1
|
Panda D, Maharana J, Sharma A, Wadavrao SB, Chowdhury A, Laskar MA, Modi MK, Choudhury MD. Identifying potent inhibitors for Mycobacterium tuberculosis MabA (FabG1). Mol Divers 2025:10.1007/s11030-025-11205-7. [PMID: 40358829 DOI: 10.1007/s11030-025-11205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
The surge in drug-resistant Mycobacterium tuberculosis (Mtb) strains poses formidable challenges for tuberculosis treatment, emphasizing the pressing need to explore novel therapeutic agents. Mycolic acids, essential for bacterial cell wall formation, are synthesized by two fatty acid synthase (FAS) systems: FAS-I and FAS-II. MabA, an enzyme in the FAS-II system, is vital in the second step of fatty acid biosynthesis and is responsible for the elongation of mycolic acids. In this study, we screened 1,792,771 compounds from seven different databases to screen prospective inhibitors of MabA, an emerging therapeutic target for Mtb. Using a combination of molecular docking, all-atom molecular dynamics simulations, and binding free energy calculations, we identified 48 novel lead compounds from five distinct classes that exhibit significant binding activity against MabA. Of these, 47 compounds demonstrated significantly higher MM/PBSA binding free energy than the only reported MabA inhibitor, compound 29. Altogether, our findings mark a significant advancement towards the rational design of novel therapeutics aimed at combating mycobacterial infections and overcoming drug resistance.
Collapse
Affiliation(s)
- Debashis Panda
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
- DBT-APSCS&T Centre of Excellence for Bioresources and Sustainable Development, Kimin, Arunachal Pradesh, 791121, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Jitendra Maharana
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Arjun Sharma
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, IN, 46805, USA
| | - Sachin B Wadavrao
- OBC Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, 500007, India
| | - Abhishek Chowdhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Monjur Ahmed Laskar
- Bioinformatics and Computational Biology Centre, Assam University, Silchar, Assam, 788011, India
| | - Mahendra K Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Assam Down Town University, Guwahati, Assam, 781026, India
| | - Manabendra D Choudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.
- Rabindranath Tagore University, Hojai, Assam, 782435, India.
| |
Collapse
|
2
|
Zhao X, Di J, Luo D, Verma R, Verma SK, Verma S, Ravindar L, Koshle A, Dewangan HK, Gupta R, Chandra S, Deshpande S, Kamal, Vaishnav Y, Rakesh KP. Thiazole - A promising scaffold for antituberculosis agents and structure-activity relationships studies. Bioorg Chem 2025; 154:108035. [PMID: 39693926 DOI: 10.1016/j.bioorg.2024.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Research on thiazole derivatives has been a popular topic in medicine and one of the most active fields in heterocyclic chemistry. Pharmacological and industrial researchers have been studying thiazole-containing derivatives in great detail because they have a lot of biological uses. These compounds are one of the best examples of a five-membered heterocyclic compound that has a lot of potential and has had a lot of success in recent decades. Investigating viable hybrid designs utilizing thiazole is critical for the development of new anti-tuberculosis medications. This article offers a thorough overview of the latest advancements in thiazole-containing hybrids, offering potential therapeutic applications as anti-TB drugs. We also discussed the structure-activity correlations (SAR) of the powerful thiazole moiety and its several functional groups, along with a few potential molecular targets.
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City 71900, China
| | - Jing Di
- Physical Education College, Yulin University, Yulin City 71900, China.
| | - Dingjie Luo
- School of Humanities and Management, Xi'an Traffic Engineering Institute, Xi'an City 710000, China
| | - Rameshwari Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, China
| | - Santosh Kumar Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, China.
| | - Shekhar Verma
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur 495009, Chhattisgarh, India
| | - Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Anubhuti Koshle
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Hitesh Kumar Dewangan
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Raksha Gupta
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Sunita Chandra
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Samta Deshpande
- Department of Applied Chemistry, Shri Shankaracharya Technical Campus, Bhilai Durg-490020, Chhattisgarh, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Yogesh Vaishnav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur 495009, Chhattisgarh, India
| | - Kadalipura P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Basavanakatti VN, Ali M, Bharathi DR, Murtuja S, Sinha BN, Jayaprakash V, Shakeel F. Development and validation of HPLC-UV and LC-MS/MS methods for the quantitative determination of a novel aminothiazole in preclinical samples. BMC Chem 2024; 18:220. [PMID: 39511665 PMCID: PMC11546340 DOI: 10.1186/s13065-024-01321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Aminothiazoles are the important class of chemical groups which have proven their broad range of biological activities. A novel aminothiazole (21MAT) was quantified in analytical solutions using a high-performance liquid chromatography (HPLC) approach that was developed and partially validated for the analysis of in vitro experimental samples. An isocratic elution on reverse phase Phenomenex® Luna C18 (50 mm × 4.6 mm, 5 μm) column with 55% 0.1% v/v orthophosphoric acid in water and 45% of orthophosphoric acid in acetonitrile at a flow rate of 1 mL/min was used. The analyte was detected at 272 nm. Similar to this, a robust bioanalytical technique, LC-mass spectrometry (LC-MS/MS) was created and verified to measure 21MAT in rat plasma for use in in vitro screening study samples and early-stage pharmacokinetic research. The protein precipitation method was used to extract 21MAT from plasma. The mixture of 95: 5% v/v methanol: acetonitrile and 0.1% v/v formic acid, along with 15% of 5 mM ammonium formate solution, was used to separate the mixture on a reverse phase Waters Xterra RP® C18 (150 mm × 4.6 mm, 5 μm) column at a flow rate of 1 mL/min. Using electro spray ionisation mode in multiple reaction monitoring mode, the analyte and internal standard (a structural analogue) were both identified. According to current criteria, all validation parameters (specificity, selectivity, accuracy, precision, recovery, matrix factor, hemolysis effect, and stability) were evaluated in rat plasma. The area response of 21MAT was found to be linear over the concentration range of 1.25-1250 ng/mL in rat plasma. Both techniques are suitable for use in any format of preclinical research and were sufficiently reliable to measure 21MAT precisely in various matrices. In silico prediction helped in understanding absorption, distribution, metabolism, excretion, and toxicity (ADMET) behaviour of the molecule. Both developed LC-MS/MS and HPLC-UV methods were successfully used to quantify the analyte in in vitro screening study samples.
Collapse
Affiliation(s)
- Vinay N Basavanakatti
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara 571448, Mandya District, Karnataka, India
| | - Mohammad Ali
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara 571448, Mandya District, Karnataka, India.
| | - D R Bharathi
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara 571448, Mandya District, Karnataka, India
| | - Sheikh Murtuja
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Kolkata, West Bengal, 700126, India
| | - Barij Nayan Sinha
- Major Arterial Road, Action Area II, Rajarhat, New Town, Amity University, Kolkata, West Bengal, 700135, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Rachi, Jharkhand, 835215, India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Suresh T, Nachiappan DM, Karthikeyan G, Vijayakumar V, P Jasinski J, Sarveswari S. An Efficient Synthesis of Novel Aminothiazolylacetamido-Substituted 3,5-Bis(arylidene)-4-piperidone Derivatives and Their Cytotoxicity Studies. ACS OMEGA 2024; 9:29244-29251. [PMID: 39005779 PMCID: PMC11238287 DOI: 10.1021/acsomega.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
The expansion of 3,5-bis(arylidene)-4-piperidone derivatives with heterocyclic compounds such as 1,3-thiazole should take into account this correlation. The synthesized aminothiazolylacetamido-substituted 3,5-bis(arylidene)-4-piperidone derivatives 3a-j were found to have GI50 values in the range of 0.15-0.28 μM against HeLa and HCT116 cancer cell lines. In silico docking studies confirmed that the proteasome inhibition mechanism involves a nucleophilic attack from the N-terminal threonine residue of the β-subunits to the C=O group of compounds. A C=O group of amide was able to interact with the NH group of the alanine residue and the 5g NH group of amino thiazole, along with an OH group of the serine residue. These results strongly suggest that the synthesized compounds could be a potential candidate inhibitor of the 20S proteasome. These molecules have the potential to be developed as cytotoxic and anticancer agents, as revealed by this study.
Collapse
Affiliation(s)
- Thangaiyan Suresh
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India
| | | | - G Karthikeyan
- Amity Institute of Virology and Immunology, Amity University, Noida 201303, Uttar Pradesh, India
| | | | - Jerry P Jasinski
- Keene State College, 229 Main Street, Keene, New Hampshire 03435-200, United States
| | - Sundaramoorthy Sarveswari
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Johannsen S, Gierse RM, Krüger A, Edwards RL, Nanna V, Fontana A, Zhu D, Masini T, de Carvalho LP, Poizat M, Kieftenbelt B, Hodge DM, Alvarez S, Bunt D, Lacour A, Shams A, Meissner KA, de Souza EE, Dröge M, van Vliet B, den Hartog J, Hutter MC, Held J, Odom John AR, Wrenger C, Hirsch AKH. High Target Homology Does Not Guarantee Inhibition: Aminothiazoles Emerge as Inhibitors of Plasmodium falciparum. ACS Infect Dis 2024; 10:1000-1022. [PMID: 38367280 PMCID: PMC10928712 DOI: 10.1021/acsinfecdis.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.
Collapse
Affiliation(s)
- Sandra Johannsen
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
| | - Robin M. Gierse
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Arne Krüger
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Rachel L. Edwards
- Department
of Pediatrics, Washington University School
of Medicine, Saint
Louis, Missouri 63110, United States
| | - Vittoria Nanna
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
| | - Anna Fontana
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
| | - Di Zhu
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Tiziana Masini
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | | | - Mael Poizat
- Symeres, Kadijk 3, Groningen 9747
AT, The Netherlands
| | | | - Dana M. Hodge
- Department
of Pediatrics, Children’s Hospital
of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sophie Alvarez
- Proteomics
& Metabolomics Facility, Center for Biotechnology, Department
of Agronomy and Horticulture, University
of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Daan Bunt
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Antoine Lacour
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
| | - Atanaz Shams
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
| | - Kamila Anna Meissner
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Edmarcia Elisa de Souza
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | | | | | | | - Michael C. Hutter
- Center
for Bioinformatics, Saarland University, Campus Building E2.1, Saarbrücken 66123, Germany
| | - Jana Held
- Institute
of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, Tübingen 72074, Germany
- German
Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72074, Germany
- Centre
de Recherches Médicales de Lambaréné (CERMEL), B.P. 242 Lambaréné, Gabon
| | - Audrey R. Odom John
- Department
of Pediatrics, Children’s Hospital
of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Carsten Wrenger
- Unit
for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS) − Helmholtz
Centre for Infection Research (HZI), Campus Building E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Campus Building E8.1, Saarbrücken 66123, Germany
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| |
Collapse
|
6
|
Martin J, Mackenzie CJ, Lin D, Homeyer N, Gray DW, Zuccotto F, Gilbert IH. Design and Synthesis of Covalent Inhibitors of FabA. ACS OMEGA 2023; 8:12787-12804. [PMID: 37065080 PMCID: PMC10099128 DOI: 10.1021/acsomega.2c08031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
There is an urgent need for the development of new therapeutics with novel modes of action to target Gram-negative bacterial infections, due to resistance to current drugs. Previously, FabA, an enzyme in the bacterial type II fatty acid biosynthesis pathway, was identified as a potential drug target in Pseudomonas aeruginosa, a Gram-negative bacteria of significant clinical concern. A chemical starting point was also identified. There is a cysteine, Cys15, in the active site of FabA, adjacent to where this compound binds. This paper describes the preparation of analogues containing an electrophilic warhead with the aim of covalent inhibition of the target. A wide variety of analogues were successfully prepared. Unfortunately, these analogues did not increase inhibition, which may be due to a loop within the enzyme partially occluding access to the cysteine.
Collapse
Affiliation(s)
- James
S. Martin
- Wellcome Centre for Anti-Infectives
Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Claire J. Mackenzie
- Wellcome Centre for Anti-Infectives
Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - De Lin
- Wellcome Centre for Anti-Infectives
Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Nadine Homeyer
- Wellcome Centre for Anti-Infectives
Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - David W. Gray
- Wellcome Centre for Anti-Infectives
Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Fabio Zuccotto
- Wellcome Centre for Anti-Infectives
Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Ian H. Gilbert
- Wellcome Centre for Anti-Infectives
Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
7
|
Maganti LHB, Ramesh D, Vijayakumar BG, Khan MIK, Dhayalan A, Kamalraja J, Kannan T. Acetylene containing 2-(2-hydrazinyl)thiazole derivatives: design, synthesis, and in vitro and in silico evaluation of antimycobacterial activity against Mycobacterium tuberculosis. RSC Adv 2022; 12:8771-8782. [PMID: 35424819 PMCID: PMC8984819 DOI: 10.1039/d2ra00928e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis resistance to commercially available drugs is increasing day by day. To address this issue, various strategies were planned and are being implemented. However, there is a need for new drugs and rapid diagnostic methods. For this endeavour, in this paper, we present the synthesis of acetylene containing 2-(2-hydrazinyl) thiazole derivatives and in vitro evaluation against the H37Rv strain of Mycobacterium tuberculosis. Among the developed 26 acetylene containing 2-(2-hydrazinyl) thiazole derivatives, eight compounds inhibited the growth of Mycobacterium tuberculosis with MIC values ranging from 100 μg ml-1 to 50 μg ml-1. The parent acetylene containing thiosemicarbazones showed promising antimycobacterial activity by inhibiting up to 75% of the Mycobacterium at 50 μg ml-1. In addition, in silico studies were employed to understand the binding mode of all the novel acetylene-containing derivatives against the KasA protein of the Mycobacterium. Interestingly, the KasA protein interactions with the compounds were similar to the interactions of KasA protein with thiolactomycin and rifampicin. Cytotoxicity study results indicate that the compounds tested are non-toxic to human embryonic kidney cells.
Collapse
Affiliation(s)
| | - Deepthi Ramesh
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India +91-413-265 6740 +91-413-265 4411
| | - Balaji Gowrivel Vijayakumar
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India +91-413-265 6740 +91-413-265 4411
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University Kalapet Puducherry-605014 India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University Kalapet Puducherry-605014 India
| | - Jayabal Kamalraja
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India +91-413-265 6740 +91-413-265 4411
| | - Tharanikkarasu Kannan
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India +91-413-265 6740 +91-413-265 4411
| |
Collapse
|
8
|
Matsa R, Makam P, Sethi G, Thottasseri AA, Kizhakkandiyil AR, Ramadas K, Mariappan V, Pillai AB, Kannan T. Pyridine appended 2-hydrazinylthiazole derivatives: design, synthesis, in vitro and in silico antimycobacterial studies. RSC Adv 2022; 12:18333-18346. [PMID: 35799934 PMCID: PMC9215125 DOI: 10.1039/d2ra02163c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
An array of pyridine appended 2-hydrazinylthiazole derivatives has been synthesized to discover novel chemotherapeutic agents for Mycobacterium tuberculosis (Mtb). The drug-likeness of pyridine appended 2-hydrazinylthiazole derivatives was validated using the Lipinski and Veber rules. The designed thiazole molecules have been synthesized through Hantzsch thiazole methodologies. The in vitro antimycobacterial studies have been conducted using Luciferase reporter phage (LRP) assay. Out of thirty pyridine appended 2-hydrazinylthiazole derivatives, the compounds 2b, 3b, 5b, and 8b have exhibited good antimycobacterial activity against Mtb, an H37Rv strain with the minimum inhibitory concentration in the range of 6.40–7.14 μM. In addition, in vitro cytotoxicity of active molecules has been observed against Human Embryonic Kidney Cell lines (HEK293t) using MTT assay. The compounds 3b and 8b are nontoxic and their cell viability is 87% and 96.71% respectively. The in silico analyses of the pyridine appended 2-hydrazinylthiazole derivatives have been studied to find the mode of binding of the active compounds with KasA protein of Mtb. The active compounds showed a strong binding score (−5.27 to −6.23 kcal mol−1). Thirty novel pyridine-appended 2-hydrazinylthiazole derivatives have been synthesized and tested for their antimycobacterial activity against Mictrobactrium tuberculosis, H37Rv strain.![]()
Collapse
Affiliation(s)
- Ramkishore Matsa
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry 605 014, India
| | - Parameshwar Makam
- Dr Param Laboratories, Plot No. 478, BN. Reddy Nagar, Cherlapally, Hyderabad, Telangana 500 051, India
- Division of Research and Innovation, Department of Chemistry, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - Guneswar Sethi
- Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | | | | | - Krishna Ramadas
- Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | - Vignesh Mariappan
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India
| | - Agieshkumar Balakrishna Pillai
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India
| | | |
Collapse
|
9
|
Synthesis of new 2-(thiazol-4-yl)thiazolidin-4-one derivatives as potential anti-mycobacterial agents. Bioorg Chem 2021; 115:105192. [PMID: 34314920 DOI: 10.1016/j.bioorg.2021.105192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022]
Abstract
To search for potent antimycobacterial lead compounds, a new series of 3-substituted phenyl-2-(2-(substituted phenyl)thiazol-4-yl) thiazolidin-4-one (5a-t) derivatives have been synthesized by the condensation of 2-substituted phenyl thiazole-4-carbaldehyde with aromatic amine followed by cyclocondensation with thioglycolic acid. The structure of the newly synthesized 2-(thiazol-4-yl)thiazolidin-4-one derivatives were characterized by the spectroscopic analysis. The synthesized compounds were screened for antimycobacterial activity against Mycobacterium tuberculosis H37Ra (MTB) (ATCC 25177) and Mycobacterium bovis BCG (BCG, ATCC 35743). Most of the 2-(thiazol-4-yl)thiazolidin-4-one derivatives showed good to excellent antimycobacterial activity against both the Mtb strains. Nine derivatives 5c, 5g, 5j, 5m, 5n, 5o, 5p, 5s, and 5t showed excellent activity against M. bovis BCG with MIC 4.43 to 24.04 μM were further evaluated for the cytotoxicity activity against HeLa A549, and HCT-116 cell lines and showed no significant cytotoxic activity at the maximum concentration evaluated. The potential antimycobacterial activities enforced that the thiazolyl-thiazolidin-4-one derivatives could lead to compounds that could treat tuberculosis.
Collapse
|
10
|
Farouk Elsadek M, Mohamed Ahmed B, Fawzi Farahat M. An Overview on Synthetic 2-Aminothiazole-Based Compounds Associated with Four Biological Activities. Molecules 2021; 26:1449. [PMID: 33800023 PMCID: PMC7962134 DOI: 10.3390/molecules26051449] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Amongst sulfur- and nitrogen-containing heterocyclic compounds, the 2-aminothiazole scaffold is one of the characteristic structures in drug development as this essential revelation has several biological activities abiding it to act as an anticancer, antioxidant, antimicrobial and anti-inflammatory agent, among other things. Additionally, various 2-aminothiazole-based derivatives as medical drugs have been broadly used to remedy different kinds of diseases with high therapeutic influence, which has led to their wide innovations. Owing to their wide scale of biological activities, their structural variations have produced attention amongst medicinal chemists. The present review highlights the recently synthesized 2-aminothiazole-containing compounds in the last thirteen years (2008-2020). The originality of this proposal is based on the synthetic strategies developed to access the novel 2-aminothiazole derivatives (N-substituted, 3-substituted, 4-substituted, multi-substituted, aryl/alkyl substituents or acyl/other substituents). The literature reports many synthetic pathways of these 2-aminothiazoles associated with four different biological activities (anticancer, antioxidant, antimicrobial and anti-inflammatory activities). It is wished that this review will be accommodating for new views in the expedition for rationalistic designs of 2-aminothiazole-based medical synthetic pathways.
Collapse
Affiliation(s)
- Mohamed Farouk Elsadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (B.M.A.); (M.F.F.)
- Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, P.O. Box 11795, Cairo 11511, Egypt
| | - Badreldin Mohamed Ahmed
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (B.M.A.); (M.F.F.)
| | - Mohamed Fawzi Farahat
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (B.M.A.); (M.F.F.)
| |
Collapse
|
11
|
Al-Jaidi BA, Deb PK, Telfah ST, Dakkah AN, Bataineh YA, Khames Aga QAA, Al-dhoun MA, Ahmad Al-Subeihi AA, Odetallah HM, Bardaweel SK, Mailavaram R, Venugopala KN, Nair AB. Synthesis and evaluation of 2,4,5-trisubstitutedthiazoles as carbonic anhydrase-III inhibitors. J Enzyme Inhib Med Chem 2020; 35:1483-1490. [PMID: 32635773 PMCID: PMC7470151 DOI: 10.1080/14756366.2020.1786820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
A series of 17 compounds (12-16 b) with 2,4,5-trisubstitutedthiazole scaffold having 5-aryl group, 4-carboxylic acid/ester moiety, and 2-amino/amido/ureido functional groups were synthesised, characterised, and evaluated for their carbonic anhydrase (CA)-III inhibitory activities using the size exclusion Hummel-Dreyer method (HDM) of chromatography. Compound 12a with a free amino group at the 2-position, carboxylic acid moiety at the 4-position, and a phenyl ring at the 5-position of the scaffold was found to be the most potent CA-III inhibitor (Ki = 0.5 μM). The presence of a carboxylic acid group at the 4-position of the scaffold was found to be crucial for the CA-III inhibitory activity. Furthermore, replacement of the free amino group with an amide and urea group resulted in a significant reduction of activity (compounds 13c and 14c, Ki = 174.1 and 186.2 μM, respectively). Thus, compound 12a (2-amino-5-phenylthiazole-4-carboxylic acid) can be considered as the lead molecule for further modification and development of more potent CA-III inhibitors.
Collapse
Affiliation(s)
- Bilal A. Al-Jaidi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
- Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Soha Taher Telfah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Abdel Naser Dakkah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Yazan A. Bataineh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | | | - Mohammad A. Al-dhoun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | | | - Haifa’a Marouf Odetallah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | | | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
12
|
Jadav SS, Badavath VN, Ganesan R, Ganta NM, Besson D, Jayaprakash V. Biological Evaluation of 2-aminothiazole Hybrid as Antimalarial and Antitrypanosomal Agents: Design and Synthesis. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2211352516666181016122537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
A series of 2-aminothiazole schiff’s bases (1-24) were synthesized and
screened against a few neglected tropical disorders (NTDs). Compounds 12 and 14 were found to
have antitrypanosidal activity, whereas compound 14 was found to be more effective than standard
benznidazole. The antiplasmodial assay provided three specific and effective compounds (9, 12 and
24) than standard chloroquine. Compound (21) inhibited Leishmania infantum, almost similar to
Miltefosine.
Methods:
All the compounds were subjected to cytotoxicity assay and none of the compounds
were found to be cytotoxicity. Molecular docking simulations revealed that four compounds (1, 9,
12 and 21) were found to similarly occupy the hydrophobic active site of trans-2-enoyl acyl carrier
protein reductase of P. falciparum (PfENR) as triclosan and outcomes were closely related to their
anti-malarial potencies.
Results and Conclusion:
The screening results against T. cruzi, T. brucei, L. donovani, L. infantum,
P. falciferum and cytotoxicity assays provided a few significant to most potent compounds;
two variant class of NTDs.
Collapse
Affiliation(s)
- Surender S. Jadav
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Vishnu N. Badavath
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | - Ramesh Ganesan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Narayana M. Ganta
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Dominique Besson
- Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
13
|
Hublikar M, Kadu V, Dublad JK, Raut D, Shirame S, Makam P, Bhosale R. (
E
)‐2‐(2‐Allylidenehydrazinyl)thiazole derivatives: Design, green synthesis, in silico and in vitro antimycobacterial and radical scavenging studies. Arch Pharm (Weinheim) 2020; 353:e2000003. [DOI: 10.1002/ardp.202000003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Mahesh Hublikar
- Organic Chemistry Research Laboratory, School of Chemical SciencesSolapur University Solapur Maharashtra India
| | - Vikas Kadu
- Organic Chemistry Research Laboratory, School of Chemical SciencesSolapur University Solapur Maharashtra India
| | - Jitender Kumar Dublad
- Protein DNA Interaction GroupCentral European Institute of Technology Brno Czech Republic
| | - Dattatraya Raut
- Organic Chemistry Research Laboratory, School of Chemical SciencesSolapur University Solapur Maharashtra India
| | - Sachin Shirame
- Organic Chemistry Research Laboratory, School of Chemical SciencesSolapur University Solapur Maharashtra India
| | - Parameshwar Makam
- Chemical Science Research Group, Advanced Research Group, Division of Research and DevelopmentLovely Professional University Phagwara Punjab India
| | - Raghunath Bhosale
- Organic Chemistry Research Laboratory, School of Chemical SciencesSolapur University Solapur Maharashtra India
| |
Collapse
|
14
|
Machado D, Azzali E, Couto I, Costantino G, Pieroni M, Viveiros M. Adjuvant therapies against tuberculosis: discovery of a 2-aminothiazole targeting Mycobacterium tuberculosis energetics. Future Microbiol 2018; 13:1383-1402. [PMID: 30259757 DOI: 10.2217/fmb-2018-0110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To evaluate the activity of the 2-aminothiazole UPAR-174 following an unexplored approach: targeting Mycobacterium tuberculosis with lipophilic compounds that present antituberculosis and efflux inhibitory activity. METHODS Antituberculosis activity was assessed against replicating, nonreplicating and intracellular bacilli. Its capacity to inhibit active efflux was determined. ATP quantification and membrane potential analysis were performed. Intracellular activity was studied on human-monocyte-derived macrophages. RESULTS UPAR-174 is an efflux inhibitor active against replicating, nonreplicating and intracellular M. tuberculosis. It dissipates the membrane potential and causes ATP depletion. CONCLUSION Targeting M. tuberculosis with lipophilic efflux inhibitors, exploring their dual activity - dissipation of the proton motive force and efflux inhibition - represents an attractive strategy to fight against drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Diana Machado
- Global Health & Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Elisa Azzali
- P4T group, Department of Food & Drug, University of Parma, Parco Area delle Scienze 27/A, Parma, Italy.,Aptuit (Verona) Srl, an Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Isabel Couto
- Global Health & Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Gabriele Costantino
- P4T group, Department of Food & Drug, University of Parma, Parco Area delle Scienze 27/A, Parma, Italy
| | - Marco Pieroni
- P4T group, Department of Food & Drug, University of Parma, Parco Area delle Scienze 27/A, Parma, Italy
| | - Miguel Viveiros
- Global Health & Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| |
Collapse
|
15
|
More G, Raut D, Aruna K, Bootwala S. Synthesis, spectroscopic characterization and antimicrobial activity evaluation of new tridentate Schiff bases and their Co(II) complexes. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2017.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Gundala TR, Godugu K, Nallagondu CGR. Citric Acid-catalyzed Synthesis of 2,4-Disubstituted Thiazoles from Ketones via C-Br, C-S, and C-N Bond Formations in One Pot: A Green Approach. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Trivikram Reddy Gundala
- Department of Chemistry, School of Physical Sciences; Yogi Vemana University; Kadapa 516 003 Andhra Pradesh India
| | - Kumar Godugu
- Department of Chemistry, School of Physical Sciences; Yogi Vemana University; Kadapa 516 003 Andhra Pradesh India
| | | |
Collapse
|
17
|
Azzali E, Machado D, Kaushik A, Vacondio F, Flisi S, Cabassi CS, Lamichhane G, Viveiros M, Costantino G, Pieroni M. Substituted N-Phenyl-5-(2-(phenylamino)thiazol-4-yl)isoxazole-3-carboxamides Are Valuable Antitubercular Candidates that Evade Innate Efflux Machinery. J Med Chem 2017; 60:7108-7122. [PMID: 28749666 DOI: 10.1021/acs.jmedchem.7b00793] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis remains one of the deadliest infectious diseases in the world, and the increased number of multidrug-resistant and extremely drug-resistant strains is a significant reason for concern. This makes the discovery of novel antitubercular agents a cogent priority. We have previously addressed this need by reporting a series of substituted 2-aminothiazoles capable to inhibit the growth of actively replicating, nonreplicating persistent, and resistant Mycobacterium tuberculosis strains. Clues from the structure-activity relationships lining up the antitubercular activity were exploited for the rational design of improved analogues. Two compounds, namely N-phenyl-5-(2-(p-tolylamino)thiazol-4-yl)isoxazole-3-carboxamide 7a and N-(pyridin-2-yl)-5-(2-(p-tolylamino)thiazol-4-yl)isoxazole-3-carboxamide 8a, were found to show high inhibitory activity toward susceptible M. tuberculosis strains, with an MIC90 of 0.125-0.25 μg/mL (0.33-0.66 μM) and 0.06-0.125 μg/mL (0.16-0.32 μM), respectively. Moreover, they maintained good activity also toward resistant strains, and they were selective over other bacterial species and eukaryotic cells, metabolically stable, and apparently not susceptible to the action of efflux pumps.
Collapse
Affiliation(s)
- Elisa Azzali
- Centro Interdipartimentale Misure (CIM) 'G. Casnati', University of Parma , Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Diana Machado
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | - Amit Kaushik
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University , 1503 East Jefferson Street, Baltimore, Maryland 21231-1002, United States.,Taskforce to Study Resistance Emergence & Antimicrobial development Technology, Department of Medicine, Johns Hopkins University , Baltimore, Maryland 21287, United States
| | | | - Sara Flisi
- Department of Veterinary Science, University of Parma , via del Taglio 10, 43126 Parma, Italy
| | - Clotilde Silvia Cabassi
- Department of Veterinary Science, University of Parma , via del Taglio 10, 43126 Parma, Italy
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University , 1503 East Jefferson Street, Baltimore, Maryland 21231-1002, United States.,Taskforce to Study Resistance Emergence & Antimicrobial development Technology, Department of Medicine, Johns Hopkins University , Baltimore, Maryland 21287, United States
| | - Miguel Viveiros
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL , Rua da Junqueira, 100, 1349-008 Lisbon, Portugal
| | | | | |
Collapse
|
18
|
Kumar V, Patel S, Jain R. New structural classes of antituberculosis agents. Med Res Rev 2017; 38:684-740. [DOI: 10.1002/med.21454] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Vajinder Kumar
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
- Present address: Department of Chemistry; Akal University; Talwandi Sabo Punjab 151 302 India
| | - Sanjay Patel
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| | - Rahul Jain
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| |
Collapse
|
19
|
Patil R, Chavan JU, Beldar AG. Synthesis of aminothiazoles: polymer-supported approaches. RSC Adv 2017. [DOI: 10.1039/c7ra00790f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aminothiazoles and their derivatives are of immense biological importance and have been consistently synthesizedviavarious methods.
Collapse
Affiliation(s)
- R. V. Patil
- PSGVPM’S Arts, Science & Commerce College
- India
| | | | | |
Collapse
|
20
|
Hampannavar GA, Karpoormath R, Palkar MB, Shaikh MS, Chandrasekaran B. Dehydrozingerone Inspired Styryl Hydrazine Thiazole Hybrids as Promising Class of Antimycobacterial Agents. ACS Med Chem Lett 2016; 7:686-91. [PMID: 27437078 DOI: 10.1021/acsmedchemlett.6b00088] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022] Open
Abstract
Series of styryl hydrazine thiazole hybrids inspired from dehydrozingerone (DZG) scaffold were designed and synthesized by molecular hybridization approach. In vitro antimycobacterial activity of synthesized compounds was evaluated against Mycobacterium tuberculosis H37Rv strain. Among the series, compound 6o exhibited significant activity (MIC = 1.5 μM; IC50 = 0.48 μM) along with bactericidal (MBC = 12 μM) and intracellular antimycobacterial activities (IC50 = <0.098 μM). Furthermore, 6o displayed prominent antimycobacterial activity under hypoxic (MIC = 46 μM) and normal oxygen (MIC = 0.28 μM) conditions along with antimycobacterial efficiency against isoniazid (MIC = 3.2 μM for INH-R1; 1.5 μM for INH-R2) and rifampicin (MIC = 2.2 μM for RIF-R1; 6.3 μM for RIF-R2) resistant strains of Mtb. Presence of electron donating groups on the phenyl ring of thiazole moiety had positive correlation for biological activity, suggesting the importance of molecular hybridization approach for the development of newer DZG clubbed hydrazine thiazole hybrids as potential antimycobacterial agents.
Collapse
Affiliation(s)
- Girish A. Hampannavar
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mahesh B. Palkar
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
- Department
of Pharmaceutical Chemistry, K.L.E. University College of Pharmacy, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Mahamadhanif S. Shaikh
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Balakumar Chandrasekaran
- Department
of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences,
College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| |
Collapse
|
21
|
Arora P, Narang R, Nayak SK, Singh SK, Judge V. 2,4-Disubstituted thiazoles as multitargated bioactive molecules. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1610-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Composing compound libraries for hit discovery--rationality-driven preselection or random choice by structural diversity? Future Med Chem 2015; 6:2057-72. [PMID: 25531968 DOI: 10.4155/fmc.14.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIMS In order to identify new scaffolds for drug discovery, surface plasmon resonance is frequently used to screen structurally diverse libraries. Usually, hit rates are low and identification processes are time consuming. Hence, approaches which improve hit rates and, thus, reduce the library size are required. METHODS In this work, we studied three often used strategies for their applicability to identify inhibitors of PqsD. In two of them, target-specific aspects like inhibition of a homologous protein or predicted binding determined by virtual screening were used for compound preselection. Finally, a fragment library, covering a large chemical space, was screened and served as comparison. RESULTS & CONCLUSION Indeed, higher hit rates were observed for methods employing preselected libraries indicating that target-oriented compound selection provides a time-effective alternative.
Collapse
|
23
|
Shamim A, Abbasi SW, Azam SS. Structural and dynamical aspects of Streptococcus gordonii FabH through molecular docking and MD simulations. J Mol Graph Model 2015; 60:180-96. [PMID: 26059477 DOI: 10.1016/j.jmgm.2015.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 01/01/2023]
Abstract
β-Ketoacyl-ACP-synthase III (FabH or KAS III) has become an attractive target for the development of new antibacterial agents which can overcome the multidrug resistance. Unraveling the fatty acid biosynthesis (FAB) metabolic pathway and understanding structural coordinates of FabH will provide valuable insights to target Streptococcus gordonii for curing oral infection. In this study, we designed inhibitors against therapeutic target FabH, in order to block the FAB pathway. As compared to other targets, FabH has more interactions with other proteins, located on the leading strand with higher codon adaptation index value and associated with lipid metabolism category of COG. Current study aims to gain in silico insights into the structural and dynamical aspect of S. gordonii FabH via molecular docking and molecular dynamics (MD) simulations. The FabH protein is catalytically active in dimerization while it can lock in monomeric state. Current study highlights two residues Pro88 and Leu315 that are close to each other by dimerization. The active site of FabH is composed of the catalytic triad formed by residues Cys112, His249, and Asn279 in which Cys112 is involved in acetyl transfer, while His249 and Asn279 play an active role in decarboxylation. Docking analysis revealed that among the studied compounds, methyl-CoA disulfide has highest GOLD score (82.75), binding affinity (-11 kcal/mol) and exhibited consistently better interactions. During MD simulations, the FabH structure remained stable with the average RMSD value of 1.7 Å and 1.6 Å for undocked protein and docked complex, respectively. Further, crucial hydrogen bonding of the conserved catalytic triad for exhibiting high affinity between the FabH protein and ligand is observed by RDF analysis. The MD simulation results clearly demonstrated that binding of the inhibitor with S. gordonii FabH enhanced the structure and stabilized the dimeric FabH protein. Therefore, the inhibitor has the potential to become a lead compound.
Collapse
Affiliation(s)
- Amen Shamim
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumra Wajid Abbasi
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
24
|
Zhang G, Chen B, Guo X, Guo S, Yu Y. Iron(II)-Promoted Synthesis of 2-AminothiazolesviaCN Bond Formation from Vinyl Azides and Potassium Thiocyanate. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201400856] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Khalil A, Edwards JA, Rappleye CA, Tjarks W. Design, synthesis, and biological evaluation of aminothiazole derivatives against the fungal pathogens Histoplasma capsulatum and Cryptococcus neoformans. Bioorg Med Chem 2015; 23:532-47. [PMID: 25543205 PMCID: PMC4302056 DOI: 10.1016/j.bmc.2014.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 11/25/2022]
Abstract
Invasive fungal disease constitutes a growing health burden and development of novel antifungal drugs with high potency and selectivity against new fungal molecular targets are urgently needed. Previously, an aminothiazole derivative, designated as 41F5, was identified in our laboratories as highly active against Histoplasma yeast (MIC50 0.4-0.8 μM) through phenotypic high-throughput screening of a commercial library of 3600 purine mimicking compounds (Antimicrob. Agents Chemother.2013, 57, 4349). Consequently, 68 analogues of 41F5 were designed and synthesized or obtained from commercial sources and their MIC50s of growth inhibition were evaluated in Histoplasma capsulatum to establish a basic structure-activity-relationship (SAR) for this potentially new class of antifungals. The growth inhibiting potentials of smaller subsets of this library were also evaluated in Cryptococcus neoformans and human hepatocyte HepG2 cells, the latter to obtain selectivity indices (SIs). The results indicate that a thiazole core structure with a naphth-1-ylmethyl group at the 5-position and cyclohexylamide-, cyclohexylmethylamide-, or cyclohexylethylamide substituents at the 2-position caused the highest growth inhibition of Histoplasma yeast with MIC50s of 0.4 μM. For these analogues, SIs of 92 to >100 indicated generally low host toxicity. Substitution at the 3- and 4-position decreased antifungal activity. Similarities and differences were observed between Histoplasma and Cryptococcus SARs. For Cryptococcus, the naphth-1-ylmethyl substituent at the 5-position and smaller cyclopentylamide- or cyclohexylamide groups at the 2-position were important for activity. In contrast, slightly larger cyclohexylmethyl- and cyclohexylethyl substituents markedly decreased activity.
Collapse
Affiliation(s)
- Ahmed Khalil
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA; Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jessica A Edwards
- Department of Microbiology, The Ohio State University, USA; Department of Microbial Infection and Immunity, The Ohio State University, USA; The Center for Microbial Interface Biology, The Ohio State University, USA
| | - Chad A Rappleye
- Department of Microbiology, The Ohio State University, USA; Department of Microbial Infection and Immunity, The Ohio State University, USA; The Center for Microbial Interface Biology, The Ohio State University, USA
| | - Werner Tjarks
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA; The Center for Microbial Interface Biology, The Ohio State University, USA.
| |
Collapse
|
26
|
Makam P, Kannan T. 2-Aminothiazole derivatives as antimycobacterial agents: Synthesis, characterization, in vitro and in silico studies. Eur J Med Chem 2014; 87:643-56. [DOI: 10.1016/j.ejmech.2014.09.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/21/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
|
27
|
Duan X, Xiang X, Xie J. Crucial components of mycobacterium type II fatty acid biosynthesis (Fas-II) and their inhibitors. FEMS Microbiol Lett 2014; 360:87-99. [DOI: 10.1111/1574-6968.12597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/27/2023] Open
Affiliation(s)
- Xiangke Duan
- Institute of Modern Biopharmaceuticals; State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area; Key Laboratory of Eco-Environments in Three Gorges Reservoir Region; Ministry of Education; School of Life Sciences; Southwest University; Beibei Chongqing China
| | - Xiaohong Xiang
- Institute of Modern Biopharmaceuticals; State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area; Key Laboratory of Eco-Environments in Three Gorges Reservoir Region; Ministry of Education; School of Life Sciences; Southwest University; Beibei Chongqing China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals; State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area; Key Laboratory of Eco-Environments in Three Gorges Reservoir Region; Ministry of Education; School of Life Sciences; Southwest University; Beibei Chongqing China
| |
Collapse
|
28
|
Makam P, Kankanala R, Prakash A, Kannan T. 2-(2-Hydrazinyl)thiazole derivatives: Design, synthesis and in vitro antimycobacterial studies. Eur J Med Chem 2013; 69:564-76. [DOI: 10.1016/j.ejmech.2013.08.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/30/2013] [Accepted: 08/21/2013] [Indexed: 12/12/2022]
|
29
|
Cooper CB. Development of Mycobacterium tuberculosis whole cell screening hits as potential antituberculosis agents. J Med Chem 2013; 56:7755-60. [PMID: 23927683 DOI: 10.1021/jm400381v] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The global pandemic of drug sensitive tuberculosis (TB) as well as the increasing threat from various multidrug resistant forms of TB drives the quest for newer, safer, more effective TB treatment options. The general lack of success in progressing novel chemical matter from high throughput screens of Mycobacterium tuberculosis (M.tb) biochemical targets has prompted resurgence in interest and efforts in prosecuting mycobacterial phenotypic screens. Whole cell active compounds identified from such screens offer significant intrinsic advantages over biochemical screening hits, and derivatives of many of these have proven invaluable in helping to fill the current TB drug development pipeline. Modern techniques for "de-orphaning" such screening hits (i.e., determining their specific biological mechanism of action) offer the possibility of ultimately identifying improved next-generation chemical series by screening these essential, pharmacologically validated biochemical targets as well.
Collapse
Affiliation(s)
- Christopher B Cooper
- Global Alliance for TB Drug Development (TB Alliance) , 40 Wall Street, 24th Floor, New York, New York 10005, United States
| |
Collapse
|
30
|
Jalani HB, Pandya AN, Pandya DH, Sharma JA, Sudarsanam V, Vasu KK. An efficient one-pot synthesis of functionally diverse 2-aminothiazoles from isothiocyanates, amidines/guanidines and halomethylenes. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.07.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Wang Y, Ma S. Recent Advances in Inhibitors of Bacterial Fatty Acid Synthesis Type II (FASII) System Enzymes as Potential Antibacterial Agents. ChemMedChem 2013; 8:1589-608. [DOI: 10.1002/cmdc.201300209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/30/2013] [Indexed: 12/25/2022]
|
32
|
Sahner JH, Groh M, Negri M, Haupenthal J, Hartmann RW. Novel small molecule inhibitors targeting the "switch region" of bacterial RNAP: structure-based optimization of a virtual screening hit. Eur J Med Chem 2013; 65:223-31. [PMID: 23711833 DOI: 10.1016/j.ejmech.2013.04.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 11/30/2022]
Abstract
Rising resistance against current antibiotics necessitates the development of antibacterial agents with alternative targets. The "switch region" of RNA polymerase (RNAP), addressed by the myxopyronins, could be such a novel target site. Based on a hit candidate discovered by virtual screening, a small library of 5-phenyl-3-ureidothiophene-2-carboxylic acids was synthesized resulting in compounds with increased RNAP inhibition. Hansch analysis revealed π (lipophilicity constant) and σ (Hammet substituent constant) of the substituents at the 5-phenyl moiety to be crucial for activity. The binding mode was proven by the targeted introduction of a moiety mimicking the enecarbamate side chain of myxopyronin into the hit compound, accompanied by enhanced RNAP inhibitory potency. The new compounds displayed good antibacterial activities against Gram positive bacteria and Gram negative Escherichia coli TolC and a reduced resistance frequency compared to the established antibiotic rifampicin.
Collapse
Affiliation(s)
- J Henning Sahner
- Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Design and Optimization, Campus C2 3, 66123 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
33
|
Kapilashrami K, Bommineni GR, Machutta CA, Kim P, Lai CT, Simmerling C, Picart F, Tonge PJ. Thiolactomycin-based β-ketoacyl-AcpM synthase A (KasA) inhibitors: fragment-based inhibitor discovery using transient one-dimensional nuclear overhauser effect NMR spectroscopy. J Biol Chem 2013; 288:6045-52. [PMID: 23306195 DOI: 10.1074/jbc.m112.414516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thiolactomycin (TLM) is a natural product inhibitor of KasA, the β-ketoacyl synthase A from Mycobacterium tuberculosis. To improve the affinity of TLM for KasA, a series of TLM analogs have been synthesized based on interligand NOEs between TLM and a pantetheine analog when both are bound simultaneously to the enzyme. Kinetic binding data reveal that position 3 of the thiolactone ring is a suitable position for elaboration of the TLM scaffold, and the structure-activity relationship studies provide information on the molecular features that govern time-dependent inhibition in this enzyme system. These experiments also exemplify the utility of transient one-dimensional NOE spectroscopy for obtaining interligand NOEs compared with traditional steady state two-dimensional NOESY spectroscopy.
Collapse
Affiliation(s)
- Kanishk Kapilashrami
- Department of Chemistry, Institute for Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Meshram H, Thakur PB, Madhu Babu B, Bangade VM. Convenient and simple synthesis of 2-aminothiazoles by the reaction of α-halo ketone carbonyls with ammonium thiocyanate in the presence of N-methylimidazole. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.07.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Coxon GD, Cooper CB, Gillespie SH, McHugh TD. Strategies and challenges involved in the discovery of new chemical entities during early-stage tuberculosis drug discovery. J Infect Dis 2012; 205 Suppl 2:S258-64. [PMID: 22448016 DOI: 10.1093/infdis/jis191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There is an increasing flow of new antituberculosis chemical entities entering the tuberculosis drug development pipeline. Although this is encouraging, the current number of compounds is too low to meet the demanding criteria required for registration, shorten treatment duration, treat drug-resistant infection, and address pediatric tuberculosis cases. More new chemical entities are needed urgently to supplement the pipeline and ensure that more drugs and regimens enter clinical practice. Most drug discovery projects under way exploit enzyme systems deemed essential in a specific Mycobacterium tuberculosis biosynthetic pathway or develop chemical scaffolds identified by phenotypic screening of compound libraries, specific pharmacophores or chemical clusters, and natural products. Because the development of a compound for treating tuberculosis is even longer than for treating other infection indications, the identification of selective, potent, and safe chemical entities early in the drug development process is essential to ensure that the pipeline is filled with new candidates that have the best chance to reach the clinic.
Collapse
Affiliation(s)
- Geoffrey D Coxon
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom.
| | | | | | | |
Collapse
|
36
|
Synthesis and evaluation of anti-tubercular and antibacterial activities of new 4-(2,6-dichlorobenzyloxy)phenyl thiazole, oxazole and imidazole derivatives. Part 2. Eur J Med Chem 2012; 49:164-71. [DOI: 10.1016/j.ejmech.2012.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 11/20/2022]
|
37
|
Dover LG, Coxon GD. Current Status and Research Strategies in Tuberculosis Drug Development. J Med Chem 2011; 54:6157-65. [DOI: 10.1021/jm200305q] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lynn G. Dover
- Biomolecular and Biomedical Research Centre, School of Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Geoffrey D. Coxon
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
38
|
Chaubet G, Maillard LT, Martinez J, Masurier N. A tandem aza-Friedel–Crafts reaction/Hantzsch cyclization: a simple procedure to access polysubstituted 2-amino-1,3-thiazoles. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.04.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Recent advances in the design and synthesis of heterocycles as anti-tubercular agents. Future Med Chem 2011; 2:1469-500. [PMID: 21426140 DOI: 10.4155/fmc.10.227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Due to the unusual structure and chemical composition of the mycobacterial cell wall, effective tuberculosis (TB) treatment is difficult, making many antibiotics ineffective and hindering the entry of drugs. With approximately 33% of infection, TB is still the second most deadly infectious disease worldwide. The reasons for this are drug-resistant TB (multidrug resistant and extensively drug resistant), persistent infection (latent TB) and synergism of TB with HIV; furthermore no new chemical entity has emerged in last 40 years. New data available from the recently sequenced genome of the mycobacterium and the application of methods of modern drug design promise much for the fight against this disease. In this review, we present an introduction to TB, followed by an overview of new heterocyclic anti-tubercular moieties published during the last decade.
Collapse
|
40
|
Westwood IM, Bhakta S, Russell AJ, Fullam E, Anderton MC, Kawamura A, Mulvaney AW, Vickers RJ, Bhowruth V, Besra GS, Lalvani A, Davies SG, Sim E. Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars. Protein Cell 2010; 1:82-95. [PMID: 21204000 PMCID: PMC4875111 DOI: 10.1007/s13238-010-0006-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/03/2009] [Indexed: 01/04/2023] Open
Abstract
New anti-tubercular drugs and drug targets are urgently needed to reduce the time for treatment and also to identify agents that will be effective against Mycobacterium tuberculosis persisting intracellularly. Mycobacteria have a unique cell wall. Deletion of the gene for arylamine N-acetyltransferase (NAT) decreases mycobacterial cell wall lipids, particularly the distinctive mycolates, and also increases antibiotic susceptibility and killing within macrophage of Mycobacterium bovis BCG. The nat gene and its associated gene cluster are almost identical in sequence in M. bovis BCG and M. tuberculosis. The gene cluster is essential for intracellular survival of mycobacteria. We have therefore used pure NAT protein for high-throughput screening to identify several classes of small molecules that inhibit NAT activity. Here, we characterize one class of such molecules-triazoles-in relation to its effects on the target enzyme and on both M. bovis BCG and M. tuberculosis. The most potent triazole mimics the effects of deletion of the nat gene on growth, lipid disruption and intracellular survival. We also present the structure-activity relationship between NAT inhibition and effects on mycobacterial growth, and use ligand-protein analysis to give further insight into the structure-activity relationships. We conclude that screening a chemical library with NAT protein yields compounds that have high potential as anti-tubercular agents and that the inhibitors will allow further exploration of the biochemical pathway in which NAT is involved.
Collapse
Affiliation(s)
- Isaac M. Westwood
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Sanjib Bhakta
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| | - Angela J. Russell
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | | | - Akane Kawamura
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Andrew W. Mulvaney
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Richard J. Vickers
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Veemal Bhowruth
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Ajit Lalvani
- Tuberculosis Immunology Group, Department of Respiratory Medicine, National Heart and Lung Institute, Wright Fleming Institute of Infection and Immunity, Imperial College London, Norfolk Place, London, W2 1PG UK
| | - Stephen G. Davies
- Chemistry Research Laboratory, Department of Organic Chemistry, University of Oxford, Oxford, OX1 3QL UK
| | - Edith Sim
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT UK
| |
Collapse
|