1
|
Palmieri L, Ferrand M, Vu Hong A, Richard I, Albini S. In Silico Structural Prediction for the Generation of Novel Performant Midi-Dystrophins Based on Intein-Mediated Dual AAV Approach. Int J Mol Sci 2024; 25:10444. [PMID: 39408775 PMCID: PMC11476470 DOI: 10.3390/ijms251910444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a pediatric disorder characterized by progressive muscle degeneration and premature death, and has no current cure. The current, most promising therapeutic avenue is based on gene replacement mediated by adeno-associated viruses (AAVs) using a shortened, but still functional, version of dystrophin, known as micro-dystrophin (µDys), to fit AAV capacity. The limited improvements observed in clinical trials suggest a sub-optimal performance of µDys in the human context that could be due to the lack of key domains in the protein. Therefore, expressing larger dystrophin proteins may be necessary for a more complete correction of the disease phenotype. In this study, we developed three novel midi-dystrophin constructs using a dual-AAV approach, leveraging split-intein-based protein trans-splicing. The midi-dystrophins include additional domains compared to µDys, such as the central cytoskeleton-binding domain, nNOS and Par1b interacting domains, and a complete C-terminal region. Given the limited capacity of each AAV vector, we strategically partially reduced hinge regions while ensuring that the structural stability of the protein remains intact. We predicted the interactions between the two halves of the split midi-Dys proteins thanks to the deep learning algorithm AphaFold3. We observed strong associations between the N- and C-termini in midi-Dys 1 and 2, while a weaker interaction in midi-Dys 3 was revealed. Our subsequent experiments confirmed the efficient protein trans-splicing both in vitro and in vivo in DBA2/mdx mice of the midi-Dys 1 and 2 and not in midi-Dys 3 as expected from the structural prediction. Additionally, we demonstrated that midi-Dys 1 and 2 exhibit significant therapeutic efficacy in DBA2/mdx mice, highlighting their potential as therapeutic agents for DMD. Overall, these findings highlight the potential of deep learning-based structural modeling for the generation of intein-based dystrophin versions and pose the basis for further investigation of these new midi-dystrophins versions for clinical studies.
Collapse
Affiliation(s)
- Laura Palmieri
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| | - Maxime Ferrand
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| | - Ai Vu Hong
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| | - Isabelle Richard
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
- Atamyo Therapeutics, 1, Bis Rue de l’Internationale, 91000 Evry, France
| | - Sonia Albini
- Genethon, 91000 Evry, France; (L.P.); (M.F.); (A.V.H.); (I.R.)
- INTEGRARE Research Unit UMR_S951 (INSERM, Université Paris-Saclay, Univ Evry), 91000 Evry, France
| |
Collapse
|
2
|
Daniilidis M, Sperl LE, Müller BS, Babl A, Hagn F. Efficient Segmental Isotope Labeling of Integral Membrane Proteins for High-Resolution NMR Studies. J Am Chem Soc 2024; 146:15403-15410. [PMID: 38787792 PMCID: PMC11157531 DOI: 10.1021/jacs.4c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
High-resolution structural NMR analyses of membrane proteins are challenging due to their large size, resulting in broad resonances and strong signal overlap. Among the isotope labeling methods that can remedy this situation, segmental isotope labeling is a suitable strategy to simplify NMR spectra and retain high-resolution structural information. However, protein ligation within integral membrane proteins is complicated since the hydrophobic protein fragments are insoluble, and the removal of ligation side-products is elaborate. Here, we show that a stabilized split-intein system can be used for rapid and high-yield protein trans-splicing of integral membrane proteins under denaturing conditions. This setup enables segmental isotope labeling experiments within folded protein domains for NMR studies. We show that high-quality NMR spectra of markedly reduced complexity can be obtained in detergent micelles and lipid nanodiscs. Of note, the nanodisc insertion step specifically selects for the ligated and correctly folded membrane protein and simultaneously removes ligation byproducts. Using this tailored workflow, we show that high-resolution NMR structure determination is strongly facilitated with just two segmentally isotope-labeled membrane protein samples. The presented method will be broadly applicable to structural and dynamical investigations of (membrane-) proteins and their complexes by solution and solid-state NMR but also other structural methods where segmental labeling is beneficial.
Collapse
Affiliation(s)
- Melina Daniilidis
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Laura E. Sperl
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Benedikt S. Müller
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Antonia Babl
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian
NMR Center, Department of Bioscience, School of Natural Sciences, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany
- Institute
of Structural Biology, Helmholtz Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
3
|
Bae J, Kim J, Choi J, Lee H, Koh M. Split Proteins and Reassembly Modules for Biological Applications. Chembiochem 2024; 25:e202400123. [PMID: 38530024 DOI: 10.1002/cbic.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Split systems, modular entities enabling controlled biological processes, have become instrumental in biological research. This review highlights their utility across applications like gene regulation, protein interaction identification, and biosensor development. Covering significant progress over the last decade, it revisits traditional split proteins such as GFP, luciferase, and inteins, and explores advancements in technologies like Cas proteins and base editors. We also examine reassembly modules and their applications in diverse fields, from gene regulation to therapeutic innovation. This review offers a comprehensive perspective on the recent evolution of split systems in biological research.
Collapse
Affiliation(s)
- Jieun Bae
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jongdoo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
4
|
Nebogatova J, Porosk L, Härk HH, Kurrikoff K. Enhancing Cellular Uptake of Native Proteins through Bio-Orthogonal Conjugation with Chemically Synthesized Cell-Penetrating Peptides. Pharmaceutics 2024; 16:617. [PMID: 38794279 PMCID: PMC11125112 DOI: 10.3390/pharmaceutics16050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The potential for native proteins to serve as a platform for biocompatible, targeted, and personalized therapeutics in the context of genetic and metabolic disorders is vast. Nevertheless, their clinical application encounters challenges, particularly in overcoming biological barriers and addressing the complexities involved in engineering transmembrane permeability. This study is dedicated to the development of a multifunctional nanoentity in which a model therapeutic protein is covalently linked to a cell-penetrating peptide, NickFect 55, with the objective of enhancing its intracellular delivery. Successful binding of the nanoentity fragments was achieved through the utilization of an intein-mediated protein-trans splicing reaction. Our research demonstrates that the fully assembled nanoentity-containing protein was effectively internalized by the cells, underscoring the potential of this approach in overcoming barriers associated with protein-based therapeutics for the treatment of genetic disorders.
Collapse
|
5
|
Iwaï H, Beyer HM, Johansson JEM, Li M, Wlodawer A. The three-dimensional structure of the Vint domain from Tetrahymena thermophila suggests a ligand-regulated cleavage mechanism by the HINT fold. FEBS Lett 2024; 598:864-874. [PMID: 38351630 DOI: 10.1002/1873-3468.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 04/23/2024]
Abstract
Vint proteins have been identified in unicellular metazoans as a novel hedgehog-related gene family, merging the von Willebrand factor type A domain and the Hedgehog/INTein (HINT) domains. We present the first three-dimensional structure of the Vint domain from Tetrahymena thermophila corresponding to the auto-processing domain of hedgehog proteins, shedding light on the unique features, including an adduct recognition region (ARR). Our results suggest a potential binding between the ARR and sulfated glycosaminoglycans like heparin sulfate. Moreover, we uncover a possible regulatory role of the ARR in the auto-processing by Vint domains, expanding our understanding of the HINT domain evolution and their use in biotechnological applications. Vint domains might have played a crucial role in the transition from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, Finland
| | - Hannes M Beyer
- Institute of Biotechnology, University of Helsinki, Finland
| | | | - Mi Li
- Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, MD, USA
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
6
|
Qu Z, Fang J, Wang YX, Sun Y, Liu Y, Wu WH, Zhang WB. A single-domain green fluorescent protein catenane. Nat Commun 2023; 14:3480. [PMID: 37311944 DOI: 10.1038/s41467-023-39233-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Natural proteins exhibit rich structural diversity based on the folds of an invariably linear chain. Macromolecular catenanes that cooperatively fold into a single domain do not belong to the current protein universe, and their design and synthesis open new territories in chemistry. Here, we report the design, synthesis, and properties of a single-domain green fluorescent protein catenane via rewiring the connectivity of GFP's secondary motifs. The synthesis could be achieved in two steps via a pseudorotaxane intermediate or directly via expression in cellulo. Various proteins-of-interest may be inserted at the loop regions to give fusion protein catenanes where the two subunits exhibit enhanced thermal resilience, thermal stability, and mechanical stability due to strong conformational coupling. The strategy can be applied to other proteins with similar fold, giving rise to a family of single-domain fluorescent proteins. The results imply that there may be multiple protein topological variants with desirable functional traits beyond their corresponding linear protein counterparts, which are now made accessible and fully open for exploration.
Collapse
Affiliation(s)
- Zhiyu Qu
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yu-Xiang Wang
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yibin Sun
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing, P. R. China.
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Peking University, Beijing, P. R. China.
- Center for Soft Matter Science and Engineering, Peking University, Beijing, P. R. China.
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China.
- Beijing Academy of Artificial Intelligence, Beijing, P. R. China.
| |
Collapse
|
7
|
Krois AS, Park S, Martinez-Yamout MA, Dyson HJ, Wright PE. Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR. Biochemistry 2022; 61:2709-2719. [PMID: 36380579 PMCID: PMC9788666 DOI: 10.1021/acs.biochem.2c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The C-terminal region of the tumor suppressor protein p53 contains three domains, nuclear localization signal (NLS), tetramerization domain (TET), and C-terminal regulatory domain (CTD), which are essential for p53 function. Characterization of the structure and interactions of these domains within full-length p53 has been limited by the overall size and flexibility of the p53 tetramer. Using trans-intein splicing, we have generated full-length p53 constructs in which the C-terminal region is isotopically labeled with 15N for NMR analysis, allowing us to obtain atomic-level information on the C-terminal domains in the context of the full-length protein. Resonances of NLS and CTD residues have narrow linewidths, showing that these regions are largely solvent-exposed and dynamically disordered, whereas resonances from the folded TET are broadened beyond detection. Two regions of the CTD, spanning residues 369-374 and 381-388 and with high lysine content, make dynamic and sequence-independent interactions with DNA in regions that flank the p53 recognition element. The population of DNA-bound states increases as the length of the flanking regions is extended up to approximately 20 base pairs on either side of the recognition element. Acetylation of K372, K373, and K382, using a construct of the transcriptional coactivator CBP containing the TAZ2 and acetyltransferase domains, inhibits interaction of the CTD with DNA. This work provides high-resolution insights into the behavior of the intrinsically disordered C-terminal regions of p53 within the full-length tetramer and the molecular basis by which the CTD mediates DNA binding and specificity.
Collapse
Affiliation(s)
- Alexander S Krois
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Sangho Park
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Maria A Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California92037, United Sates
| |
Collapse
|
8
|
Wu WH, Guo J, Zhang L, Zhang WB, Gao W. Peptide/protein-based macrocycles: from biological synthesis to biomedical applications. RSC Chem Biol 2022; 3:815-829. [PMID: 35866174 PMCID: PMC9257627 DOI: 10.1039/d1cb00246e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Living organisms have evolved cyclic or multicyclic peptides and proteins with enhanced stability and high bioactivity superior to their linear counterparts for diverse purposes. Herein, we review recent progress in applying this concept to artificial peptides and proteins to exploit the functional benefits of these macrocycles. Not only have simple cyclic forms been prepared, numerous macrocycle variants, such as knots and links, have also been developed. The chemical tools and synthetic strategies are summarized for the biological synthesis of these macrocycles, demonstrating it as a powerful alternative to chemical synthesis. Its further application to therapeutic peptides/proteins has led to biomedicines with profoundly improved pharmaceutical performances. Finally, we present our perspectives on the field and its future developments.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianwen Guo
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| |
Collapse
|
9
|
Heikkinen HA, Aranko AS, Iwaï H. The NMR structure of the engineered halophilic DnaE intein for segmental isotopic labeling using conditional protein splicing. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 338:107195. [PMID: 35398651 DOI: 10.1016/j.jmr.2022.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Protein trans-splicing catalyzed by split inteins has been used for segmental isotopic labeling of proteins for alleviating the complexity of NMR signals. Whereas inteins spontaneously trigger protein splicing upon protein folding, inteins from extremely halophilic organisms require a high salinity condition to induce protein splicing. We designed and created a salt-inducible intein from the widely used DnaE intein from Nostoc punctiforme by introducing 29 mutations, which required a lower salt concentration than naturally occurring halo-obligate inteins. We determined the NMR solution structure of the engineered salt-inducible DnaE intein in 2 M NaCl, showing the essentially identical three-dimensional structure to the original one, albeit it unfolds without salts. The NMR structure of a halo-obligate intein under high salinity suggests that the stabilization of the active folded conformation is not a mere result of various intramolecular interactions but the subtle energy balance from the complex interactions, including the solvation energy, which involve waters, ions, co-solutes, and protein polypeptide chains.
Collapse
Affiliation(s)
- Harri A Heikkinen
- Institute of Biotechnology, University of Helsinki, PO Box 65, Helsinki, FIN-00014, Finland
| | - A Sesilja Aranko
- Institute of Biotechnology, University of Helsinki, PO Box 65, Helsinki, FIN-00014, Finland.
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, PO Box 65, Helsinki, FIN-00014, Finland.
| |
Collapse
|
10
|
Wu WH, Bai X, Shao Y, Yang C, Wei J, Wei W, Zhang WB. Higher Order Protein Catenation Leads to an Artificial Antibody with Enhanced Affinity and In Vivo Stability. J Am Chem Soc 2021; 143:18029-18040. [PMID: 34664942 DOI: 10.1021/jacs.1c06169] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chemical topology is a unique dimension for protein engineering, yet the topological diversity and architectural complexity of proteins remain largely untapped. Herein, we report the biosynthesis of complex topological proteins using a rationally engineered, cross-entwining peptide heterodimer motif derived from p53dim (an entangled homodimeric mutant of the tetramerization domain of the tumor suppressor protein p53). The incorporation of an electrostatic interaction at specific sites converts the p53dim homodimer motif into a pair of heterodimer motifs with high specificity for directing chain entanglement upon folding. Its combination with split-intein-mediated ligation and/or SpyTag/SpyCatcher chemistry facilitates the programmed synthesis of protein heterocatenane or [n]catenanes in cells, leading to a general and modular approach to complex protein catenanes containing various proteins of interest. Concatenation enhances not only the target protein's affinity but also the in vivo stability as shown by its prolonged circulation time in blood. As a proof of concept, artificial antibodies have been developed by embedding a human epidermal growth factor receptor 2-specific affibody onto the [n]catenane scaffolds and shown to exhibit a higher affinity and a better pharmacokinetic profile than the wild-type affibody. These results suggest that topology engineering holds great promise in the development of therapeutic proteins.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xilin Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yu Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chao Yang
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P. R. China
| | - Jingjing Wei
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
11
|
Production of IgG1-based bispecific antibody without extra cysteine residue via intein-mediated protein trans-splicing. Sci Rep 2021; 11:19411. [PMID: 34593913 PMCID: PMC8484483 DOI: 10.1038/s41598-021-98855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
A major class of bispecific antibodies (BsAbs) utilizes heterodimeric Fc to produce the native immunoglobulin G (IgG) structure. Because appropriate pairing of heavy and light chains is required, the design of BsAbs produced through recombination or reassembly of two separately-expressed antigen-binding fragments is advantageous. One such method uses intein-mediated protein trans-splicing (IMPTS) to produce an IgG1-based structure. An extra Cys residue is incorporated as a consensus sequence for IMPTS in successful examples, but this may lead to potential destabilization or disturbance of the assay system. In this study, we designed a BsAb linked by IMPTS, without the extra Cys residue. A BsAb binding to both TNFR2 and CD30 was successfully produced. Cleaved side product formation was inevitable, but it was minimized under the optimized conditions. The fine-tuned design is suitable for the production of IgG-like BsAb with high symmetry between the two antigen-binding fragments that is advantageous for screening BsAbs.
Collapse
|
12
|
Liu C, Kobashigawa Y, Yamauchi S, Fukuda N, Sato T, Masuda T, Ohtsuki S, Morioka H. Convenient method of producing cyclic single-chain Fv antibodies by split-intein-mediated protein ligation and chaperone co-expression. J Biochem 2021; 168:257-263. [PMID: 32275752 DOI: 10.1093/jb/mvaa042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
Single-chain Fv (scFv) is a recombinant antibody in which the variable regions of the heavy chain (VH) and light chain (VL) are connected by a short flexible polypeptide linker. Compared with monoclonal antibodies, scFvs have the advantages of low-cost production using Escherichia coli and easy genetic manipulation. ScFvs are, therefore, regarded as useful modules for producing next-generation medical antibodies. The practical use of scFvs has been limited due to their aggregation propensity mediated by interchain VH-VL interactions. To overcome this problem, we recently reported a cyclic scFv whose N-terminus and C-terminus were connected by sortase A-mediated ligation. Preparation of cyclic scFv is, however, a time-consuming process. To accelerate the application study of cyclic scFv, we developed a method to produce cyclic scFv by the combined use of a protein ligation technique based on protein trans-splicing reaction (PTS) by split intein and a chaperone co-expression system. This method allows for the preparation of active cyclic scFv from the cytoplasm of E. coli. The present method was applied to the production of cyclic 73MuL9-scFv, a GA-pyridine antibody, as a kind of advanced glycation end-product. These findings are expected to evoke further application study of cyclic scFv.
Collapse
Affiliation(s)
| | | | | | | | - Takashi Sato
- Department of Analytical and Biophysical Chemistry
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | | |
Collapse
|
13
|
Oeemig JS, Beyer HM, Aranko AS, Mutanen J, Iwaï H. Substrate specificities of inteins investigated by QuickDrop-cassette mutagenesis. FEBS Lett 2020; 594:3338-3355. [PMID: 32805768 DOI: 10.1002/1873-3468.13909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/21/2023]
Abstract
Inteins catalyze self-excision from host precursor proteins while concomitantly ligating the flanking substrates (exteins) with a peptide bond. Noncatalytic extein residues near the splice junctions, such as the residues at the -1 and +2 positions, often strongly influence the protein-splicing efficiency. The substrate specificities of inteins have not been studied for many inteins. We developed a convenient mutagenesis platform termed "QuickDrop"-cassette mutagenesis for investigating the influences of 20 amino acid types at the -1 and +2 positions of different inteins. We elucidated 17 different profiles of the 20 amino acid dependencies across different inteins. The substrate specificities will accelerate our understanding of the structure-function relationship at the splicing junctions for broader applications of inteins in biotechnology and molecular biosciences.
Collapse
Affiliation(s)
- Jesper S Oeemig
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hannes M Beyer
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - A Sesilja Aranko
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Justus Mutanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Liu Y, Duan Z, Fang J, Zhang F, Xiao J, Zhang WB. Cellular Synthesis and X-ray Crystal Structure of a Designed Protein Heterocatenane. Angew Chem Int Ed Engl 2020; 59:16122-16127. [PMID: 32506656 DOI: 10.1002/anie.202005490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 01/24/2023]
Abstract
Herein, we report the biosynthesis of protein heterocatenanes using a programmed sequence of multiple post-translational processing events including intramolecular chain entanglement, in situ backbone cleavage, and spontaneous cyclization. The approach is general, autonomous, and can obviate the need for any additional enzymes. The catenane topology was convincingly proven using a combination of SDS-PAGE, LC-MS, size exclusion chromatography, controlled proteolytic digestion, and protein crystallography. The X-ray crystal structure clearly shows two mechanically interlocked protein rings with intact folded domains. It opens new avenues in the nascent field of protein-topology engineering.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zelin Duan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
15
|
Liu Y, Duan Z, Fang J, Zhang F, Xiao J, Zhang W. Cellular Synthesis and X‐ray Crystal Structure of a Designed Protein Heterocatenane. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Zelin Duan
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
| | - Wen‐Bin Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry &, Physics of Ministry of Education Center for Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| |
Collapse
|
16
|
Jaakkonen A, Volkmann G, Iwaï H. An off-the-Shelf Approach for the Production of Fc Fusion Proteins by Protein Trans-Splicing towards Generating a Lectibody In Vitro. Int J Mol Sci 2020; 21:ijms21114011. [PMID: 32503354 PMCID: PMC7313076 DOI: 10.3390/ijms21114011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies, engineered antibodies, and antibody fragments have become important biological therapeutic platforms. The IgG format with bivalent binding sites has a modular structure with different biological roles, i.e., effector and binding functions, in different domains. We demonstrated the reconstruction of an IgG-like domain structure in vitro by protein ligation using protein trans-splicing. We produced various binding domains to replace the binding domain of IgG from Escherichia coli and the Fc domain of human IgG from Brevibacillus choshinensis as split-intein fusions. We showed that in vitro protein ligation could produce various Fc-fusions at the N-terminus in vitro from the independently produced domains from different organisms. We thus propose an off-the-shelf approach for the combinatorial production of Fc fusions in vitro with several distinct binding domains, particularly from naturally occurring binding domains. Antiviral lectins from algae are known to inhibit virus entry of HIV and SARS coronavirus. We demonstrated that a lectin could be fused with the Fc-domain in vitro by protein ligation, producing an IgG-like molecule as a “lectibody”. Such an Fc-fusion could be produced in vitro by this approach, which could be an attractive method for developing potential therapeutic agents against rapidly emerging infectious diseases like SARS coronavirus without any genetic fusion and expression optimization.
Collapse
Affiliation(s)
- Anniina Jaakkonen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (A.J.); (G.V.)
- Present Address: Microbiology Unit, Finnish Food Authority, FI-00790 Helsinki, Finland
| | - Gerrit Volkmann
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (A.J.); (G.V.)
| | - Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland; (A.J.); (G.V.)
- Correspondence: ; Tel.: +358-2941-59752
| |
Collapse
|
17
|
Beyer HM, Mikula KM, Li M, Wlodawer A, Iwaï H. The crystal structure of the naturally split gp41-1 intein guides the engineering of orthogonal split inteins from cis-splicing inteins. FEBS J 2020; 287:1886-1898. [PMID: 31665813 PMCID: PMC7190452 DOI: 10.1111/febs.15113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023]
Abstract
Protein trans-splicing catalyzed by split inteins has increasingly become useful as a protein engineering tool. We solved the 1.0 Å-resolution crystal structure of a fused variant from the naturally split gp41-1 intein, previously identified from environmental metagenomic sequence data. The structure of the 125-residue gp41-1 intein revealed a compact pseudo-C2-symmetry commonly found in the Hedgehog/Intein superfamily with extensive charge-charge interactions between the split N- and C-terminal intein fragments that are common among naturally occurring split inteins. We successfully created orthogonal split inteins by engineering a similar charge network into the same region of a cis-splicing intein. This strategy could be applicable for creating novel natural-like split inteins from other, more prevalent cis-splicing inteins. DATABASE: Structural data are available in the RCSB Protein Data Bank under the accession number 6QAZ.
Collapse
Affiliation(s)
- Hannes Michael Beyer
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Kornelia Malgorzata Mikula
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Mi Li
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
18
|
A mesophilic cysteine-less split intein for protein trans-splicing applications under oxidizing conditions. Proc Natl Acad Sci U S A 2019; 116:22164-22172. [PMID: 31611397 DOI: 10.1073/pnas.1909825116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Split intein-mediated protein trans-splicing has found extensive applications in chemical biology, protein chemistry, and biotechnology. However, an enduring limitation of all well-established split inteins has been the requirement to carry out the reaction in a reducing environment due to the presence of 1 or 2 catalytic cysteines that need to be in a reduced state for splicing to occur. The concomitant exposure of the fused proteins to reducing agents severely limits the scope of protein trans-splicing by excluding proteins sensitive to reducing conditions, such as those containing critical disulfide bonds. Here we report the discovery, characterization, and engineering of a completely cysteine-less split intein (CL intein) that is capable of efficient trans-splicing at ambient temperatures, without a denaturation step, and in the absence of reducing agents. We demonstrate its utility for the site-specific chemical modification of nanobodies and an antibody Fc fragment by N- and C-terminal trans-splicing with short peptide tags (CysTag) that consist of only a few amino acids and have been prelabeled on a single cysteine using classical cysteine bioconjugation. We also synthesized the short N-terminal fragment of the atypically split CL intein by solid-phase peptide synthesis. Furthermore, using the CL intein in combination with a nanobody-epitope pair as a high-affinity mediator, we showed chemical labeling of the extracellular domain of a cell surface receptor on living mammalian cells with a short CysTag containing a synthetic fluorophore. The CL intein thus greatly expands the scope of applications for protein trans-splicing.
Collapse
|
19
|
Crystal structures of CDC21-1 inteins from hyperthermophilic archaea reveal the selection mechanism for the highly conserved homing endonuclease insertion site. Extremophiles 2019; 23:669-679. [PMID: 31363851 PMCID: PMC6801210 DOI: 10.1007/s00792-019-01117-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/09/2019] [Indexed: 11/27/2022]
Abstract
Self-splicing inteins are mobile genetic elements invading host genes via nested homing endonuclease (HEN) domains. All HEN domains residing within inteins are inserted at a highly conserved insertion site. A purifying selection mechanism directing the location of the HEN insertion site has not yet been identified. In this work, we solved the three-dimensional crystal structures of two inteins inserted in the cell division control protein 21 of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii. A comparison between the structures provides the structural basis for the thermo-stabilization mechanism of inteins that have lost the HEN domain during evolution. The presence of an entire extein domain in the intein structure from Pyrococcus horikoshii suggests the selection mechanism for the highly conserved HEN insertion point.
Collapse
|
20
|
Affiliation(s)
- Seiji SAKAMOTO
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| | - Itaru HAMACHI
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST)
| |
Collapse
|
21
|
Sarmiento C, Camarero JA. Biotechnological Applications of Protein Splicing. Curr Protein Pept Sci 2019; 20:408-424. [PMID: 30734675 PMCID: PMC7135711 DOI: 10.2174/1389203720666190208110416] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
Protein splicing domains, also called inteins, have become a powerful biotechnological tool for applications involving molecular biology and protein engineering. Early applications of inteins focused on self-cleaving affinity tags, generation of recombinant polypeptide α-thioesters for the production of semisynthetic proteins and backbone cyclized polypeptides. The discovery of naturallyoccurring split-inteins has allowed the development of novel approaches for the selective modification of proteins both in vitro and in vivo. This review gives a general introduction to protein splicing with a focus on their role in expanding the applications of intein-based technologies in protein engineering and chemical biology.
Collapse
Affiliation(s)
- Corina Sarmiento
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
| | - Julio A. Camarero
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA9033 USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA9033 USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-9121, USA
| |
Collapse
|
22
|
Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Proc Natl Acad Sci U S A 2018; 115:E11302-E11310. [PMID: 30420502 DOI: 10.1073/pnas.1814051115] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atomic resolution characterization of the full-length p53 tetramer has been hampered by its size and the presence of extensive intrinsically disordered regions at both the N and C termini. As a consequence, the structural characteristics and dynamics of the disordered regions are poorly understood within the context of the intact p53 tetramer. Here we apply trans-intein splicing to generate segmentally 15N-labeled full-length p53 constructs in which only the resonances of the N-terminal transactivation domain (NTAD) are visible in NMR spectra, allowing us to observe this region of p53 with unprecedented detail within the tetramer. The N-terminal region is dynamically disordered in the full-length p53 tetramer, fluctuating between states in which it is free and fully exposed to solvent and states in which it makes transient contacts with the DNA-binding domain (DBD). Chemical-shift changes and paramagnetic spin-labeling experiments reveal that the amphipathic AD1 and AD2 motifs of the NTAD interact with the DNA-binding surface of the DBD through primarily electrostatic interactions. Importantly, this interaction inhibits binding of nonspecific DNA to the DBD while having no effect on binding to a specific p53 recognition element. We conclude that the NTAD:DBD interaction functions to enhance selectivity toward target genes by inhibiting binding to nonspecific sites in genomic DNA. This work provides some of the highest-resolution data on the disordered N terminus of the nearly 180-kDa full-length p53 tetramer and demonstrates a regulatory mechanism by which the N terminus of p53 transiently interacts with the DBD to enhance target site discrimination.
Collapse
|
23
|
Lee E, Min K, Chang YT, Kwon Y. Efficient and wash-free labeling of membrane proteins using engineered Npu DnaE split-inteins. Protein Sci 2018; 27:1568-1574. [PMID: 30151847 DOI: 10.1002/pro.3455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023]
Abstract
An efficient and wash-free method to conjugate a fluorescent tag to a target membrane protein is developed, using engineered Npu DnaE split-inteins. This approach allowed fast labeling while avoiding the strenuous synthesis of a long polypeptide. Two different modes of labeling, namely specific binding and covalent conjugation, are observed. The covalent labeling was monitored within 5 min, without background staining.
Collapse
Affiliation(s)
- Euiyeon Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Kyoungmi Min
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Youngeun Kwon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, South Korea
| |
Collapse
|
24
|
Richardson D, Itkonen J, Nievas J, Urtti A, Casteleijn MG. Accelerated pharmaceutical protein development with integrated cell free expression, purification, and bioconjugation. Sci Rep 2018; 8:11967. [PMID: 30097621 PMCID: PMC6086869 DOI: 10.1038/s41598-018-30435-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/30/2018] [Indexed: 12/02/2022] Open
Abstract
The use of living cells for the synthesis of pharmaceutical proteins, though state-of-the-art, is hindered by its lengthy process comprising of many steps that may affect the protein’s stability and activity. We aimed to integrate protein expression, purification, and bioconjugation in small volumes coupled with cell free protein synthesis for the target protein, ciliary neurotrophic factor. Split-intein mediated capture by use of capture peptides onto a solid surface was efficient at 89–93%. Proof-of-principle of light triggered release was compared to affinity chromatography (His6 fusion tag coupled with Ni-NTA). The latter was more efficient, but more time consuming. Light triggered release was clearly demonstrated. Moreover, we transferred biotin from the capture peptide to the target protein without further purification steps. Finally, the target protein was released in a buffer-volume and composition of our choice, omitting the need for protein concentration or changing the buffer. Split-intein mediated capture, protein trans splicing followed by light triggered release, and bioconjugation for proteins synthesized in cell free systems might be performed in an integrated workflow resulting in the fast production of the target protein.
Collapse
Affiliation(s)
- Dominique Richardson
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jaakko Itkonen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Julia Nievas
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Arto Urtti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Institute of Chemistry, St Petersburg State University, Petergoff, St Petersburg, Russian Federation
| | - Marco G Casteleijn
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
25
|
Miehling J, Goricanec D, Hagn F. A Split-Intein-Based Method for the Efficient Production of Circularized Nanodiscs for Structural Studies of Membrane Proteins. Chembiochem 2018; 19:1927-1933. [DOI: 10.1002/cbic.201800345] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Jonas Miehling
- Bavarian NMR Center at the Department of Chemistry, and Institute for Advanced Study; Technical University of Munich; Lichtenbergstrasse 4 85747 Garching Germany
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstrasse 1 85764 Neuherberg Germany
| | - David Goricanec
- Bavarian NMR Center at the Department of Chemistry, and Institute for Advanced Study; Technical University of Munich; Lichtenbergstrasse 4 85747 Garching Germany
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstrasse 1 85764 Neuherberg Germany
| | - Franz Hagn
- Bavarian NMR Center at the Department of Chemistry, and Institute for Advanced Study; Technical University of Munich; Lichtenbergstrasse 4 85747 Garching Germany
- Institute of Structural Biology; Helmholtz Zentrum München; Ingolstädter Landstrasse 1 85764 Neuherberg Germany
| |
Collapse
|
26
|
Han Z, Su WW. Intein-mediated assembly of tunable scaffoldins for facile synthesis of designer cellulosomes. Appl Microbiol Biotechnol 2018; 102:1331-1342. [PMID: 29275429 DOI: 10.1007/s00253-017-8701-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/05/2017] [Accepted: 12/04/2017] [Indexed: 01/26/2023]
Abstract
In this study, extended artificial scaffoldins possessing multiple cohesin modules were created in vivo by employing split-intein-mediated protein ligation. Artificial scaffoldins having one Clostridium thermocellum cohesin (Coht), one carbohydrate binding module (CBM) from Clostridium cellulolyticum scaffolding protein CipC, and one to five cohesins (Cohc) derived from CipC, were assembled. These scaffoldins were used to assemble cellulosomal enzyme complexes for investigating the interplay among endoglucanase, exoglucanase, and scaffoldin-borne CBM, on the hydrolysis of a model microcrystalline cellulose substrate, Avicel. The cellulosomal complexes were assembled in vitro by incubating recombinant C. thermocellum endoglucanase (At) and C. cellulolyticum exoglucanase (Ec), with the various artificial scaffoldins. Under a fixed total cellulase concentration, improved hydrolysis is noted by recruiting both Ec and At on the same scaffoldin, for all scaffoldins tested, compared with free cellulases. The improvement is more profound with scaffoldins having a higher Cohc/Coht ratio (i.e., increased Ec/At ratio). Furthermore, among scaffoldins having the same Cohc/Coht ratio, highest rates of Avicel hydrolysis are noted when Coht, and hence an endoglucanase, is situated next to the CBM and not flanked by Cohc. These results point to the importance of using scaffoldins with sufficiently high numbers of cohesin units to achieve an optimal exo-/endo-glucanase ratio to create efficient designer cellulosomes. Furthermore, intein-trans-splicing is proven here to be an effective method for assembling complex scaffoldins and more intricate cellulosomes.
Collapse
Affiliation(s)
- Zhenlin Han
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, 96822, USA
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
27
|
Abstract
Split inteins have emerged as a powerful tool in protein engineering. We describe a reliable in silico method to predict viable split sites for the design of new split inteins. A computational circular permutation (CP) prediction method facilitates the search for internal permissive sites to create artificial circular permutants. In this procedure, the original amino- and carboxyl-termini are connected and new termini are created. The identified new terminal sites are promising candidates for the generation of new split sites with the backbone opening being tolerated by the structural scaffold. Here we show how to integrate the online usage of the CP predictor, CPred, in the search of new split intein sites.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, 30013, Hsinchu, Taiwan
| | - Wei-Cheng Lo
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, 30013, Hsinchu, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
28
|
Ciragan A, Aranko AS, Tascon I, Iwaï H. Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool. J Mol Biol 2016; 428:4573-4588. [PMID: 27720988 DOI: 10.1016/j.jmb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 10/20/2022]
Abstract
Intervening protein sequences (inteins) from extremely halophilic haloarchaea can be inactive under low salinity but could be activated by increasing the salt content to a specific concentration for each intein. The halo-obligatory inteins confer high solubility under both low and high salinity conditions. We showed the broad utility of salt-dependent protein splicing in cis and trans by demonstrating backbone cyclization, self-cleavage for purification, and scarless protein ligation for segmental isotopic labeling. Artificially split MCM2 intein derived from Halorhabdus utahensis remained highly soluble and was capable of protein trans-splicing with excellent ligation kinetics by reassembly under high salinity conditions. Importantly, the MCM2 intein has the active site residue of Ser at the +1 position, which remains in the ligated product, instead of Cys as found in many other efficient split inteins. Since Ser is more abundant than Cys in proteins, the novel split intein could widen the applications of segmental labeling in protein NMR spectroscopy and traceless protein ligation by exploiting a Ser residue in the native sequences as the +1 position of the MCM2 intein. The split halo-obligatory intein was successfully used to demonstrate the utility in NMR investigation of intact proteins by producing segmentally isotope-labeled intact TonB protein from Helicobacter pylori.
Collapse
Affiliation(s)
- Annika Ciragan
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - A Sesilja Aranko
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - Igor Tascon
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland.
| |
Collapse
|
29
|
Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proc Natl Acad Sci U S A 2016; 113:E1853-62. [PMID: 26976603 DOI: 10.1073/pnas.1602487113] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An important component of the activity of p53 as a tumor suppressor is its interaction with the transcriptional coactivators cyclic-AMP response element-binding protein (CREB)-binding protein (CBP) and p300, which activate transcription of p53-regulated stress response genes and stabilize p53 against ubiquitin-mediated degradation. The highest affinity interactions are between the intrinsically disordered N-terminal transactivation domain (TAD) of p53 and the TAZ1 and TAZ2 domains of CBP/p300. The NMR spectra of simple binary complexes of the TAZ1 and TAZ2 domains with the p53TAD suffer from exchange broadening, but innovations in construct design and isotopic labeling have enabled us to obtain high-resolution structures using fusion proteins, uniformly labeled in the case of the TAZ2-p53TAD fusion and segmentally labeled through transintein splicing for the TAZ1-p53TAD fusion. The p53TAD is bipartite, with two interaction motifs, termed AD1 and AD2, which fold to form short amphipathic helices upon binding to TAZ1 and TAZ2 whereas intervening regions of the p53TAD remain flexible. Both the AD1 and AD2 motifs bind to hydrophobic surfaces of the TAZ domains, with AD2 making more extensive hydrophobic contacts consistent with its greater contribution to the binding affinity. Binding of AD1 and AD2 is synergistic, and structural studies performed with isolated motifs can be misleading. The present structures of the full-length p53TAD complexes demonstrate the versatility of the interactions available to an intrinsically disordered domain containing bipartite interaction motifs and provide valuable insights into the structural basis of the affinity changes that occur upon stress-related posttranslational modification.
Collapse
|
30
|
Jung D, Sato K, Min K, Shigenaga A, Jung J, Otaka A, Kwon Y. Photo-triggered fluorescent labelling of recombinant proteins in live cells. Chem Commun (Camb) 2016; 51:9670-3. [PMID: 25977944 DOI: 10.1039/c5cc01067e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A method to photo-chemically trigger fluorescent labelling of proteins in live cells is developed. The approach is based on photo-caged split-intein mediated conditional protein trans-splicing reaction and enabled background-free fluorescent labelling of target proteins with the necessary spatiotemporal control.
Collapse
Affiliation(s)
- Deokho Jung
- Department of Biomedical Engineering, Dongguk University-Seoul, Pildong 3-ga, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
31
|
Braner M, Kollmannsperger A, Wieneke R, Tampé R. 'Traceless' tracing of proteins - high-affinity trans-splicing directed by a minimal interaction pair. Chem Sci 2015; 7:2646-2652. [PMID: 28660037 PMCID: PMC5477019 DOI: 10.1039/c5sc02936h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/18/2015] [Indexed: 12/26/2022] Open
Abstract
Using a minimal lock-and-key element the affinity between the intein fragments for N-terminal protein trans-splicing was significantly increased, allowing for site-specific, ‘traceless’ covalent protein labeling in living mammalian cells at nanomolar probe concentrations.
Protein trans-splicing mediated by split inteins is a powerful technique for site-specific protein modification. Despite recent developments there is still an urgent need for ultra-small high-affinity intein tags for in vitro and in vivo approaches. To date, only very few in-cell applications of protein trans-splicing have been reported, all limited to C-terminal protein modifications. Here, we developed a strategy for covalent N-terminal intein-mediated protein labeling at (sub) nanomolar probe concentrations. Combined with a minimal synthetic lock-and-key element, the affinity between the intein fragments was increased more than 50-fold to 10 nM. Site-specific and efficient ‘traceless’ protein modification by high-affinity trans-splicing is demonstrated at nanomolar concentrations in living mammalian cells.
Collapse
Affiliation(s)
- M Braner
- Institute of Biochemistry, Biocenter, and Cluster of Excellence - Macromolecular Complexes , Goethe-University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany .
| | - A Kollmannsperger
- Institute of Biochemistry, Biocenter, and Cluster of Excellence - Macromolecular Complexes , Goethe-University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany .
| | - R Wieneke
- Institute of Biochemistry, Biocenter, and Cluster of Excellence - Macromolecular Complexes , Goethe-University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany .
| | - R Tampé
- Institute of Biochemistry, Biocenter, and Cluster of Excellence - Macromolecular Complexes , Goethe-University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany .
| |
Collapse
|
32
|
Guerrero F, Ciragan A, Iwaï H. Tandem SUMO fusion vectors for improving soluble protein expression and purification. Protein Expr Purif 2015; 116:42-9. [PMID: 26297996 DOI: 10.1016/j.pep.2015.08.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/06/2023]
Abstract
Availability of highly purified proteins in quantity is crucial for detailed biochemical and structural investigations. Fusion tags are versatile tools to facilitate efficient protein purification and to improve soluble overexpression of proteins. Various purification and fusion tags have been widely used for overexpression in Escherichia coli. However, these tags might interfere with biological functions and/or structural investigations of the protein of interest. Therefore, an additional purification step to remove fusion tags by proteolytic digestion might be required. Here, we describe a set of new vectors in which yeast SUMO (SMT3) was used as the highly specific recognition sequence of ubiquitin-like protease 1, together with other commonly used solubility enhancing proteins, such as glutathione S-transferase, maltose binding protein, thioredoxin and trigger factor for optimizing soluble expression of protein of interest. This tandem SUMO (T-SUMO) fusion system was tested for soluble expression of the C-terminal domain of TonB from different organisms and for the antiviral protein scytovirin.
Collapse
Affiliation(s)
- Fernando Guerrero
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Annika Ciragan
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland.
| |
Collapse
|
33
|
Li Y. Split-inteins and their bioapplications. Biotechnol Lett 2015; 37:2121-37. [DOI: 10.1007/s10529-015-1905-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023]
|
34
|
Abstract
Protein splicing in trans by split inteins has increasingly become a powerful protein-engineering tool for protein ligation, both in vivo and in vitro. Over 100 naturally occurring and artificially engineered split inteins have been reported for protein ligation using protein trans-splicing. Here, we review the current status of the reported split inteins in order to delineate an empirical or rational strategy for constructing new split inteins suitable for various applications in biotechnology and chemical biology.
Collapse
Affiliation(s)
- A Sesilja Aranko
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, National Cancer Institute-Frederick, MD 21702, USA
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki FIN-00014, Finland
| |
Collapse
|
35
|
Matern JCJ, Bachmann AL, Thiel IV, Volkmann G, Wasmuth A, Binschik J, Mootz HD. Ligation of synthetic peptides to proteins using semisynthetic protein trans-splicing. Methods Mol Biol 2015; 1266:129-143. [PMID: 25560072 DOI: 10.1007/978-1-4939-2272-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein trans-splicing using split inteins is a powerful and convenient reaction to chemically modify recombinantly expressed proteins under mild conditions. In particular, semisynthetic protein trans-splicing with one intein fragment short enough to be accessible by solid-phase peptide synthesis can be used to transfer a short peptide segment with the desired synthetic moiety to the protein of interest. In this chapter, we provide detailed protocols for two such split intein systems. The M86 mutant of the Ssp DnaB intein and the MX1 mutant of the AceL-TerL intein are two highly engineered split inteins with very short N-terminal intein fragments of only 11 and 25 amino acids, respectively, and allow the efficient N-terminal labeling of proteins.
Collapse
Affiliation(s)
- Julian C J Matern
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Comparative Analysis of the Effectiveness of C-terminal Cleavage Intein-Based Constructs in Producing a Recombinant Analog of Anophelin, an Anticoagulant from Anopheles albimanus. Appl Biochem Biotechnol 2014; 175:2468-88. [DOI: 10.1007/s12010-014-1400-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022]
|
37
|
Aranko AS, Oeemig JS, Zhou D, Kajander T, Wlodawer A, Iwaï H. Structure-based engineering and comparison of novel split inteins for protein ligation. MOLECULAR BIOSYSTEMS 2014; 10:1023-34. [PMID: 24574026 PMCID: PMC7709711 DOI: 10.1039/c4mb00021h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein splicing is an autocatalytic process involving self-excision of an internal protein domain, the intein, and concomitant ligation of the two flanking sequences, the exteins, with a peptide bond. Protein splicing can also take place in trans by naturally split inteins or artificially split inteins, ligating the exteins on two different polypeptide chains into one polypeptide chain. Protein trans-splicing could work in foreign contexts by replacing the native extein sequences with other protein sequences. Protein ligation using protein trans-splicing increasingly becomes a useful tool for biotechnological applications such as semi-synthesis of proteins, segmental isotopic labeling, and in vivo protein engineering. However, only a few split inteins have been successfully applied for protein ligation. Naturally split inteins have been widely used, but they are cross-reactive to each other, limiting their applications to multiple-fragment ligation. Based on the three-dimensional structures including two newly determined intein structures, we derived 21 new split inteins from four highly efficient cis-splicing inteins, in order to develop novel split inteins suitable for protein ligation. We systematically compared trans-splicing of 24 split inteins and tested the cross-activities among them to identify orthogonal split intein fragments that could be used in chemical biology and biotechnological applications.
Collapse
Affiliation(s)
- A Sesilja Aranko
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Helsinki, FIN-00014, Finland.
| | | | | | | | | | | |
Collapse
|
38
|
Lee YZ, Lee YT, Lin YJ, Chen YJ, Sue SC. A streamlined method for preparing split intein for NMR study. Protein Expr Purif 2014; 99:106-12. [PMID: 24751877 DOI: 10.1016/j.pep.2014.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/19/2014] [Accepted: 04/10/2014] [Indexed: 11/16/2022]
Abstract
A protein ligase, intein, mediates a protein-splicing reaction. It can be split into two complementary fragments and reconstituted as a whole intein scaffold to perform protein trans-splicing. To understand the association of intein fragments and the splicing mechanism, it is necessary to produce a large quantity of split intein for structural study. Conventionally, two fragments are prepared separately and assembled in solution, but severe aggregation of intein fragments occurs, and precise control of the relative concentration of each fragment is difficult. Here, we present a streamlined method to incorporate a circular permutation concept into the production of split intein. By circular permutation of the native split Nostoc punctiforme DnaE intein (NpuInt), a new backbone opening is relocated to the native split site at residue 102. As the protein splicing activity is preserved, the expressed NpuInt can immediately self-cleave into a two-piece split NpuInt. Because of a tight association between the two complementary fragments, split NpuInt can be purified in one step. The idea is simple and applicable to other split inteins. Employing the new preparation, we use NMR spectra to assign the backbone and side chain resonances for the native split NpuInt.
Collapse
Affiliation(s)
- Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Tzai Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Jan Lin
- Graduate Institute of Natural Products and Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ju Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan.
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
39
|
Schütz V, Mootz HD. Click-tag and amine-tag: chemical tag approaches for efficient protein labeling in vitro and on live cells using the naturally split Npu DnaE intein. Angew Chem Int Ed Engl 2014; 53:4113-7. [PMID: 24615830 DOI: 10.1002/anie.201309396] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/16/2013] [Indexed: 11/07/2022]
Abstract
Protein labeling with synthetic moieties remains in many cases a technically challenging or unresolved task. Two new and simple concepts are presented. In both approaches, a very short tag of only a few amino acids is prepared with the desired chemical modification and, in a second step, it is transferred to the protein of interest by protein trans-splicing. For the amine-tag, a recombinant intein fragment free of lysine residues was generated such that the amine group of the N terminus could be selectively modified with regular amine-reactive reagents. Thus, standard bioconjugation procedures without any chemical synthesis could be applied without modification of lysines in the protein of interest. For the click-tag, protein trans-splicing was combined with unnatural amino acid mutagenesis and subsequent bioorthogonal side chain modification, as demonstrated for click chemistry using p-azidophenylalanine. By the two-step strategy, exposure of the protein of interest to the copper catalyst was avoided.
Collapse
Affiliation(s)
- Vivien Schütz
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, 48149 Münster (Germany)
| | | |
Collapse
|
40
|
Schütz V, Mootz HD. Click-Tag and Amine-Tag: Chemical Tag Approaches for Efficient Protein Labeling In Vitro and on Live Cells using the Naturally SplitNpuDnaE Intein. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Topilina NI, Mills KV. Recent advances in in vivo applications of intein-mediated protein splicing. Mob DNA 2014; 5:5. [PMID: 24490831 PMCID: PMC3922620 DOI: 10.1186/1759-8753-5-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/07/2014] [Indexed: 01/27/2023] Open
Abstract
Intein-mediated protein splicing has become an essential tool in modern biotechnology. Fundamental progress in the structure and catalytic strategies of cis- and trans-splicing inteins has led to the development of modified inteins that promote efficient protein purification, ligation, modification and cyclization. Recent work has extended these in vitro applications to the cell or to whole organisms. We review recent advances in intein-mediated protein expression and modification, post-translational processing and labeling, protein regulation by conditional protein splicing, biosensors, and expression of trans-genes.
Collapse
Affiliation(s)
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA 01610, USA.
| |
Collapse
|
42
|
Thiel IV, Volkmann G, Pietrokovski S, Mootz HD. An Atypical Naturally Split Intein Engineered for Highly Efficient Protein Labeling. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201307969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Thiel IV, Volkmann G, Pietrokovski S, Mootz HD. An Atypical Naturally Split Intein Engineered for Highly Efficient Protein Labeling. Angew Chem Int Ed Engl 2014; 53:1306-10. [DOI: 10.1002/anie.201307969] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Indexed: 11/06/2022]
|
44
|
Abstract
Inteins are auto-processing domains found in organisms from all domains of life. These proteins carry out a process known as protein splicing, which is a multi-step biochemical reaction comprised of both the cleavage and formation of peptide bonds. While the endogenous substrates of protein splicing are specific essential proteins found in intein-containing host organisms, inteins are also functional in exogenous contexts and can be used to chemically manipulate virtually any polypeptide backbone. Given this, protein chemists have exploited various facets of intein reactivity to modify proteins in myriad ways for both basic biological research as well as potential therapeutic applications. Here, we review the intein field, first focusing on the biological context and phylogenetic diversity of inteins, followed by a description of intein structure and biochemical function. Finally, we discuss prevalent inteinbased technologies, focusing on their applications in chemical biology, followed by persistent caveats of intein chemistry and approaches to alleviate these shortcomings. The findings summarized herein describe two and a half decades of research, leading from a biochemical curiosity to the development of powerful protein engineering tools.
Collapse
Affiliation(s)
- Neel H Shah
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, NJ 08544, United States
| | - Tom W Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, NJ 08544, United States
| |
Collapse
|
45
|
Jung D, Min K, Jung J, Jang W, Kwon Y. Chemical biology-based approaches on fluorescent labeling of proteins in live cells. MOLECULAR BIOSYSTEMS 2013; 9:862-72. [PMID: 23318293 DOI: 10.1039/c2mb25422k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, significant advances have been made in live cell imaging owing to the rapid development of selective labeling of proteins in vivo. Green fluorescent protein (GFP) was the first example of fluorescent reporters genetically introduced to protein of interest (POI). While GFP and various types of engineered fluorescent proteins (FPs) have been actively used for live cell imaging for many years, the size and the limited windows of fluorescent spectra of GFP and its variants set limits on possible applications. In order to complement FP-based labeling methods, alternative approaches that allow incorporation of synthetic fluorescent probes to target POIs were developed. Synthetic fluorescent probes are smaller than fluorescent proteins, often have improved photochemical properties, and offer a larger variety of colors. These synthetic probes can be introduced to POIs selectively by numerous approaches that can be largely categorized into chemical recognition-based labeling, which utilizes metal-chelating peptide tags and fluorophore-carrying metal complexes, and biological recognition-based labeling, such as (1) specific non-covalent binding between an enzyme tag and its fluorophore-carrying substrate, (2) self-modification of protein tags using substrate variants conjugated to fluorophores, (3) enzymatic reaction to generate a covalent binding between a small molecule substrate and a peptide tag, and (4) split-intein-based C-terminal labeling of target proteins. The chemical recognition-based labeling reaction often suffers from compromised selectivity of metal-ligand interaction in the cytosolic environment, consequently producing high background signals. Use of protein-substrate interactions or enzyme-mediated reactions generally shows improved specificity but each method has its limitations. Some examples are the presence of large linker protein, restriction on the choice of introducible probes due to the substrate specificity of enzymes, and competitive reaction mediated by an endogenous analogue of the introduced protein tag. These limitations have been addressed, in part, by the split-intein-based labeling approach, which introduces fluorescent probes with a minimal size (~4 amino acids) peptide tag. In this review, the advantages and the limitations of each labeling method are discussed.
Collapse
Affiliation(s)
- Deokho Jung
- Department of Biomedical Engineering, Dongguk University, Seoul, Korea
| | | | | | | | | |
Collapse
|
46
|
Min K, Jung D, Jeon Y, Jeoung E, Kwon Y. Site-specific and effective immobilization of proteins by Npu DnaE split-intein mediated protein trans-splicing reaction. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7312-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Intermolecular domain swapping induces intein-mediated protein alternative splicing. Nat Chem Biol 2013; 9:616-22. [DOI: 10.1038/nchembio.1320] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/17/2013] [Indexed: 11/09/2022]
|
48
|
Aranko AS, Oeemig JS, Iwaï H. Structural basis for proteintrans-splicing by a bacterial intein-like domain - protein ligation without nucleophilic side chains. FEBS J 2013; 280:3256-69. [DOI: 10.1111/febs.12307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 12/01/2022]
Affiliation(s)
- A. Sesilja Aranko
- Research Program in Structural Biology and Biophysics; Institute of Biotechnology; University of Helsinki; Finland
| | - Jesper S. Oeemig
- Research Program in Structural Biology and Biophysics; Institute of Biotechnology; University of Helsinki; Finland
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics; Institute of Biotechnology; University of Helsinki; Finland
| |
Collapse
|
49
|
Volkmann G, Mootz HD. Recent progress in intein research: from mechanism to directed evolution and applications. Cell Mol Life Sci 2013; 70:1185-206. [PMID: 22926412 PMCID: PMC11113529 DOI: 10.1007/s00018-012-1120-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 07/23/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022]
Abstract
Inteins catalyze a post-translational modification known as protein splicing, where the intein removes itself from a precursor protein and concomitantly ligates the flanking protein sequences with a peptide bond. Over the past two decades, inteins have risen from a peculiarity to a rich source of applications in biotechnology, biomedicine, and protein chemistry. In this review, we focus on developments of intein-related research spanning the last 5 years, including the three different splicing mechanisms and their molecular underpinnings, the directed evolution of inteins towards improved splicing in exogenous protein contexts, as well as novel applications of inteins for cell biology and protein engineering, which were made possible by a clearer understanding of the protein splicing mechanism.
Collapse
Affiliation(s)
- Gerrit Volkmann
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Henning D. Mootz
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| |
Collapse
|
50
|
De Rosa L, Russomanno A, Romanelli A, D’Andrea LD. Semi-synthesis of labeled proteins for spectroscopic applications. Molecules 2013; 18:440-65. [PMID: 23282535 PMCID: PMC6269674 DOI: 10.3390/molecules18010440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 12/24/2022] Open
Abstract
Since the introduction of SPPS by Merrifield in the 60s, peptide chemists have considered the possibility of preparing large proteins. The introduction of native chemical ligation in the 90s and then of expressed protein ligation have opened the way to the preparation of synthetic proteins without size limitations. This review focuses on semi-synthetic strategies useful to prepare proteins decorated with spectroscopic probes, like fluorescent labels and stable isotopes, and their biophysical applications. We show that expressed protein ligation, combining the advantages of organic chemistry with the easy and size limitless recombinant protein expression, is an excellent strategy for the chemical synthesis of labeled proteins, enabling a single protein to be functionalized at one or even more distinct positions with different probes.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli 80134, Italy; E-Mails: (L.D.R.); (A.R.)
| | - Anna Russomanno
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli 80134, Italy; E-Mails: (L.D.R.); (A.R.)
| | - Alessandra Romanelli
- Dipartimento delle Scienze Biologiche, Università di Napoli “Federico II”, Via Mezzocannone 16, Napoli 80134, Italy; E-Mail:
| | - Luca Domenico D’Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli 80134, Italy; E-Mails: (L.D.R.); (A.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-081-253-6679; Fax: +39-081-253-4574
| |
Collapse
|