Further, we matched the emerged NBCCS fibroblast profile to those of CAF to compare the impact of cell autonomous "pre-activated state" due to PTCH1 mutations to those of skin tumor stroma.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Anna Carbone
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| | - Vitaliano Silipo
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| |
Collapse
|
7
|
Phatak A, Athar M, Crowell JA, Leffel D, Herbert BS, Bale AE, Kopelovich L. Global gene expression of histologically normal primary skin cells from BCNS subjects reveals "single-hit" effects that are influenced by rapamycin. Oncotarget 2019; 10:1360-1387. [PMID: 30858923 PMCID: PMC6402716 DOI: 10.18632/oncotarget.26640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/11/2019] [Indexed: 02/05/2023] Open
Abstract
Studies of dominantly heritable cancers enabled insights about tumor progression. BCNS is a dominantly inherited disorder that is characterized by developmental abnormalities and postnatal neoplasms, principally BCCs. We performed an exploratory gene expression profiling of primary cell cultures derived from clinically unaffected skin biopsies of BCNS gene-carriers (PTCH1+/-) and normal individuals. PCA and HC of untreated keratinocytes or fibroblasts failed to clearly distinguish BCNS samples from controls. These results are presumably due to the common suppression of canonical HH signaling in vitro. We then used a relaxed threshold (p-value <0.05, no FDR cut-off; FC 1.3) that identified a total of 585 and 857 genes differentially expressed in BCNS keratinocytes and fibroblasts samples, respectively. A GSEA identified pancreatic β cell hallmark and mTOR signaling genes in BCNS keratinocytes, whereas analyses of BCNS fibroblasts identified gene signatures regulating pluripotency of stem cells, including WNT pathway. Significantly, rapamycin treatment (FDR<0.05), affected a total of 1411 and 4959 genes in BCNS keratinocytes and BCNS fibroblasts, respectively. In contrast, rapamycin treatment affected a total of 3214 and 4797 genes in normal keratinocytes and normal fibroblasts, respectively. The differential response of BCNS cells to rapamycin involved 599 and 1463 unique probe sets in keratinocytes and fibroblasts, respectively. An IPA of these genes in the presence of rapamycin pointed to hepatic fibrosis/stellate cell activation, and HIPPO signaling in BCNS keratinocytes, whereas mitochondrial dysfunction and AGRN expression were uniquely enriched in BCNS fibroblasts. The gene expression changes seen here are likely involved in the etiology of BCCs and they may represent biomarkers/targets for early intervention.
Collapse
Affiliation(s)
- Amruta Phatak
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David Leffel
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
8
|
Shih S, Dai C, Ansari A, Urso BA, Laughlin AI, Solomon JA. Advances in genetic understanding of gorlin syndrome and emerging treatment options. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1483233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shawn Shih
- Department of Dermatology, University of Central Florida College of Medicine, Orlando, Florida
| | - Christina Dai
- Department of Dermatology, University of Central Florida College of Medicine, Orlando, Florida
| | - Ahmed Ansari
- Department of Dermatology, University of Central Florida College of Medicine, Orlando, Florida
| | - Brittany A Urso
- Department of Dermatology, University of Central Florida College of Medicine, Orlando, Florida
| | - Amy I Laughlin
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James A Solomon
- Department of Dermatology, University of Central Florida College of Medicine, Orlando, Florida
- University of Illinois College of Medicine, Urbana, Illinois
- Ameriderm Research, Ormond Beach, FL
- Department of Dermatology, Florida State University College of Medicine, Tallahassee, FL
| |
Collapse
|
9
|
Zamarrón A, García M, Río MD, Larcher F, Juarranz Á. Effects of photodynamic therapy on dermal fibroblasts from xeroderma pigmentosum and Gorlin-Goltz syndrome patients. Oncotarget 2017; 8:77385-77399. [PMID: 29100394 PMCID: PMC5652786 DOI: 10.18632/oncotarget.20485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
Abstract
PDT is widely applied for the treatment of non-melanoma skin cancer pre-malignant and malignant lesions (actinic keratosis, basal cell carcinoma and in situ squamous cell carcinoma). In photodynamic therapy (PDT) the interaction of a photosensitizer (PS), light and oxygen leads to the formation of reactive oxygen species (ROS) and thus the selective tumor cells eradication. Xeroderma pigmentosum (XP) and Gorlin-Goltz Syndrome (GS) patients are at high risk of developing skin cancer in sun-exposed areas. Therefore, the use of PDT as a preventive treatment may constitute a very promising therapeutic modality for these syndromes. Given the demonstrated role of cancer associated fibroblasts (CAFs) in tumor progression and the putative CAFs features of some cancer-prone genodermatoses fibroblasts, in this study, we have further characterized the phenotype of XP and GS dermal fibroblasts and evaluated their response to methyl-δ-aminolevulinic acid (MAL)-PDT compared to that of dermal fibroblasts obtained from healthy donors. We show here that XP/GS fibroblasts display clear features of CAFs and present a significantly higher response to PDT, even after being stimulated with UV light, underscoring the value of this therapeutic approach for these rare skin conditions and likely to other forms of skin cancer were CAFs play a major role.
Collapse
Affiliation(s)
- Alicia Zamarrón
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, IRYCIS, Madrid, Spain
| | - Marta García
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Marcela Del Río
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Fernando Larcher
- Department of Bioengineering, Carlos III University (UC3M), Madrid, Spain
- CIEMAT-Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Autónoma University of Madrid, IRYCIS, Madrid, Spain
| |
Collapse
|
10
|
Ciliary Hedgehog Signaling Restricts Injury-Induced Adipogenesis. Cell 2017; 170:340-351.e12. [PMID: 28709001 DOI: 10.1016/j.cell.2017.06.035] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/20/2017] [Accepted: 06/22/2017] [Indexed: 12/28/2022]
Abstract
Injured skeletal muscle regenerates, but with age or in muscular dystrophies, muscle is replaced by fat. Upon injury, muscle-resident fibro/adipogenic progenitors (FAPs) proliferated and gave rise to adipocytes. These FAPs dynamically produced primary cilia, structures that transduce intercellular cues such as Hedgehog (Hh) signals. Genetically removing cilia from FAPs inhibited intramuscular adipogenesis, both after injury and in a mouse model of Duchenne muscular dystrophy. Blocking FAP ciliation also enhanced myofiber regeneration after injury and reduced myofiber size decline in the muscular dystrophy model. Hh signaling through FAP cilia regulated the expression of TIMP3, a secreted metalloproteinase inhibitor, that inhibited MMP14 to block adipogenesis. A pharmacological mimetic of TIMP3 blocked the conversion of FAPs into adipocytes, pointing to a strategy to combat fatty degeneration of skeletal muscle. We conclude that ciliary Hh signaling by FAPs orchestrates the regenerative response to skeletal muscle injury.
Collapse
|
11
|
Gene Expression and Proteome Analysis as Sources of Biomarkers in Basal Cell Carcinoma. DISEASE MARKERS 2016; 2016:9831237. [PMID: 27578920 PMCID: PMC4992754 DOI: 10.1155/2016/9831237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022]
Abstract
Basal cell carcinoma (BCC) is the world's leading skin cancer in terms of frequency at the moment and its incidence continues to rise each year, leading to profound negative psychosocial and economic consequences. UV exposure is the most important environmental factor in the development of BCC in genetically predisposed individuals, this being reflected by the anatomical distribution of lesions mainly on sun-exposed skin areas. Early diagnosis and prompt management are of crucial importance in order to prevent local tissue destruction and subsequent disfigurement. Although various noninvasive or minimal invasive techniques have demonstrated their utility in increasing diagnostic accuracy of BCC and progress has been made in its treatment options, recurrent, aggressive, and metastatic variants of BCC still pose significant challenge for the healthcare system. Analysis of gene expression and proteomic profiling of tumor cells and of tumoral microenvironment in various tissues strongly suggests that certain molecules involved in skin cancer pathogenic pathways might represent novel predictive and prognostic biomarkers in BCC.
Collapse
|
12
|
Etzold A, Galetzka D, Weis E, Bartsch O, Haaf T, Spix C, Itzel T, Schweiger S, Strand D, Strand S, Zechner U. CAF-like state in primary skin fibroblasts with constitutional BRCA1 epimutation sheds new light on tumor suppressor deficiency-related changes in healthy tissue. Epigenetics 2016; 11:120-31. [PMID: 26949839 DOI: 10.1080/15592294.2016.1140295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Constitutive epimutations of tumor suppressor genes are increasingly considered as cancer predisposing factors equally to sequence mutations. In light of the emerging role of the microenvironment for cancer predisposition, initiation, and progression, we aimed to characterize the consequences of a BRCA1 epimutation in cells of mesenchymal origin. We performed a comprehensive molecular and cellular comparison of primary dermal fibroblasts taken from a monozygous twin pair discordant for recurrent cancers and BRCA1 epimutation, whose exceptional clinical case we previously reported in this journal. Comparative transcriptome analysis identified differential expression of extracellular matrix-related genes and pro-tumorigenic growth factors, such as collagens and CXC chemokines. Moreover, genes known to be key markers of so called cancer-associated fibroblasts (CAFs), such as ACTA2, FAP, PDPN, and TNC, were upregulated in fibroblasts of the affected twin (BRCA1(mosMe)) in comparison to those of the healthy twin (BRCA1(wt)). Further analyses detected CAF-typical cellular features, including an elevated growth rate, enhanced migration, altered actin architecture and increased production of ketone bodies in BRCA1(mosMe) fibroblasts compared to BRCA1(wt) fibroblasts. In addition, conditioned medium of BRCA1(mosMe) fibroblasts was more potent than conditioned medium of BRCA1(wt) fibroblasts to promote cell proliferation in an epithelial and a cancer cell line. Our data demonstrate, that a CAF-like state is not an exclusive feature of tumor-associated tissue but also exists in healthy tissue with tumor suppressor deficiency. The naturally occurring phenomenon of twin fibroblasts differing in their BRCA1 methylation status revealed to be a unique powerful tool for exploring tumor suppressor deficiency-related changes in healthy tissue, reinforcing their significance for cancer predisposition.
Collapse
Affiliation(s)
- Anna Etzold
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Danuta Galetzka
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Eva Weis
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Oliver Bartsch
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Thomas Haaf
- b Institute of Human Genetics, Julius Maximilians University , Würzburg , Germany
| | - Claudia Spix
- c Institute of Medical Biometry, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Timo Itzel
- c Institute of Medical Biometry, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Susann Schweiger
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Dennis Strand
- d First Department of Internal Medicine , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Susanne Strand
- d First Department of Internal Medicine , University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| | - Ulrich Zechner
- a Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz , Mainz , Germany
| |
Collapse
|
13
|
Gache Y, Brellier F, Rouanet S, Al-Qaraghuli S, Goncalves-Maia M, Burty-Valin E, Barnay S, Scarzello S, Ruat M, Sevenet N, Avril MF, Magnaldo T. Basal Cell Carcinoma in Gorlin's Patients: a Matter of Fibroblasts-Led Protumoral Microenvironment? PLoS One 2015; 10:e0145369. [PMID: 26694869 PMCID: PMC4687848 DOI: 10.1371/journal.pone.0145369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022] Open
Abstract
Basal cell carcinoma (BCC) is the commonest tumor in human. About 70% sporadic BCCs bear somatic mutations in the PATCHED1 tumor suppressor gene which encodes the receptor for the Sonic Hedgehog morphogen (SHH). PATCHED1 germinal mutations are associated with the dominant Nevoid Basal Cell Carcinoma Syndrome (NBCCS), a major hallmark of which is a high susceptibility to BCCs. Although the vast majority of sporadic BCCs arises exclusively in sun exposed skin areas, 40 to 50% BCCs from NBCCS patients develop in non photo-exposed skin. Since overwhelming evidences indicate that microenvironment may both be modified by- and influence the- epithelial tumor, we hypothesized that NBCCS fibroblasts could contribute to BCCs in NBCCS patients, notably those developing in non photo-exposed skin areas. The functional impact of NBCCS fibroblasts was then assessed in organotypic skin cultures with control keratinocytes. Onset of epidermal differentiation was delayed in the presence of primary NBCCS fibroblasts. Unexpectedly, keratinocyte proliferation was severely reduced and showed high levels of nuclear P53 in both organotypic skin cultures and in fibroblast-led conditioning experiments. However, in spite of increased levels of senescence associated β-galactosidase activity in keratinocytes cultured in the presence of medium conditioned by NBCCS fibroblasts, we failed to observe activation of P16 and P21 and then of bona fide features of senescence. Constitutive extinction of P53 in WT keratinocytes resulted in an invasive phenotype in the presence of NBCCS fibroblasts. Finally, we found that expression of SHH was limited to fibroblasts but was dependent on the presence of keratinocytes. Inhibition of SHH binding resulted in improved epidermal morphogenesis. Altogether, these data suggest that the repertoire of diffusible factors (including SHH) expressed by primary NBCCS fibroblasts generate a stress affecting keratinocytes behavior and epidermal homeostasis. Our findings suggest that defects in dermo/epidermal interactions could contribute to BCC susceptibility in NBCCS patients.
Collapse
Affiliation(s)
- Yannick Gache
- INSERM U1081—CNRS UMR7284 –UNS, Nice, France
- Université de Nice–Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - Florence Brellier
- CNRS FRE2939, Université de Paris Sud—Institut Gustave Roussy, Villejuif, France
| | - Sophie Rouanet
- INSERM U1081—CNRS UMR7284 –UNS, Nice, France
- Université de Nice–Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - Sahar Al-Qaraghuli
- INSERM U1081—CNRS UMR7284 –UNS, Nice, France
- Université de Nice–Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - Maria Goncalves-Maia
- INSERM U1081—CNRS UMR7284 –UNS, Nice, France
- Université de Nice–Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - Elodie Burty-Valin
- CNRS FRE2939, Université de Paris Sud—Institut Gustave Roussy, Villejuif, France
| | | | - Sabine Scarzello
- INSERM U1081—CNRS UMR7284 –UNS, Nice, France
- Université de Nice–Sophia-Antipolis, Faculté de Médecine, Nice, France
| | - Martial Ruat
- CNRS UMR9197, Neuroscience Paris-Saclay Institute, Gif‑sur‑Yvette, France
| | - Nicolas Sevenet
- INSERM U916 & Institut Bergonié, Laboratoire de génétique moléculaire, Bordeaux, France
| | | | - Thierry Magnaldo
- INSERM U1081—CNRS UMR7284 –UNS, Nice, France
- Université de Nice–Sophia-Antipolis, Faculté de Médecine, Nice, France
- * E-mail:
| |
Collapse
|
14
|
Hedgehog signaling is synergistically enhanced by nutritional deprivation and ligand stimulation in human fibroblasts of Gorlin syndrome. Biochem Biophys Res Commun 2015; 457:318-23. [DOI: 10.1016/j.bbrc.2014.12.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/26/2014] [Indexed: 12/24/2022]
|
15
|
Weber TJ, Magnaldo T, Xiong Y. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis. Proteomes 2014; 2:451-467. [PMID: 28250390 PMCID: PMC5302750 DOI: 10.3390/proteomes2030451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects.
Collapse
Affiliation(s)
- Thomas J Weber
- Systems Toxicology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Thierry Magnaldo
- Faculté de Médicine, 2ème étage, CNRS UMR 6267-INSERM U998-UNSA, Nice 06107 Cedex 2, France.
| | - Yijia Xiong
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA.
| |
Collapse
|
16
|
Dummer R, Karpova MB, Barysch MJ. Basal cell carcinomas: molecular abnormalities and molecularly targeted therapies. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Proteomic analysis of PTCH1+/- fibroblast lysate and conditioned culture media isolated from the skin of healthy subjects and nevoid basal cell carcinoma syndrome patients. BIOMED RESEARCH INTERNATIONAL 2013; 2013:794028. [PMID: 24369017 PMCID: PMC3867831 DOI: 10.1155/2013/794028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/18/2013] [Accepted: 10/18/2013] [Indexed: 01/25/2023]
Abstract
BACKGROUND The pathogenesis underlying the increased predisposition to the development of basal cell carcinomas (BCCs) in the context of Gorlin-Goltz syndrome is linked to molecular mechanisms that differ from sporadic BCCs. Patients with Gorlin syndrome tend to develop multiple BCCs at an early age and present with tumors of non-sun-exposed skin. The aim of this study was to compare the proteomic profile of cultured fibroblast and fibroblast conditioned culture media of PTCH1+ and nonmutated fibroblasts. RESULTS Proteomic analysis was performed using Surface-Enhanced Laser Desorption/Ionization Time-of-Flight mass spectrometry in PTCH1+ fibroblast conditioned media isolated from not affected sun-protected skin areas of Gorlin patients and from healthy subjects. 12 protein cluster peaks, >5 kDa, had significant differences in their peak intensities between PTCH1+ and PTCH1- subject groups. We detected a strongly MMP1 overexpression in PTCH1+ fibroblasts obtained from NBCCS patients with respect to healthy donors. CONCLUSION Protein profiles in the fibroblast conditioned media revealed statistically significant differences between two different types (missense versus nonsense) of PTCH1 mutations. These differences could be useful as signatures to identify PTCH1 gene carriers at high risk for the development of NBCCS-associated malignancies and to develop novel experimental molecular tailored therapies based on these druggable targets.
Collapse
|
18
|
Wright AT, Magnaldo T, Sontag RL, Anderson LN, Sadler NC, Piehowski PD, Gache Y, Weber TJ. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis. Mol Carcinog 2013; 54:473-84. [PMID: 24285572 DOI: 10.1002/mc.22115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/28/2013] [Accepted: 11/07/2013] [Indexed: 12/30/2022]
Abstract
Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility.
Collapse
Affiliation(s)
- Aaron T Wright
- Omic Biological Applications, Pacific Northwest National Laboratory, Richland, Washington
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Patched knockout mouse models of Basal cell carcinoma. J Skin Cancer 2012; 2012:907543. [PMID: 23024864 PMCID: PMC3449132 DOI: 10.1155/2012/907543] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/06/2012] [Indexed: 01/22/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common human tumor. Mutations in the hedgehog (HH) receptor Patched (PTCH) are the main cause of BCC. Due to their high and increasing incidence, BCC are becoming all the more important for the health care system. Adequate animal models are required for the improvement of current treatment strategies. A good model should reflect the situation in humans (i.e., BCC initiation due to Ptch mutations on an immunocompetent background) and should allow for (i) BCC induction at a defined time point, (ii) analysis of defined BCC stages, and (iii) induction of BCC in 100% of animals. In addition, it should be easy to handle. Here, we compare several currently existing conventional and conditional Ptch knockout mouse models for BCC and their potential use in preclinical research. In addition, we provide new data using conditional Ptchflox/flox mice and the K5-Cre-ERT+/− driver.
Collapse
|
20
|
Abstract
Tenascins are large glycoproteins found in embryonic and adult extracellular matrices. Of the four family members, two have been shown to be overexpressed in the microenvironment of solid tumours: tenascin-C and tenascin-W. The regular presence of these proteins in tumours suggests a role in tumourigenesis, which has been investigated intensively for tenascin-C and recently for tenascin-W as well. In this review, we follow a malignant cell starting from its birth through its potential metastatic journey and describe how tenascin-C and tenascin-W contribute to these successive steps of tumourigenesis. We consider the importance of the mechanical aspect in tenascin signalling. Furthermore, we discuss studies describing tenascin-C as an important component of stem cell niches and present examples reporting its role in cancer therapy resistance.
Collapse
Affiliation(s)
- Florence Brellier
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | | |
Collapse
|
21
|
Abstract
An increasing progress on the role of Hedgehog (Hh) signaling for carcinogenesis has been achieved since the link of Hh pathway to human cancer was firstly established. In particular, the critical role of Hh signaling in the development of Basal cell carcinoma (BCC) has been convincingly demonstrated by genetic mutation analyses, mouse models of BCCs, and successful clinical trials of BCCs using Hh signaling inhibitors. In addition, the Hh pathway activity is also reported to be involved in the pathogenesis of Squamous Cell Carcinoma (SCC), melanoma and Merkel Cell Carcinoma. These findings have significant new paradigm on Hh signaling transduction, its mechanisms in skin cancer and even therapeutic approaches for BCC. In this review, we will summarize the major advances in the understanding of Hh signaling transduction, the roles of Hh signaling in skin cancer development, and the current implications of "mechanism-based" therapeutic strategies.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Sumin Chi
- Department of Physiology, Fourth Military Medical University, Xi’an 710032, China
| | - Jingwu Xie
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
| |
Collapse
|
22
|
Sellheyer K. Basal cell carcinoma: cell of origin, cancer stem cell hypothesis and stem cell markers. Br J Dermatol 2011; 164:696-711. [PMID: 21128907 DOI: 10.1111/j.1365-2133.2010.10158.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer stem cells have recently been described in several high-grade neoplasms. It is still unclear if they also occur in cutaneous malignancies. Cancer stem cells are not identical with somatic stem cells. The presence of tumour stem cells in a neoplasm does not in itself equal that the tumour derives from a somatic stem cell. A cell originally lacking stem cell characteristics could also acquire those features during the course of carcinogenesis and then becomes the clonal founder cell of a tumour. Basal cell carcinoma (BCC) is the most common cutaneous malignancy. A plethora of various stem cell markers has been applied to study its cellular origin. Intriguingly, the anatomical origin of BCC is still uncertain. This review will discuss the various stem cell markers used in BCC and the cellular origin of this tumour, and touches briefly on the possibility of cancer stem cells in BCC. If BCC or other skin cancers harbour tumour stem cells, these cells could be specifically targeted, making use of specific cell surface molecules such as receptor proteins. Novel drugs directed against those receptor proteins could replace currently available shotgun approaches including imiquimod.
Collapse
Affiliation(s)
- K Sellheyer
- Department of Dermatology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| |
Collapse
|
23
|
Saqui-Salces M, Merchant JL. Hedgehog signaling and gastrointestinal cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:786-95. [PMID: 20307590 DOI: 10.1016/j.bbamcr.2010.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 12/23/2022]
Abstract
Hedgehog (Hh) signaling is critical for embryonic development and in differentiation, proliferation, and maintenance of multiple adult tissues. De-regulation of the Hh pathway is associated with birth defects and cancer. In the gastrointestinal tract, Hh ligands Sonic (Shh) and Indian (Ihh), as well as the receptor Patched (Ptch1), and transcription factors of Glioblastoma family (Gli) are all expressed during development. In the adult, Shh expression is restricted to the stomach and colon, while Ihh expression occurs throughout the luminal gastrointestinal tract, its expression being highest in the proximal duodenum. Several studies have demonstrated a requirement for Hh signaling during gastrointestinal tract development. However to date, the specific role of the Hh pathway in the adult stomach and intestine is not completely understood. The current review will place into context the implications of recent published data related to the biochemistry and cell biology of Hh signaling on the luminal gastrointestinal tract during development, normal physiology and subsequently carcinogenesis.
Collapse
Affiliation(s)
- Milena Saqui-Salces
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
24
|
Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 2010; 316:1324-31. [PMID: 20211171 DOI: 10.1016/j.yexcr.2010.02.045] [Citation(s) in RCA: 854] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/28/2010] [Indexed: 01/08/2023]
Abstract
Ten years ago, Hanahan and Weinberg delineated six "Hallmarks of cancer" which summarize several decades of intense cancer research. However, tumor cells do not act in isolation, but rather subsist in a rich microenvironment provided by resident fibroblasts, endothelial cells, pericytes, leukocytes, and extra-cellular matrix. It is increasingly appreciated that the tumor stroma is an integral part of cancer initiation, growth and progression. The stromal elements of tumors hold prognostic, as well as response-predictive, information, and abundant targeting opportunities within the tumor microenvironment are continually identified. Herein we review the current understanding of tumor cell interactions with the tumor stroma with a particular focus on cancer-associated fibroblasts and pericytes. Moreover, we discuss emerging fields of research which need to be further explored in order to fulfil the promise of stroma-targeted therapies for cancer.
Collapse
Affiliation(s)
- Kristian Pietras
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Scheeles väg 2, SE-171 77 Stockholm.
| | | |
Collapse
|
25
|
Valin A, Avril MF, Magnaldo T. [Dermal fibroblasts exert a key influence in the development of basal-cell skin cancers: the model of Gorlin syndrome]. Med Sci (Paris) 2010; 26:22-5. [PMID: 20132767 DOI: 10.1051/medsci/201026122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|