1
|
Anwised P, Moorawong R, Samruan W, Somredngan S, Srisutush J, Laowtammathron C, Aksoy I, Parnpai R, Savatier P. An expedition in the jungle of pluripotent stem cells of non-human primates. Stem Cell Reports 2023; 18:2016-2037. [PMID: 37863046 PMCID: PMC10679654 DOI: 10.1016/j.stemcr.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
For nearly three decades, more than 80 embryonic stem cell lines and more than 100 induced pluripotent stem cell lines have been derived from New World monkeys, Old World monkeys, and great apes. In this comprehensive review, we examine these cell lines originating from marmoset, cynomolgus macaque, rhesus macaque, pig-tailed macaque, Japanese macaque, African green monkey, baboon, chimpanzee, bonobo, gorilla, and orangutan. We outline the methodologies implemented for their establishment, the culture protocols for their long-term maintenance, and their basic molecular characterization. Further, we spotlight any cell lines that express fluorescent reporters. Additionally, we compare these cell lines with human pluripotent stem cell lines, and we discuss cell lines reprogrammed into a pluripotent naive state, detailing the processes used to attain this. Last, we present the findings from the application of these cell lines in two emerging fields: intra- and interspecies embryonic chimeras and blastoids.
Collapse
Affiliation(s)
- Preeyanan Anwised
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ratree Moorawong
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Worawalan Samruan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Somredngan
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jittanun Srisutush
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Irene Aksoy
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Pierre Savatier
- University Lyon, University Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
2
|
Nishie T, Ohta Y, Shirai E, Higaki S, Shimozawa N, Narita K, Kawaguchi K, Tanaka H, Mori C, Tanaka T, Hirabayashi M, Suemori H, Kurisaki A, Tooyama I, Asano S, Takeda S, Takada T. Identification of TEKTIN1-expressing multiciliated cells during spontaneous differentiation of non-human primate embryonic stem cells. Genes Cells 2023. [PMID: 37186436 DOI: 10.1111/gtc.13031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Tektins are a group of microtubule-stabilizing proteins necessary for cilia and flagella assembly. TEKTIN1 (TEKT1) is used as a sperm marker for monitoring germ cell differentiation in embryonic stem (ES) and induced pluripotent stem (iPS) cells. Although upregulation of TEKT1 has been reported during spontaneous differentiation of ES and iPS cells, it is unclear which cells express TEKT1. To identify TEKT1-expressing cells, we established an ES cell line derived from cynomolgus monkeys (Macaca fascicularis), which expresses Venus controlled by the TEKT1 promoter. Venus expression was detected at 5 weeks of differentiation on the surface of the embryoid body (EB), and it gradually increased with the concomitant formation of a leash-like structure at the EB periphery. Motile cilia were observed on the surface of the Venus-positive leash-like structure after 8 weeks of differentiation. The expression of cilia markers as well as TEKT1-5 and 9 + 2 microtubule structures, which are characteristic of motile cilia, were detected in Venus-positive cells. These results demonstrated that TEKT1-expressing cells are multiciliated epithelial-like cells that form a leash-like structure during the spontaneous differentiation of ES and iPS cells. These findings will provide a new research strategy for studying cilia biology, including ciliogenesis and ciliopathies.
Collapse
Affiliation(s)
- Tomomi Nishie
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yoshio Ohta
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Emi Shirai
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shogo Higaki
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Nobuhiro Shimozawa
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba-shi, Ibaraki, Japan
| | - Keishi Narita
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hideyuki Tanaka
- Department of Anatomy, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Chika Mori
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Taiga Tanaka
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Hirofumi Suemori
- Center for Human ES Cell Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akira Kurisaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center and Medical Innovation Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Sén Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School, University of Yamanashi, Chuo, Yamanashi, Japan
- Department of Anatomy, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Tatsuyuki Takada
- Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
3
|
Bahmanpour S, Moasses Z, Zarei-Fard N. Comparative effects of retinoic acid, granulosa cells conditioned medium or forskolin in combination with granulosa cell co-culturing on mouse germ cell differentiation. Mol Biol Rep 2023; 50:631-640. [PMID: 36371553 DOI: 10.1007/s11033-022-07920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Devising of an appropriate in vitro culture method for germ cells differentiation in the presence of soluble factors has attracted considerable attention, which results will provide new insight into reproductive biology. In this study, we compared the effects of forskolin, retinoic acid (RA) or granulosa cell-conditioned medium in the presence or absence of granulosa cell co-culturing on germ cell differentiation from embryonic stem cells (ESCs). METHODS AND RESULTS Embryonic stem cells were differentiated using embryoid bodies (EBs) for 5 days, and then EB-derived cells were co-cultured with or without adult mouse granulosa cells using monolayer protocol and treated with 50 µM forskolin, 1 µM RA and 50% granulosa cell-conditioned medium for 4 days. Granulosa cell-conditioned medium significantly increased the levels of Scp3, Rec8, Mvh and Gdf9 expression in the granulosa cell co-culture method compared to untreated cells. A significant elevation of Stra8, Rec8 and Mvh was observed after treatment with RA in the absence of granulosa cells and there was no significant increase in the levels of expression of germ cell-specific genes after treatment with forskolin compared to control. Furthermore, forskolin and RA significantly increased viability and proliferation of germ-like cells, compared with granulosa cell-conditioned medium. CONCLUSIONS Our study revealed that granulosa cell-conditioned medium and RA effectively can induce germ cell differentiation from ESCs, however combined application of granulosa cell-conditioned medium and co-culturing with granulosa cells had synergic effect on germ cell development in vitro as optimized protocol.
Collapse
Affiliation(s)
- Soghra Bahmanpour
- Laboratory for stem cell research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zia Moasses
- Laboratory for stem cell research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zarei-Fard
- Laboratory for stem cell research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. .,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Abd-Alameer M, Rajabibazl M, Esmaeilizadeh Z, Fazeli Z. SAG-dihydrochloride enhanced the expression of germ cell markers in the human bone marrow- mesenchymal stem cells (BM-MSCs) through the activation of GLI-independent hedgehog signaling pathway. Gene X 2023; 849:146902. [DOI: 10.1016/j.gene.2022.146902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
|
5
|
Lawlor M, Zigo M, Kerns K, Cho IK, Easley IV CA, Sutovsky P. Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington’s Disease. Int J Mol Sci 2022; 23:ijms23137163. [PMID: 35806166 PMCID: PMC9266437 DOI: 10.3390/ijms23137163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Huntington’s Disease (HD) is a fatal autosomal dominant neurodegenerative disease manifested through motor dysfunction and cognitive deficits. Decreased fertility is also observed in HD animal models and HD male patients, due to altered spermatogenesis and sperm function, thus resulting in reduced fertilization potential. Although some pharmaceuticals are currently utilized to mitigate HD symptoms, an effective treatment that remedies the pathogenesis of the disease is yet to be approved by the FDA. Identification of genes and relevant diagnostic biomarkers and therapeutic target pathways including glycolysis and mitochondrial complex-I-dependent respiration may be advantageous for early diagnosis, management, and treatment of the disease. This review addresses the HD pathway in neuronal and sperm metabolism, including relevant gene and protein expression in both neurons and spermatozoa, indicated in the pathogenesis of HD. Furthermore, zinc-containing and zinc-interacting proteins regulate and/or are regulated by zinc ion homeostasis in both neurons and spermatozoa. Therefore, this review also aims to explore the comparative role of zinc in both neuronal and sperm function. Ongoing studies aim to characterize the products of genes implicated in HD pathogenesis that are expressed in both neurons and spermatozoa to facilitate studies of future treatment avenues in HD and HD-related male infertility. The emerging link between zinc homeostasis and the HD pathway could lead to new treatments and diagnostic methods linking genetic sperm defects with somatic comorbidities.
Collapse
Affiliation(s)
- Meghan Lawlor
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
| | - Michal Zigo
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
| | - Karl Kerns
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - In Ki Cho
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; (I.K.C.); (C.A.E.IV)
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Charles A. Easley IV
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; (I.K.C.); (C.A.E.IV)
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (M.L.); (M.Z.); (K.K.)
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
- Correspondence: ; Tel.: +1-(573)-882-3329
| |
Collapse
|
6
|
Narimanpour Z, Bojnordi MN, Hamidabadi HG. Spermatogenic differentiation of spermatogonial stem cells on three-dimensional silk nanofiber scaffold. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Nano-fibrous scaffolds provide a three-dimensional matrix that guides sufficient orientation of seeded cells similar to a natural niche. In this research, we designed a silk scaffold to improve the differention of mouse spermatogonial stem cells to spermatogenic cell lines. Spermatogonial stem cells were collected from neonatal mouse (2–6 days) testes (n=60) using a two steps mechanical and enzymatic method. Cells were seeded on a silk scaffold and were cultured in Dulbecco’s modified Eagle’s medium, supplemented with 15 % fetal bovine serum and 1000 units/ml leukemia inhibitory factor, and incubated at 32°C in a humidified atmosphere of 5% CO2 in air. SEM technique was done for confirmation of seeding cells.
In this study two major groups (i.e., 2D and 3D culture groups) of 30 mice each. Isolated testicular cells from each group were cultured in the absence of silk scaffold or the presence of silk scaffold.
For induction of differentiation, seeded cells on a scaffold were exposed to 1 μM and 50 ng/ml BMP-4. The specific spermatogenic genes, e.g.; VASA, DAZL, PLZF, and Piwil2, were assessed via real-time PCR and immunocytochemistry techniques. P values less than 0.05 were assumed significant. All experiments were performed at least three times.
Results
SEM analysis confirmed the homogeneity of fabricated silk scaffold and average diameter of 450 nm for nanofibers fibers. Silk scaffold induces attachment of SSCs in comparison to the monolayer group. Spermatogonia stem cell colonies were observed gradually after 1 week of culture. Electrospun scaffold supports the differentiation of SSCs to spermatogenic lines. Dates of real-time PCR showed that the expression of meiotic markers, VASA, DAZL, and Piwil2 as related to specific spermatogenic genes, had a significant upregulation in cell-seeded silk scaffold compared to the control group (P < 0.05).
Immunocytochemistry founding approved the expression of specific spermatogenic markers; DAZL and PLZF were higher in the experiment group compared to the control (P < 0.05).
Conclusion
It is concluded silk scaffold induces spermatogenic differentiation of mouse spermatogonial stem cells in vitro.
Collapse
|
7
|
Cui YH, Chen W, Wu S, Wan CL, He Z. Generation of male germ cells in vitro from the stem cells. Asian J Androl 2022; 25:13-20. [PMID: 35435336 PMCID: PMC9933974 DOI: 10.4103/aja20226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Infertility has become a serious disease since it affects 10%-15% of couples worldwide, and male infertility contributes to about 50% of the cases. Notably, a significant decrease occurs in the newborn population by 7.82 million in 2020 compared to 2016 in China. As such, it is essential to explore the effective methods of obtaining functional male gametes for restoring male fertility. Stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), spermatogonial stem cells (SSCs), and mesenchymal stem cells (MSCs), possess the abilities of both self-renewal and differentiation into germ cells. Significantly, much progress has recently been achieved in the generation of male germ cells in vitro from various kinds of stem cells under the specified conditions, e.g., the coculturing with Sertoli cells, three-dimensional culture system, the addition of growth factors and cytokines, and/or the overexpression of germ cell-related genes. In this review, we address the current advance in the derivation of male germ cells in vitro from stem cells based on the studies of the peers and us, and we highlight the perspectives and potential application of stem cell-derived male gametes in reproductive medicine.
Collapse
Affiliation(s)
- Ying-Hong Cui
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine; The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Wei Chen
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine; The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Si Wu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine; The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Cai-Lin Wan
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine; The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine; The Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha 410013, China,
Correspondence: Dr. Z He ()
| |
Collapse
|
8
|
Tran KTD, Valli-Pulaski H, Colvin A, Orwig KE. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies†. Biol Reprod 2022; 107:382-405. [PMID: 35403667 PMCID: PMC9382377 DOI: 10.1093/biolre/ioac072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Medical treatments for cancers or other conditions can lead to permanent infertility. Infertility is an insidious disease that impacts not only the ability to have a biological child but also the emotional well-being of the infertile individuals, relationships, finances, and overall health. Therefore, all patients should be educated about the effects of their medical treatments on future fertility and about fertility preservation options. The standard fertility preservation option for adolescent and adult men is sperm cryopreservation. Sperms can be frozen and stored for a long period, thawed at a later date, and used to achieve pregnancy with existing assisted reproductive technologies. However, sperm cryopreservation is not applicable for prepubertal patients who do not yet produce sperm. The only fertility preservation option available to prepubertal boys is testicular tissue cryopreservation. Next-generation technologies are being developed to mature those testicular cells or tissues to produce fertilization-competent sperms. When sperm and testicular tissues are not available for fertility preservation, inducing pluripotent stem cells derived from somatic cells, such as blood or skin, may provide an alternative path to produce sperms through a process call in vitro gametogenesis. This review describes standard and experimental options to preserve male fertility as well as the experimental options to produce functional spermatids or sperms from immature cryopreserved testicular tissues or somatic cells.
Collapse
Affiliation(s)
- Kien T D Tran
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Amanda Colvin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Correspondence: Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA. Tel: 412-641-2460; E-mail:
| |
Collapse
|
9
|
Brannigan RE, Fantus RJ, Halpern JA. Fertility preservation in men: a contemporary overview and a look toward emerging technologies. Fertil Steril 2021; 115:1126-1139. [PMID: 33933174 DOI: 10.1016/j.fertnstert.2021.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
Abstract
Cancer and oncologic therapies can have significant adverse effects on male reproductive potential, leaving many men permanently infertile. Fertility preservation has emerged as a key survivorship issue over the past 20 years, and numerous professional societies have published guidelines calling for fertility preservation to become a routine component of oncologic care. Most males with cancer are able to produce a semen specimen for fertility preservation, but numerous other methods of sperm procurement are available for patients who cannot provide a sufficient sample. Despite these options, fertility preservation will remain a challenge for prepubertal boys and men without sperm production. For these patients, experimental and investigational approaches offer the hope that one day they will translate to the clinical arena, offering additional pathways for successful fertility preservation care.
Collapse
Affiliation(s)
- Robert E Brannigan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Richard J Fantus
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joshua A Halpern
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
10
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
11
|
Approaches and Technologies in Male Fertility Preservation. Int J Mol Sci 2020; 21:ijms21155471. [PMID: 32751826 PMCID: PMC7432867 DOI: 10.3390/ijms21155471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Male fertility preservation is required when treatment with an aggressive chemo-/-radiotherapy, which may lead to irreversible sterility. Due to new and efficient protocols of cancer treatments, surviving rates are more than 80%. Thus, these patients are looking forward to family life and fathering their own biological children after treatments. Whereas adult men can cryopreserve their sperm for future use in assistance reproductive technologies (ART), this is not an option in prepubertal boys who cannot produce sperm at this age. In this review, we summarize the different technologies for male fertility preservation with emphasize on prepubertal, which have already been examined and/or demonstrated in vivo and/or in vitro using animal models and, in some cases, using human tissues. We discuss the limitation of these technologies for use in human fertility preservation. This update review can assist physicians and patients who are scheduled for aggressive chemo-/radiotherapy, specifically prepubertal males and their parents who need to know about the risks of the treatment on their future fertility and the possible present option of fertility preservation.
Collapse
|
12
|
Malik HN, Singhal DK, Saini S, Malakar D. Derivation of oocyte-like cells from putative embryonic stem cells and parthenogenetically activated into blastocysts in goat. Sci Rep 2020; 10:10086. [PMID: 32572061 PMCID: PMC7308273 DOI: 10.1038/s41598-020-66609-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/21/2020] [Indexed: 02/02/2023] Open
Abstract
Germ cells are responsible for the propagation of live animals from generation to generation, but to surprise, a steep increase in infertile problems among livestock poses great threat for economic development of human race. An alternative and robust approach is essential to combat these ailments. Here, we demonstrate that goat putative embryonic stem cells (ESCs) were successfully in vitro differentiated into primordial germ cells and oocyte-like cells using bone morphogenetic protein-4 (BMP-4) and trans-retinoic acid (RA). Oocyte-like cells having distinct zonapellucida recruited adjacent somatic cells in differentiating culture to form cumulus-oocyte complexes (COCs). The putative COCs were found to express the zonapellucida specific (ZP1 and ZP2) and oocyte-specific markers. Primordial germ cell-specific markers VASA, DAZL, STELLA, and PUM1 were detected at protein and mRNA level. In addition to that, the surface architecture of these putative COCs was thoroughly visualized by the scanning electron microscope. The putative COCs were further parthenogenetically activated to develop into healthy morula, blastocysts and hatched blastocyst stage like embryos. Our findings may contribute to the fundamental understanding of mammalian germ cell biology and may provide clinical insights regarding infertility ailments.
Collapse
Affiliation(s)
- Hruda Nanda Malik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 32001, India
| | - Dinesh Kumar Singhal
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 32001, India
| | - Sikander Saini
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 32001, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 32001, India.
| |
Collapse
|
13
|
Soleimani A, Fard NZ, Talaei-Khozani T, Bahmanpour S. Epidermal growth factor and three-dimensional scaffolds provide conducive environment for differentiation of mouse embryonic stem cells into oocyte-like cells. Cell Biol Int 2020; 44:1850-1859. [PMID: 32437076 DOI: 10.1002/cbin.11391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 11/09/2022]
Abstract
Three-dimensional (3D) culture provides a biomimicry of the naive microenvironment that can support cell proliferation, differentiation, and regeneration. Some growth factors, such as epidermal growth factor (EGF), facilitate normal meiosis during oocyte maturation in vivo. In this study, a scaffold-based 3D coculture system using purified alginate was applied to induce oocyte differentiation from mouse embryonic stem cells (mESCs). mESCs were induced to differentiate into oocyte-like cells using embryoid body protocol in the two-dimensional or 3D microenvironment in vitro. To increase the efficiency of the oocyte-like cell differentiation from mESCs, we employed a coculture system using ovarian granulosa cells in the presence or absence of epidermal growth factor (+EGF or -EGF) for 14 days and then the cells were assessed for germ cell differentiation, meiotic progression, and oocyte maturation markers. The cultures exposed to EGF in the alginate-based 3D microenvironment showed the highest level of premeiotic (Oct4 and Mvh), meiotic (Scp1, Scp3, Stra8, and Rec8), and oocyte maturation (Gdf9, Cx37, and Zp2) marker genes (p < .05) in comparison to other groups. According to the gene-expression patterns, we can conclude that alginate-based 3D coculture system provided a highly efficient protocol for oocyte-like cell differentiation from mESCs. The data showed that this culture system along with EGF improved the rate of in vitro oocyte-like cell differentiation.
Collapse
Affiliation(s)
- Azam Soleimani
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zarei Fard
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Bahmanpour
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Ibtisham F, Honaramooz A. Spermatogonial Stem Cells for In Vitro Spermatogenesis and In Vivo Restoration of Fertility. Cells 2020; 9:E745. [PMID: 32197440 PMCID: PMC7140722 DOI: 10.3390/cells9030745] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the only adult stem cells capable of passing genes onto the next generation. SSCs also have the potential to provide important knowledge about stem cells in general and to offer critical in vitro and in vivo applications in assisted reproductive technologies. After century-long research, proof-of-principle culture systems have been introduced to support the in vitro differentiation of SSCs from rodent models into haploid male germ cells. Despite recent progress in organotypic testicular tissue culture and two-dimensional or three-dimensional cell culture systems, to achieve complete in vitro spermatogenesis (IVS) using non-rodent species remains challenging. Successful in vitro production of human haploid male germ cells will foster hopes of preserving the fertility potential of prepubertal cancer patients who frequently face infertility due to the gonadotoxic side-effects of cancer treatment. Moreover, the development of optimal systems for IVS would allow designing experiments that are otherwise difficult or impossible to be performed directly in vivo, such as genetic manipulation of germ cells or correction of genetic disorders. This review outlines the recent progress in the use of SSCs for IVS and potential in vivo applications for the restoration of fertility.
Collapse
Affiliation(s)
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| |
Collapse
|
15
|
Ziloochi Kashani M, Bagher Z, Asgari HR, Najafi M, Koruji M, Mehraein F. Differentiation of neonate mouse spermatogonial stem cells on three-dimensional agar/polyvinyl alcohol nanofiber scaffold. Syst Biol Reprod Med 2020; 66:202-215. [PMID: 32138551 DOI: 10.1080/19396368.2020.1725927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrospun nanofiber matrices sufficiently mimic the structural morphology of natural extracellular matrix. In this study, we aimed to examine the effects of agar/polyvinyl alcohol nanofiber (PVA) scaffold on the proliferation efficiency and differentiation potential of neonate mouse spermatogonial stem cells (SCCs). Testicular cells were isolated from testes of 40 mouse pups and were seeded in: 1) 2D cell culture plates in the absence (2D/-GF) or presence (2D/+GF) of growth factors and 2) onto agar/PVA scaffold in the absence (3D/-GF) or presence (3D/+GF) of growth factors. The cells were subsequently cultured for 4 weeks. First 2 weeks were dedicated to proliferative phase, whereas the next 2 weeks emphasized the differentiation phase. The identity of the SCCs was investigated at different time-points by flow cytometry and quantitative reverse transcription PCR (qRT-PCR) analyses against the germ cell markers, including PLZF, Id-4, Gfrα-1, Tekt-1, and Sycp-3. After 2 weeks of culture, the 3D/+GF group showed the highest percentage of PLZF-positive cells among culture systems (P < 0.05). The expression levels of pre-meiotic markers (Id-4 and Gfrα-1) decreased significantly in all groups, particularly in 3D/+GF group after 28 days of culture. Additionally, the cells in the 3D/+GF group displayed the highest expression of meiotic (Sycp-3) and post-meiotic markers (Tekt-1) 14 days after differentiation induction. Seemingly, the combination of the agar/PVA scaffold and growth factor-supplemented medium synergistically increased the differentiation rate of mouse SSCs into meiotic and post-meiotic cells. Thus, agar/PVA nanofiber scaffolds may have the potential for applications in the restoration of infertility, especially in azoospermic males. ABBREVIATIONS 2D: two dimentional; 3D: three dimentional; bFGF: basic fibroblast growth factor; BMP-4: bone morphogenetic protein 4; DMEM: Dulbecco's modified Eagle's medium; ECM: extracellular matrix; FCS: fetal calf serum; FTIR: Fourier-transform infrared spectroscopy; GDNF: glial cell line-derived neurotrophic factor; GF: growth factors; Gfrα-1, GDNF family co-receptor α1; Id-4, Inhibitor of DNA Binding 4; MTT: methylthiazoltetrazolium; PLZF: promyelocytic leukemia zinc finger; PVA: polyvinyl alcohol; qRT-PCR: quantitative reverse transcription PCR; RA: retinoic acid; SACS: soft agar culture system; SD: standard deviation; SEM: scanning electron microscope; SSCs: spermatogonial stem cells; Sycp-3, Synaptonemal complex protein 3; Tekt-1, Tektin 1.
Collapse
Affiliation(s)
- Marzieh Ziloochi Kashani
- Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, the Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences , Tehran, Iran
| | - Hamid Reza Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran, Iran.,Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Fereshteh Mehraein
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran.,Minimally Invasive Surgery Research Center, Iran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
16
|
Gholamitabar Tabari M, Jorsaraei SGA, Ghasemzadeh-Hasankolaei M, Ahmadi AA, Ghasemi M. Comparison of Germ Cell Gene Expressions in Spontaneous Monolayer versus Embryoid Body Differentiation of Mouse Embryonic Stem Cells toward Germ Cells. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:139-147. [PMID: 31037925 PMCID: PMC6500080 DOI: 10.22074/ijfs.2019.5557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/24/2018] [Indexed: 01/15/2023]
Abstract
Background Genetic and morphologic similarities between mouse embryonic stem cells (ESCs) and primordial
germ cells (PGCs) make it difficult to distinguish differentiation of these two cell types in vitro. Using specific GC
markers expressed in low level or even not expressed in ESCs- can help recognize differentiated cells in vitro. We
attempted to differentiate the mouse ESCs into Gc-like cells spontaneously in monolayer and EB culture method. Materials and Methods In this experimental study, we attempted to differentiate ESCs, Oct4-GFP OG2, into GC-like cells
(GCLCs) spontaneously in two different ways, including: i. Spontaneous differentiation of ESCs in monolayer culture as
(SP) and ii. Spontaneous differentiation of ESCs using embryoid body (EB) culture method as (EB+SP). During culture,
expression level of four GC specific genes (Fkbp6, Mov10l1, Riken and Tex13) and Mvh, Scp3, Stra8, Oct4 were evaluated. Results In both groups, Mov10l1 was down-regulated (P=0.3), while Tex13 and Riken were up-regulated (P=0.3 and
P=0.04, respectively). Fkbp6 and Stra8 were decreased in EB+SP and they were increased in SP group, while no significant
difference was determined between them (P=0.1, P=0.07). Additionally, in SP group, gene expression of Mvh and Scp3
were up-regulated and they had significant differences compared to EB+SP group (P=0.00 and P=0.01, respectively). Oct4
was down-regulated in the both groups. Flow-cytometry analysis showed that mean number of Mvh-positive cells in the
SP group was significantly greater compared to ESCs, EB+SP and EB7 groups (P=0.00, P=0.01, and P=0.3, respectively). Conclusion These findings showed that ESCs were differentiated into GCLCs in both group. But spontaneous dif-
ferentiation of ESCs into GCLCs in SP group (monolayer culture) compared to EB+SP (EB culture methods) has more
ability to express GCs markers.
Collapse
Affiliation(s)
- Maryam Gholamitabar Tabari
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Seyed Gholam Ali Jorsaraei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.Electronic Address:
| | - Mohammad Ghasemzadeh-Hasankolaei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Asghar Ahmadi
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Masoumeh Ghasemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
17
|
Mahabadi JA, Sabzalipour H, Bafrani HH, Gheibi Hayat SM, Nikzad H. Application of induced pluripotent stem cell and embryonic stem cell technology to the study of male infertility. J Cell Physiol 2018; 233:8441-8449. [PMID: 29870061 DOI: 10.1002/jcp.26757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/23/2018] [Indexed: 01/18/2023]
Abstract
Stem cells (SCs) are classes of undifferentiated biological cells existing only at the embryonic, fetal, and adult stages that can divide to produce specialized cell types during fetal development and remain in our bodies throughout life. The progression of regenerative and reproductive medicine owes the advancement of respective in vitro and in vivo biological science on the stem cell nature under appropriate conditions. The SCs are promising therapeutic tools to treat currently of infertility because of wide sources and high potency to differentiate. Nevertheless, no effective remedies are available to deal with severe infertility due to congenital or gonadotoxic stem cell deficiency in prepubertal childhood. Some recent solutions have been developed to address the severe fertility problems, including in vitro formation of germ cells from stem cells, induction of pluripotency from somatic cells, and production of patient-specific pluripotent stem cells. There is a possibility of fertility restoration using the in vitro formation of germ cells from somatic cells. Accordingly, the present review aimed at studying the literature published on the medical application of stem cells in reproductive concerns.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipour
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Sharma S, Portela JMD, Langenstroth-Röwer D, Wistuba J, Neuhaus N, Schlatt S. Male germline stem cells in non-human primates. Primate Biol 2017; 4:173-184. [PMID: 32110705 PMCID: PMC7041516 DOI: 10.5194/pb-4-173-2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/17/2017] [Indexed: 12/22/2022] Open
Abstract
Over the past few decades, several studies have attempted to decipher the
biology of mammalian germline stem cells (GSCs). These studies provide
evidence that regulatory mechanisms for germ cell specification and migration
are evolutionarily conserved across species. The characteristics and
functions of primate GSCs are highly distinct from rodent species; therefore
the findings from rodent models cannot be extrapolated to primates. Due to
limited availability of human embryonic and testicular samples for research
purposes, two non-human primate models (marmoset and macaque monkeys) are
extensively employed to understand human germline development and
differentiation. This review provides a broader introduction to the in vivo
and in vitro germline stem cell terminology from primordial to
differentiating germ cells. Primordial germ cells (PGCs) are the most
immature germ cells colonizing the gonad prior to sex differentiation into
testes or ovaries. PGC specification and migratory patterns among different
primate species are compared in the review. It also reports the distinctions
and similarities in expression patterns of pluripotency markers (OCT4A,
NANOG, SALL4 and LIN28) during embryonic developmental stages, among
marmosets, macaques and humans. This review presents a comparative summary
with immunohistochemical and molecular evidence of germ cell marker
expression patterns during postnatal developmental stages, among humans and
non-human primates. Furthermore, it reports findings from the recent
literature investigating the plasticity behavior of germ cells and stem cells
in other organs of humans and monkeys. The use of non-human primate models
would enable bridging the knowledge gap in primate GSC research and
understanding the mechanisms involved in germline development. Reported
similarities in regulatory mechanisms and germ cell expression profile in
primates demonstrate the preclinical significance of monkey models for
development of human fertility preservation strategies.
Collapse
Affiliation(s)
- Swati Sharma
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Medicine, Albert Schweitzer Campus 1, Building D11, Münster, Germany.,These authors contributed equally to this work
| | - Joana M D Portela
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,These authors contributed equally to this work
| | - Daniel Langenstroth-Röwer
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Medicine, Albert Schweitzer Campus 1, Building D11, Münster, Germany
| | - Joachim Wistuba
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Medicine, Albert Schweitzer Campus 1, Building D11, Münster, Germany
| | - Nina Neuhaus
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Medicine, Albert Schweitzer Campus 1, Building D11, Münster, Germany
| | - Stefan Schlatt
- Center of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Medicine, Albert Schweitzer Campus 1, Building D11, Münster, Germany
| |
Collapse
|
19
|
Shirzeyli MH, Khanlarkhani N, Amidi F, Shirzeyli FH, Aval FS, Sobhani A. Bones Morphogenic Protein-4 and retinoic acid combined treatment comparative analysis for in vitro differentiation potential of murine mesenchymal stem cells derived from bone marrow and adipose tissue into germ cells. Microsc Res Tech 2017; 80:1151-1160. [PMID: 28921810 DOI: 10.1002/jemt.22880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/16/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023]
Abstract
Nowadays, infertility is no longer considered as an unsolvable disorder due to progresses in germ cells derived from stem lineage with diverse origins. Technical and ethical challenges push researchers to investigate various tissue sources to approach more efficient gametes. The purpose of the current study is to investigate the efficacy of a combined medium, retinoic acid (RA) together with Bone Morphogenic Protein-4 (BMP4), on differentiation of Bone Marrow Mesenchymal Stem Cells (BMMSCs) and adipose-derived mesenchymal stem cells (ADMSCs) into germ cells. Murine MSCs were obtained from both Bone Marrow (BM) and Adipose Tissue (AT) samples and were analyzed for surface markers to get further verification of their nature. BMMSCs and ADMSCs were induced into osteogenic and adipogenic lineage cells respectively, to examine their multipotency. They were finally differentiated into germ cells using media enriched with BMP4 for 4 days followed by addition of RA for 7 days (11 days in total). Analyzing of differentiation potential of BMMSCs- and ADMSCs were performed via Immunofluorescence, Flowcytometry and Real time-PCR techniques for germ cell-specific markers (Mvh, Dazl, Stra8 and Scp3). Mesenchymal surface markers (CD90 and CD44) were expressed on both BMMSCs and ADMSCs, while endothelial and hematopoietic cell markers (CD31 and CD45) had no expression. Finally, all germ-specific markers were expressed in both BM and AT. Although germ cells differentiated from ADMSCs showed faster growth and proliferation as well as easy collection, they significantly expressed germ-specific markers lower than BMMSCs. This suggests stronger differentiation potential of murine BMMSCs than ADMSCs.
Collapse
Affiliation(s)
- Maryam H Shirzeyli
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Khanlarkhani
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirzeyli
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fereydoon S Aval
- Department of Anatomical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Aligholi Sobhani
- Department of Anatomical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Fattahi A, Latifi Z, Ghasemnejad T, Nejabati HR, Nouri M. Insights into in vitro spermatogenesis in mammals: Past, present, future. Mol Reprod Dev 2017; 84:560-575. [DOI: 10.1002/mrd.22819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Amir Fattahi
- Institute for Stem Cell and Regenerative Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Zeinab Latifi
- Department of Clinical Biochemistry, Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Tohid Ghasemnejad
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
21
|
Sun ZH, Wang Y, Lu WJ, Li Z, Liu XC, Li SS, Zhou L, Gui JF. Divergent Expression Patterns and Function Implications of Four nanos Genes in a Hermaphroditic Fish, Epinephelus coioides. Int J Mol Sci 2017; 18:E685. [PMID: 28333083 PMCID: PMC5412271 DOI: 10.3390/ijms18040685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/12/2017] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Multiple nanos genes have been characterized in several fishes, but the functional implications of their various expression patterns remain unclear. In this study, we identified and characterized four nanos genes from a hermaphroditic fish orange-spotted grouper, Epinephelus coioides. Ecnanos1a and Ecnanos1b show divergent expression patterns, and the dynamic expression change of Ecnanos1a in pituitaries during sex change is associated with testis differentiation and spermatogenesis. Ecnanos2 and Ecnanos3 might be germline stem cells (GSCs) and primordial germ cells (PGCs)-specific markers, respectively. Significantly, Ecnanos3 3'-untranslated region (UTR) is necessary for PGC specific expression, where a non-canonical "GCACGTTT" sequence is required for miR-430-mediated repression of Ecnanos3 RNA. Furthermore, grouper Dead end (Dnd) can relieve miR-430 repression in PGCs by associating with a 23 bp U-rich region (URR) in Ecnanos3 3'-UTR. The current study revealed the functional association of multiple nanos genes with PGC formation and germ cell development in orange-spotted grouper, and opened up new possibilities for developing biotechnologies through utilizing the associations between Ecnanos3 and PGCs or between Ecnanos2 and GSCs in the hermaphroditic fish.
Collapse
Affiliation(s)
- Zhi-Hui Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiao-Chun Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Shui-Sheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, The Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
22
|
Afsartala Z, Rezvanfar MA, Hodjat M, Tanha S, Assadollahi V, Bijangi K, Abdollahi M, Ghasemzadeh-Hasankolaei M. Amniotic membrane mesenchymal stem cells can differentiate into germ cells in vitro. In Vitro Cell Dev Biol Anim 2016; 52:1060-1071. [PMID: 27503516 DOI: 10.1007/s11626-016-0073-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/14/2016] [Indexed: 11/28/2022]
Abstract
This is the first report on differentiation of mouse amniotic membrane mesenchymal stem cells (AM-MSCs) into male germ cells (GCs). AM-MSCs have the multipotent differentiation capacity and can be differentiated into various cell types. In the present study, AM-MSCs were induced for differentiation into GCs. AM-MSCs were isolated from mouse embryonic membrane by enzymatic digestion. AM-MSCs were characterized with osteogenic and adipogenic differentiation test and flow cytometric analysis of some CD-markers. AM-MSCs were induced to differentiate into GCs using a creative two-step method. Passage-3 AM-MSCs were firstly treated with 25 ng/ml bone morphogenetic protein 4 (BMP4) for 5 d and in continuing with 1 μM retinoic acid (RA) for 12 d (total treatment time was 17 d). At the end of the treatment period, real-time reverse transcription (RT)-PCR was performed to evaluate the expression of GC-specific markers-Itgb1, Dazl, Stra8, Piwil2, Mvh, Oct4, and c-Kit- in the cells. Moreover, flow cytometry and immunofluorescence staining were performed to evaluate the expression of Mvh and Dazl at protein level. Real-time RT-PCR showed that most of the tested markers were upregulated in the treated AM-MSCs. Furthermore, flow cytometric and immunofluorescence analyses both revealed that a considerable part of the treated cells expressed GC-specific markers. The percentage of positive cells for Mvh and Dazl was about 23 and 46%, respectively. Our results indicated that a number of AM-MSCs successfully differentiated into the GCs. Finally, it seems that AM-MSCs would be a potential source of adult pluripotent stem cells for in vitro generation of GCs and cell-based therapies for treatment of infertility.
Collapse
Affiliation(s)
- Zohreh Afsartala
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Rezvanfar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tanha
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Assadollahi
- Cellular and Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | | | - Mohammad Abdollahi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Ghasemzadeh-Hasankolaei
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box: 47318-38711, Amirkola, Babol, Iran.
| |
Collapse
|
23
|
Gassei K, Orwig KE. Experimental methods to preserve male fertility and treat male factor infertility. Fertil Steril 2015; 105:256-66. [PMID: 26746133 DOI: 10.1016/j.fertnstert.2015.12.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Infertility is a prevalent condition that has insidious impacts on the infertile individuals, their families, and society, which extend far beyond the inability to have a biological child. Lifestyle changes, fertility treatments, and assisted reproductive technology (ART) are available to help many infertile couples achieve their reproductive goals. All of these technologies require that the infertile individual is able to produce at least a small number of functional gametes (eggs or sperm). It is not possible for a person who does not produce gametes to have a biological child. This review focuses on the infertile man and describes several stem cell-based methods and gene therapy approaches that are in the research pipeline and may lead to new fertility treatment options for men with azoospermia.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
24
|
Bahmanpour S, Zarei Fard N, Talaei-Khozani T, Hosseini A, Esmaeilpour T. Effect of BMP4 preceded by retinoic acid and co-culturing ovarian somatic cells on differentiation of mouse embryonic stem cells into oocyte-like cells. Dev Growth Differ 2015; 57:378-388. [PMID: 26041547 DOI: 10.1111/dgd.12217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 04/12/2015] [Accepted: 04/12/2015] [Indexed: 12/28/2022]
Abstract
Bone morphogenetic protein 4 (BMP4) and retinoic acid (RA) signaling are the key regulators for germ cell and meiosis induction, respectively. Gonadal tissue also provides an appropriate microenvironment for oocyte differentiation in vivo. The current study aimed to determine whether mimicking in vivo niche is more efficient for oocyte differentiation from embryonic stem (ES) cells. Here, differentiation of mouse ES cells toward oocyte-like cells using embryoid body (EB) and monolayer protocols was induced in the presence (+BMP4) or absence (-BMP4) of BMP4. On day 5, each group was co-cultured with ovarian somatic cells in the presence or absence of RA (+RA or -RA) for an additional 14 days. Our results showed a significant increase in expression of meiotic markers in the +BMP4 condition in EB differentiation protocol. Further differentiation with ovarian somatic cells led to a subpopulation of oocyte-like cell formation. Compared to the controls, the +RA condition resulted in a significant elevation of the meiotic gene expression in contrast to Oct4 that significantly decreased in both protocols. In the cells pre-treated with BMP4 and then exposed to RA in the monolayer differentiation protocol, the gene expression levels of germ cell, Mvh, and maturation markers, Cx37, Zp2, and Gdf9, were also upregulated significantly. Therefore, it can be concluded that +BMP4 and +RA along with ovarian somatic cell co-culture improved the rate of in vitro oocyte differentiation.
Collapse
Affiliation(s)
- Soghra Bahmanpour
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zarei Fard
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hosseini
- Cancer Research Institute, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Esmaeilpour
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Easley CA, Bradner JM, Moser A, Rickman CA, McEachin ZT, Merritt MM, Hansen JM, Caudle WM. Assessing reproductive toxicity of two environmental toxicants with a novel in vitro human spermatogenic model. Stem Cell Res 2015; 14:347-55. [PMID: 25863443 DOI: 10.1016/j.scr.2015.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 11/26/2022] Open
Abstract
Environmental influences and insults by reproductive toxicant exposure can lead to impaired spermatogenesis or infertility. Understanding how toxicants disrupt spermatogenesis is critical for determining how environmental factors contribute to impaired fertility. While current animal models are available, understanding of the reproductive toxic effects on human fertility requires a more robust model system. We recently demonstrated that human pluripotent stem cells can differentiate into spermatogonial stem cells/spermatogonia, primary and secondary spermatocytes, and haploid spermatids; a model that mimics many aspects of human spermatogenesis. Here, using this model system, we examine the effects of 2-bromopropane (2-BP) and 1,2,dibromo-3-chloropropane (DBCP) on in vitro human spermatogenesis. 2-BP and DBCP are non-endocrine disrupting toxicants that are known to impact male fertility. We show that acute treatment with either 2-BP or DBCP induces a reduction in germ cell viability through apoptosis. 2-BP and DBCP affect viability of different cell populations as 2-BP primarily reduces spermatocyte viability, whereas DBCP exerts a much greater effect on spermatogonia. Acute treatment with 2-BP or DBCP also reduces the percentage of haploid spermatids. Both 2-BP and DBCP induce reactive oxygen species (ROS) formation leading to an oxidized cellular environment. Taken together, these results suggest that acute exposure with 2-BP or DBCP causes human germ cell death in vitro by inducing ROS formation. This system represents a unique platform for assessing human reproductive toxicity potential of various environmental toxicants in a rapid, efficient, and unbiased format.
Collapse
Affiliation(s)
- Charles A Easley
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Heath, Emory University, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amber Moser
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chelsea A Rickman
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zachary T McEachin
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, GA 30332, USA
| | - Megan M Merritt
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason M Hansen
- Division of Pulmonology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Heath, Emory University, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Zeng F, Huang F, Guo J, Hu X, Liu C, Wang H. Emerging methods to generate artificial germ cells from stem cells. Biol Reprod 2015; 92:89. [PMID: 25715792 DOI: 10.1095/biolreprod.114.124800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/16/2015] [Indexed: 12/29/2022] Open
Abstract
Germ cells are responsible for the transmission of genetic and epigenetic information across generations. At present, the number of infertile couples is increasing worldwide; these infertility problems can be traced to environmental pollutions, infectious diseases, cancer, psychological or work-related stress, and other factors, such as lifestyle and genetics. Notably, lack of germ cells and germ cell loss present real obstacles in infertility treatment. Recent research aimed at producing gametes through artificial germ cell generation from stem cells may offer great hope for affected couples to treat infertility in the future. Therefore, this rapidly emerging area of artificial germ cell generation from nongermline cells has gained considerable attention from basic and clinical research in the fields of stem cell biology, developmental biology, and reproductive biology. Here, we review the state of the art in artificial germ cell generation.
Collapse
Affiliation(s)
- Fanhui Zeng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Fajun Huang
- School of Medical Science, Hubei University for Nationalities, Enshi, China
| | - Jingjing Guo
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xingchang Hu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Changbai Liu
- The Institute of Molecular Biology, China Three Gorges University, Yichang, China
| | - Hu Wang
- Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
27
|
Xie L, Lin L, Tang Q, Li W, Huang T, Huo X, Liu X, Jiang J, He G, Ma L. Sertoli cell-mediated differentiation of male germ cell-like cells from human umbilical cord Wharton's jelly-derived mesenchymal stem cells in an in vitro co-culture system. Eur J Med Res 2015; 20:9. [PMID: 25644284 PMCID: PMC4389972 DOI: 10.1186/s40001-014-0080-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/23/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Microenvironment signals play a critical role in directing the differentiation of stem cells. Sertoli cells (SCs) provide a unique microenvironment that is essential for germ cell differentiation. METHODS Our previous study has demonstrated that human umbilical cord Wharton's jelly-derived mesenchymal stem cells (HUMSCs) could differentiate towards male germ cells in vitro, but HUMSC-derived germ-like cells expressed only few germ cell markers. The aim of this study was to investigate the effect of SCs on the differentiation of HUMSCs towards male germ cells using a co-culture system that mimicked the in vivo male germ cell microenvironment. RESULTS HUMSCs formed clump-like features on SC monolayers after seeding for 3 weeks. Differentiated cells formed round colonies that share the morphological features of spermatogonial colonies. RT-PCR, immunofluorescence, confocal microscopy, and Western blot analyses revealed the expression of early germ cell markers STELLA and VASA and male germ cell-specific marker DAZL in differentiated HUMSCs, confirming the presence of cells with characteristics of male germ cells. CONCLUSION The HUMSC-SC co-culture system mimics a native microenvironment for germ cell colonization without any in vitro artificial manipulation and can be used to explore the mechanisms controlling the differentiation of male germ cells from HUMSCs. Male germ cells derived from HUMSCs may be used in the therapy for male infertility.
Collapse
Affiliation(s)
- Lichun Xie
- Women's and Children's Hospital of Shenzhen University, Shenzhen, 518000, China.
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Limin Lin
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Qiuliu Tang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Weizhong Li
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Tianhua Huang
- Shantou University Medical College, Shantou, 515041, China.
| | - Xiao Huo
- Shantou University Medical College, Shantou, 515041, China.
| | - Xiaoshan Liu
- Shantou University Medical College, Shantou, 515041, China.
| | - Jikai Jiang
- Shantou University Medical College, Shantou, 515041, China.
| | - Guyu He
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| | - Lian Ma
- Women's and Children's Hospital of Shenzhen University, Shenzhen, 518000, China.
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
- Maternal and Child Health Care Center of Pingshan District, Shenzhen, 518000, China.
- Translational Medicine Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
28
|
Lin ZYC, Hirano T, Shibata S, Seki NM, Kitajima R, Sedohara A, Siomi MC, Sasaki E, Siomi H, Imamura M, Okano H. Gene expression ontogeny of spermatogenesis in the marmoset uncovers primate characteristics during testicular development. Dev Biol 2015; 400:43-58. [PMID: 25624265 DOI: 10.1016/j.ydbio.2015.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
Abstract
Mammalian spermatogenesis has been investigated extensively in rodents and a strictly controlled developmental process has been defined at cellular and molecular levels. In comparison, primate spermatogenesis has been far less well characterized. However, important differences between primate and rodent spermatogenesis are emerging so it is not always accurate to extrapolate findings in rodents to primate systems. Here, we performed an extensive immunofluorescence study of spermatogenesis in neonatal, juvenile, and adult testes in the common marmoset (Callithrix jacchus) to determine primate-specific patterns of gene expression that underpin primate germ cell development. Initially we characterized adult spermatogonia into two main classes; mitotically active C-KIT(+)Ki67(+) cells and mitotically quiescent SALL4(+)PLZF(+)LIN28(+)DPPA4(+) cells. We then explored the expression of a set of markers, including PIWIL1/MARWI, VASA, DAZL, CLGN, RanBPM, SYCP1 and HAPRIN, during germ cell differentiation from early spermatocytes through round and elongating spermatids, and a clear program of gene expression changes was determined as development proceeded. We then examined the juvenile marmoset testis. Markers of gonocytes demonstrated two populations; one that migrates to the basal membrane where they form the SALL4(+) or C-KIT(+) spermatogonia, and another that remains in the lumen of the seminiferous tubule. This later population, historically identified as pre-spermatogonia, expressed meiotic and apoptotic markers and were eliminated because they appear to have failed to correctly migrate. Our findings provide the first platform of gene expression dynamics in adult and developing germ cells of the common marmoset. Although we have characterized a limited number of genes, these results will facilitate primate spermatogenesis research and understanding of human reproduction.
Collapse
Affiliation(s)
- Zachary Yu-Ching Lin
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takamasa Hirano
- Department of Molecular Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Naomi M Seki
- Department of Molecular Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryunosuke Kitajima
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Ayako Sedohara
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki 210-0821, Japan
| | - Mikiko C Siomi
- Department of Molecular Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Erika Sasaki
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Applied Developmental Biology, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki 210-0821, Japan; PRESTO Japan Science and Technology Agency, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masanori Imamura
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan.
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
29
|
Chen HF, Jan PS, Kuo HC, Wu FC, Lan CW, Huang MC, Chien CL, Ho HN. Granulosa cells and retinoic acid co-treatment enrich potential germ cells from manually selected Oct4-EGFP expressing human embryonic stem cells. Reprod Biomed Online 2014; 29:319-32. [PMID: 25047539 DOI: 10.1016/j.rbmo.2014.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
Differentiation of human embryonic stem (HES) cells to germ cells may become clinically useful in overcoming diseases related to germ-cell development. Niches were used to differentiate HES cell lines, NTU1 and H9 Oct4-enhanced green fluorescence protein (EGFP), including laminin, granulosa cell co-culture or conditioned medium, ovarian stromal cell co-culture or conditioned medium, retinoic acid, stem cell factor (SCF) and BMP4-BMP7-BMP8b treatment. Flow cytometry showed that granulosa cell co-culture (P < 0.001) or conditioned medium (P = 0.007) treatment for 14 days significantly increased the percentages of differentiated H9 Oct4-EGFP cells expressing early germ cell marker stage-specific embryonic antigen 1(SSEA1); sorted SSEA1[+] cells did not express higher levels of germ cell gene VASA and GDF9. Manually collected H9 Oct4-EGFP[+] cells expressed significantly higher levels of VASA (P = 0.005) and GDF9 (P = 0.001). H9 Oct4-EGFP[+] cells developed to ovarian follicle-like structures after culture for 28 days but with low efficiency. Unlike SCF and BMP4, retinoic acid co-treatment enhanced VASA, GDF9 and SCP3 expression. A protocol is recommended to enrich differentiated HES cells with germ-cell potential by culture with granulosa cells, conditioned medium or retinoic acid, manual selection of Oct4-EGFP[+] cells, and analysis of VASA, GDF9 expression, or both.
Collapse
Affiliation(s)
- Hsin-Fu Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pey-Shynan Jan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Fang-Chun Wu
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Chen-Wei Lan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Chi Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
30
|
Irie N, Tang WWC, Azim Surani M. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reprod Med Biol 2014; 13:203-215. [PMID: 25298745 PMCID: PMC4182624 DOI: 10.1007/s12522-014-0184-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2014] [Indexed: 12/01/2022] Open
Abstract
Germ cells are unique cell types that generate a totipotent zygote upon fertilization, giving rise to the next generation in mammals and many other multicellular organisms. How germ cells acquire this ability has been of considerable interest. In mammals, primordial germ cells (PGCs), the precursors of sperm and oocytes, are specified around the time of gastrulation. PGCs are induced by signals from the surrounding extra-embryonic tissues to the equipotent epiblast cells that give rise to all cell types. Currently, the mechanism of PGC specification in mammals is best understood from studies in mice. Following implantation, the epiblast cells develop as an egg cylinder while the extra-embryonic ectoderm cells which are the source of important signals for PGC specification are located over the egg cylinder. However, in most cases, including humans, the epiblast cells develop as a planar disc, which alters the organization and the source of the signaling for cell fates. This, in turn, might have an effect on the precise mechanism of PGC specification in vivo as well as in vitro using pluripotent embryonic stem cells. Here, we discuss how the key early embryonic differences between rodents and other mammals may affect the establishment of the pluripotency network in vivo and in vitro, and consequently the basis for PGC specification, particularly from pluripotent embryonic stem cells in vitro.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - Walfred W. C. Tang
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| |
Collapse
|
31
|
Petkova R, Arabadjiev B, Chakarov S, Pankov R. Current state of the opportunities for derivation of germ-like cells from pluripotent stem cells: are you a man, or a mouse? BIOTECHNOL BIOTEC EQ 2014; 28:184-191. [PMID: 26019504 PMCID: PMC4434091 DOI: 10.1080/13102818.2014.907037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/14/2013] [Indexed: 01/15/2023] Open
Abstract
The concept of pluripotency as a prerogative of cells of early mammal embryos and cultured embryonic stem cells (ESC) has been invalidated with the advent of induced pluripotent stem cells. Later, it became clear that the ability to generate all cell types of the adult organism is also a questionable aspect of pluripotency, as there are cell types, such as germ cells, which are difficult to produce from pluripotent stem cells. Recently it has been proposed that there are at least two different states of pluripotency; namely, the naïve, or ground state, and the primed state, which may differ radically in terms of timeline of existence, signalling mechanisms, cell properties, capacity for differentiation into different cell types, etc. Germ-like male and female rodent cells have been successfully produced in vitro from ESC and induced pluripotent stem cells. The attempts to derive primate primordial germ cells (PGC) and germ cells in vitro from pluripotent stem cells, however, still have a low success rate, especially with the female germline. The paper reviews the properties of rodent and primate ESC with regard to their capacity for differentiation in vitro to germ-like cells, outlining the possible caveats to derivation of PGC and germ cells from primate and human pluripotent cells.
Collapse
Affiliation(s)
- Rumena Petkova
- Scientific Technological Service (STS) Ltd., Sofia, Bulgaria
| | - Borislav Arabadjiev
- Scientific Technological Service (STS) Ltd., Sofia, Bulgaria
- Department of Cell Biology, Histology and Embryology, and Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridsky’, Sofia, Bulgaria
| | - Stoyan Chakarov
- Department of Cell Biology, Histology and Embryology, and Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridsky’, Sofia, Bulgaria
| | - Roumen Pankov
- Department of Cell Biology, Histology and Embryology, and Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridsky’, Sofia, Bulgaria
| |
Collapse
|
32
|
Easley CA, Latov DR, Simerly CR, Schatten G. Adult somatic cells to the rescue: nuclear reprogramming and the dispensability of gonadal germ cells. Fertil Steril 2014; 101:14-9. [PMID: 24382340 DOI: 10.1016/j.fertnstert.2013.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 01/04/2023]
Abstract
With advances in cancer therapies, survival rates in prepubescent patients have steadily increased. However, a number of these surviving patients have been rendered sterile owing to their rigorous oncologic treatment regimens. In addition to cancer treatments, men and women, who are genetically fertile, can become infertile owing to immune suppression treatments, exposure to environmental and industrial toxicants, and injury. Notwithstanding the great emotional burden from an inability to conceive a child with their partner, the financial burdens for testing and treatment are high, and successful treatment of these patients' sterility is rare. Recent advances in pluripotent stem cell differentiation and the generation of patient-specific, induced pluripotent stem cells indicate that stem cell replacement therapies or in vitro differentiation followed by IVF may be on the horizon. Here we discuss these recent advances, their relevance to treating male-factor and female-factor infertility, and what experimental procedures must be carried out in animal models before these exciting new treatments can be used in a clinical setting. The goal of this research is to generate functional gametes from no greater starting material than a mere skin biopsy.
Collapse
Affiliation(s)
- Charles A Easley
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - David R Latov
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Calvin R Simerly
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee Womens Research Institute, Pittsburgh Development Center, Pittsburgh, Pennsylvania
| | - Gerald Schatten
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee Womens Research Institute, Pittsburgh Development Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
33
|
Valli H, Phillips BT, Shetty G, Byrne JA, Clark AT, Meistrich ML, Orwig KE. Germline stem cells: toward the regeneration of spermatogenesis. Fertil Steril 2013; 101:3-13. [PMID: 24314923 DOI: 10.1016/j.fertnstert.2013.10.052] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 01/15/2023]
Abstract
Improved therapies for cancer and other conditions have resulted in a growing population of long-term survivors. Infertility is an unfortunate side effect of some cancer therapies that impacts the quality of life of survivors who are in their reproductive or prereproductive years. Some of these patients have the opportunity to preserve their fertility using standard technologies that include sperm, egg, or embryo banking, followed by IVF and/or ET. However, these options are not available to all patients, especially the prepubertal patients who are not yet producing mature gametes. For these patients, there are several stem cell technologies in the research pipeline that may give rise to new fertility options and allow infertile patients to have their own biological children. We will review the role of stem cells in normal spermatogenesis as well as experimental stem cell-based techniques that may have potential to generate or regenerate spermatogenesis and sperm. We will present these technologies in the context of the fertility preservation paradigm, but we anticipate that they will have broad implications for the assisted reproduction field.
Collapse
Affiliation(s)
- Hanna Valli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Bart T Phillips
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Gunapala Shetty
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James A Byrne
- Department of Molecular and Medical Pharmacology, Center for Health Sciences, Los Angeles, California; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California
| | - Amander T Clark
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California
| | - Marvin L Meistrich
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
34
|
Hosseinzadeh Shirzeily M, Pasbakhsh P, Amidi F, Mehrannia K, Sobhani A. Comparison of differentiation potential of male mouse adipose tissue and bone marrow derived-mesenchymal stem cells into germ cells. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2013; 11:965-76. [PMID: 24639722 PMCID: PMC3941408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/06/2013] [Accepted: 08/25/2013] [Indexed: 11/04/2022]
Abstract
BACKGROUND Recent publications about differentiation of stem cells to germ cells have motivated researchers to make new approaches to infertility. In vitro production of germ cells improves understanding differentiation process of male and female germ cells. Due to the problem of using embryonic stem cells (ESC), it's necessary the mentioned cells be replaced with some adult multi-potent stem cells in laboratories. OBJECTIVE The aim of this study was to obtain germ cells from appropriate source beyond ESC and compare differential potentials of adipocytes derived stem cells (ADMSCs) with bone marrow derived stem cells (BMMSCs). MATERIALS AND METHODS To find multi-potential entity, after providing purified ADMSCs and BMMSCs, differentiation to osteoblast and adipocyte was confirmed by using appropriate culture medium. To confirm mesenchymal lineage production superficial markers (expression of CD90 and CD44 and non-expression of CD45 and CD31) were investigated by flowcytometry. Then the cells were differentiated to germ cells in inductive medium containing retinoic acid for 7days. To evaluate germ cells characteristic markers [Dazl (Deleted in azoospermia-like), Mvh (Mouse vasa homolog gene), Stra8 (Stimulated by retinoic acid) and Scp3 (Synaptonemal complex protein 3)] flowcytometry, imunoflorescence and real time PCR were used. RESULTS Both types of cells were able to differentiate into osteoblast and adipocyte cells and presentation of stem cell superficial markers (CD90, CD44) and absence of endothelial and blood cell markers (CD31, CD45) were confirmative The flowcytometry, imunoflorescence and real time PCR results showed remarkable expression of germ cells characteristic markers (Mvh, Dazl, Stra8, and Scp3). CONCLUSION It was found that although ADMSCs were attained easier and also cultured and differentiated rapidly, germ cell markers were expressed in BMMSCs significantly more than ADMSCs. This article extracted from M.Sc. thesis. (Maryam Hosseinzadeh Shirzeily).
Collapse
|
35
|
Imamura M, Hikabe O, Lin ZYC, Okano H. Generation of germ cells in vitro in the era of induced pluripotent stem cells. Mol Reprod Dev 2013; 81:2-19. [PMID: 23996404 DOI: 10.1002/mrd.22259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/21/2013] [Indexed: 01/15/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are stem cells that can be artificially generated via "cellular reprogramming" using gene transduction in somatic cells. iPSCs have enormous potential in stem-cell biology as they can give rise to numerous cell lineages, including the three germ layers. An evaluation of germ-line competency by blastocyst injection or tetraploid complementation, however, is critical for determining the developmental potential of mouse iPSCs towards germ cells. Recent studies have demonstrated that primordial germ cells obtained by the in vitro differentiation of iPSCs produce functional gametes as well as healthy offspring. These findings illustrate not only that iPSCs are developmentally similar to embryonic stem cells (ESCs), but also that somatic cells from adult tissues can produce gametes in vitro, that is, if they are reprogrammed into iPSCs. In this review, we discuss past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells, with an emphasis on ESCs and iPSCs. While this field of research is still at a stage of infancy, it holds great promises for investigating the mechanisms of germ-cell development, especially in humans, and for advancing reproductive and developmental engineering technologies in the future.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Pera RAR. Status of human germ cell differentiation from pluripotent stem cells. Reprod Fertil Dev 2013; 25:396-404. [PMID: 23445816 DOI: 10.1071/rd12047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 03/31/2012] [Indexed: 11/23/2022] Open
Abstract
Historically, the quality of life of infertile couples has been greatly diminished by the loss of opportunity to conceive. However, beginning with the advent of IVF in the late 1970s, novel clinical interventions have greatly changed the outlook for those with severe forms of infertility. Yet, in cases in which the quality and quantity of germ cells are most compromised, there are few options. In the present paper, the current status of germ cell development from stem cells is reviewed in light of potential utility for basic science and clinical applications.
Collapse
Affiliation(s)
- Renee A Reijo Pera
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA 94305-5463, USA.
| |
Collapse
|
37
|
Easley CA, Simerly CR, Schatten G. Stem cell therapeutic possibilities: future therapeutic options for male-factor and female-factor infertility? Reprod Biomed Online 2013; 27:75-80. [PMID: 23664220 DOI: 10.1016/j.rbmo.2013.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 01/15/2023]
Abstract
Recent advances in assisted reproduction treatment have enabled some couples with severe infertility issues to conceive, but the methods are not successful in all cases. Notwithstanding the significant financial burden of assisted reproduction treatment, the emotional scars from an inability to conceive a child enacts a greater toll on affected couples. While methods have circumvented some root causes for male and female infertility, often the underlying causes cannot be treated, thus true cures for restoring a patient's fertility are limited. Furthermore, the procedures are only available if the affected patients are able to produce gametes. Patients rendered sterile by medical interventions, exposure to toxicants or genetic causes are unable to utilize assisted reproduction to conceive a child - and often resort to donors, where permitted. Stem cells represent a future potential avenue for allowing these sterile patients to produce offspring. Advances in stem cell biology indicate that stem cell replacement therapies or in-vitro differentiation may be on the horizon to treat and could cure male and female infertility, although significant challenges need to be met before this technology can reach clinical practice. This article discusses these advances and describes the impact that these advances may have on treating infertility.
Collapse
Affiliation(s)
- Charles A Easley
- Laboratory of Translational Cell Biology, Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
38
|
|
39
|
Teramura T, Frampton J. Induced pluripotent stem cells in reproductive medicine. Reprod Med Biol 2012; 12:39-46. [PMID: 29699129 DOI: 10.1007/s12522-012-0141-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/29/2012] [Indexed: 01/25/2023] Open
Abstract
Despite recent advances in reproductive medicine, there are still no effective treatments for severe infertility caused by congenital absence of germ cells or gonadotoxic treatments during prepubertal childhood. However, the development of technologies for germ cell formation from stem cells in vitro, induction of pluripotency from somatic cells, and production of patient-specific pluripotent stem cells may provide new solutions for treating these severe fertility problems. It may be possible to produce germ cells in vitro from our own somatic cells that can be used to restore fertility. In addition, these technologies may also bring about novel therapies by helping to elucidate the mechanisms of human germ cell development. In this review, we describe the current approaches for obtaining germ cells from pluripotent stem cells, and provide basic information about induction of pluripotency and germ cell development.
Collapse
Affiliation(s)
- Takeshi Teramura
- Institute of Advanced Clinical Medicine Kinki University Faculty of Medicine 377-2 Osaka-sayama Osaka Japan.,Department of Obstetrics and Gynecology Mie University Faculty of Medicine Tsu Mie Japan
| | - John Frampton
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| |
Collapse
|
40
|
Easley CA, Phillips BT, McGuire MM, Barringer JM, Valli H, Hermann BP, Simerly CR, Rajkovic A, Miki T, Orwig KE, Schatten GP. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep 2012; 2:440-6. [PMID: 22921399 DOI: 10.1016/j.celrep.2012.07.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/12/2012] [Accepted: 07/31/2012] [Indexed: 12/25/2022] Open
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been shown to differentiate into primordial germ cells (PGCs) but not into spermatogonia, haploid spermatocytes, or spermatids. Here, we show that hESCs and hiPSCs differentiate directly into advanced male germ cell lineages, including postmeiotic, spermatid-like cells, in vitro without genetic manipulation. Furthermore, our procedure mirrors spermatogenesis in vivo by differentiating PSCs into UTF1-, PLZF-, and CDH1-positive spermatogonia-like cells; HIWI- and HILI-positive spermatocyte-like cells; and haploid cells expressing acrosin, transition protein 1, and protamine 1 (proteins that are uniquely found in spermatids and/or sperm). These spermatids show uniparental genomic imprints similar to those of human sperm on two loci: H19 and IGF2. These results demonstrate that male PSCs have the ability to differentiate directly into advanced germ cell lineages and may represent a novel strategy for studying spermatogenesis in vitro.
Collapse
Affiliation(s)
- Charles A Easley
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Germline development from human pluripotent stem cells toward disease modeling of infertility. Fertil Steril 2012; 97:1250-9. [DOI: 10.1016/j.fertnstert.2012.04.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 01/05/2023]
|
42
|
Yang S, Bo J, Hu H, Guo X, Tian R, Sun C, Zhu Y, Li P, Liu P, Zou S, Huang Y, Li Z. Derivation of male germ cells from induced pluripotent stem cells in vitro and in reconstituted seminiferous tubules. Cell Prolif 2012; 45:91-100. [PMID: 22324506 DOI: 10.1111/j.1365-2184.2012.00811.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/29/2011] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES Previous studies have demonstrated that mouse- and human-induced pluripotent stem (iPS) cells can differentiate into primordial germ cells in vitro. However, up to now it is not known whether iPS cells would be able to differentiate into male germ cells in vivo. The aim of this study was to explore differentiation potential of iPS cells to male germ cells in vitro and in vivo. MATERIALS AND METHODS In this study, approaches using in vitro retinoic acid induction and in vivo ectopic transplantation were combined to induce iPS cells to become male germ cells. RESULTS RT-PCR showed that expression of pre-meiotic and meiotic germ cell-specific genes was enhanced in iPS cell-derived embryoid bodies (EBs) compared to mRNA transcripts of iPS cells. Immunofluorescence analysis revealed that iPS cell-derived EBs positively expressed germ-cell markers VASA, c-Kit and SCP3. Furthermore, iPS cell-derived cells dissociated from EBs were injected with testicular cells into dorsal skin of mice. Histological examination showed that iPS cell-derived cells could reconstitute seminiferous tubules, and meanwhile, iPS cell-derived germ cells could settle at basement membranes of reconstituted tubules. CONCLUSION Our results suggest that iPS cells are able to differentiate into male germ cells in vitro and that reconstituted seminiferous tubules may provide a functional niche for exogenous iPS cell-derived male germ cells. Derivation of male germ cells from iPS cells has potential application for treating male infertility and provides an ideal platform for elucidating molecular mechanisms of male germ-cell development.
Collapse
Affiliation(s)
- S Yang
- Department of Urology, Sperm Development and Genetics Laboratory, Shanghai Human Sperm Bank, Shanghai Institute of Andrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lin ZYC, Imamura M, Sano C, Nakajima R, Suzuki T, Yamadera R, Takehara Y, Okano HJ, Sasaki E, Okano H. Molecular signatures to define spermatogenic cells in common marmoset (Callithrix jacchus). Reproduction 2012; 143:597-609. [PMID: 22323619 DOI: 10.1530/rep-11-0215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Germ cell development is a fundamental process required to produce offspring. The developmental program of spermatogenesis has been assumed to be similar among mammals. However, recent studies have revealed differences in the molecular properties of primate germ cells compared with the well-characterized mouse germ cells. This may prevent simple application of rodent insights into higher primates. Therefore, thorough investigation of primate germ cells is necessary, as this may lead to the development of more appropriate animal models. The aim of this study is to define molecular signatures of spermatogenic cells in the common marmoset, Callithrix jacchus. Interestingly, NANOG, PRDM1, DPPA3 (STELLA), IFITM3, and ZP1 transcripts, but no POU5F1 (OCT4), were detected in adult marmoset testis. Conversely, mouse testis expressed Pou5f1 but not Nanog, Prdm1, Dppa3, Ifitm3, and Zp1. Other previously described mouse germ cell markers were conserved in marmoset and mouse testes. Intriguingly, marmoset spermatogenic cells underwent dynamic protein expression in a developmental stage-specific manner; DDX4 (VASA) protein was present in gonocytes, diminished in spermatogonial cells, and reexpressed in spermatocytes. To investigate epigenetic differences between adult marmoset and mice, DNA methylation analyses identified unique epigenetic profiles to marmoset and mice. Marmoset NANOG and POU5F1 promoters in spermatogenic cells exhibited a methylation status opposite to that in mice, while the DDX4 and LEFTY1 loci, as well as imprinted genes, displayed an evolutionarily conserved methylation pattern. Marmosets have great advantages as models for human reproductive biology and are also valuable as experimental nonhuman primates; thus, the current study provides an important platform for primate reproductive biology, including possible applications to humans.
Collapse
Affiliation(s)
- Zachary Yu-Ching Lin
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Characteristics of Novel Chicken Embryonic Stem Cells Established Using Chicken Leukemia Inhibitory Factor. J Poult Sci 2011. [DOI: 10.2141/jpsa.010102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Fukunaga N, Teramura T, Onodera Y, Takehara T, Fukuda K, Hosoi Y. Leukemia inhibitory factor (LIF) enhances germ cell differentiation from primate embryonic stem cells. Cell Reprogram 2010; 12:369-76. [PMID: 20698776 DOI: 10.1089/cell.2009.0097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, several research groups have shown that germ cells can be produced in vitro from pluripotent embryonic stem cells (ESCs). In the mouse, live births of offspring using germ cells induced from ESCs in vitro have been reported. Furthermore, some efficient methods for inducing the useful number of germ cells from ESCs have also been developed. On the other hand, in primates, despite the appearances of germ cell-like cells including meiotic cells were observed by spontaneous differentiation or introducing transgenes, it has not been determined whether fully functional germ cells can be derived from ESCs. To elucidate the property for the germ cells induced from primate ESCs, specification of the promoting factors for the germ cell development and improving the efficiency of germ cell derivation are essential. Leukemia inhibitory factor (LIF) has been reported as one of the important factors for mouse primordial germ cell (PGC) survival in vitro. However, the effects of LIF on germ cell formation from pluripotent cells of primates have not been examined. The aim of this study is to determine whether LIF addition can improve in vitro germ cell production from cynomolgus monkey ESCs (cyESCs). After 8 days of differentiation, LIF added culture induced dome-shaped germ cell colonies as indicated by the intense expression of alkaline phosphatase activity (ALP). These cells also demonstrate high-level expression of the germ cell-marker VASA, OCT-4, and BLIMP-1, and show SSEA-1 expression that supports their early stage germ cell identity. Finally, we observed that adding LIF to differentiating cultures inhibited meiotic gene expressions and increased the percentage of ALP-positive cells, and demonstrate that the addition of LIF to differentiation media increases differentiation of early germ cells from the cyESCs.
Collapse
Affiliation(s)
- Naoto Fukunaga
- Department of Biology Oriented Science and Technology, Kinki University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Yamauchi K, Sumi T, Minami I, Otsuji TG, Kawase E, Nakatsuji N, Suemori H. Cardiomyocytes develop from anterior primitive streak cells induced by β-catenin activation and the blockage of BMP signaling in hESCs. Genes Cells 2010; 15:1216-27. [PMID: 21050342 DOI: 10.1111/j.1365-2443.2010.01455.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cardiomyocytes arise from cells that migrate to the mid-to-anterior region of the primitive streak (PS) during embryogenesis. We previously showed that canonical Wnt/β-catenin pathway signaling leads to the development of nascent PS populations from human embryonic stem cells (hESCs) and that synergistic activation of the Wnt/β-catenin pathway and inhibition of bone morphogenetic protein (BMP) signaling by Noggin induced the formation of anterior PS cells. We herein demonstrate that anterior PS cells induced by the activation of β-catenin with Noggin differentiate into functional cardiomyocytes when cultured in suspension with BMP4 and fibroblast growth factor 2 (FGF2). All aggregates generated from the anterior PS cells developed into contracting cells demonstrating their cardiac potential. More than 30% of the cells in each aggregate were α-actinin-positive cardiomyocytes. In addition, these cardiomyocytes could be easily purified up to 80% by simple size fractionation. In contrast, the posterior PS cells induced by β-catenin activation without Noggin showed poor cardiac potential. These results show that the commitment to a cardiac lineage in vitro occurs through similar cellular and molecular signaling pathways involved in cardiac development in vivo, thus providing a valuable culture model for studying early cardiac developmental events in hESCs.
Collapse
Affiliation(s)
- Kaori Yamauchi
- Laboratory of Embryonic Stem Cell Research, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogogin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns. Stem Cell Res Ther 2010; 1:24. [PMID: 20699013 PMCID: PMC2941116 DOI: 10.1186/scrt24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications, pluripotent cells, including both embryonic stem cells and adult stem cells, have been proposed for cell replacement therapy for a number of human diseases and disorders, including Alzheimer's, Parkinson's, spinal cord injury and diabetes. One challenge in their usage for such therapies is understanding the mechanisms that allow the maintenance of pluripotency and controlling the specific differentiation into required functional target cells. Because of regulatory restrictions and biological feasibilities, there are many crucial investigations that are just impossible to perform using pluripotent stem cells (PSCs) from humans (for example, direct comparisons among panels of inbred embryonic stem cells from prime embryos obtained from pedigreed and fertile donors; genomic analysis of parent versus progeny PSCs and their identical differentiated tissues; intraspecific chimera analyses for pluripotency testing; and so on). However, PSCs from nonhuman primates are being investigated to bridge these knowledge gaps between discoveries in mice and vital information necessary for appropriate clinical evaluations. In this review, we consider the mRNAs and novel genes with unique expression and imprinting patterns that were discovered using systems biology approaches with primate pluripotent stem and germ cells.
Collapse
|
48
|
Modulation of embryonic stem cell fate and somatic cell reprogramming by small molecules. Reprod Biomed Online 2010; 21:26-36. [PMID: 20462797 DOI: 10.1016/j.rbmo.2010.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/14/2009] [Accepted: 03/03/2010] [Indexed: 12/19/2022]
Abstract
Embryonic stem cells (ESC) are pluripotent cells and have the ability to self-renew in vitro and to differentiate into cells representing all three germ layers. They provide enormous opportunities for basic research, regenerative medicine as well as drug discovery. The mechanisms that govern ESC fate are not completely understood, so a better understanding and control of ESC self-renewal and differentiation are pivotal for therapeutic applications. In contrast to growth factors and genetic manipulations, small molecules offer great advantages in modulating ESC fate. For instance, they could be conveniently identified through high-throughput screening, work across multiple signalling pathways and affect epigenetic modifications as well. This review focuses on the recent progress in the use of small molecules to regulate ESC self-renewal, differentiation and somatic cell reprogramming.
Collapse
|