1
|
Almansour NM, Abdelrahman AHM, Ismail Fagiree E, Ibrahim MAA. In silico drug repurposing and lipid bilayer molecular dynamics puzzled out potential breast cancer resistance protein (BCRP/ABCG2) inhibitors. J Biomol Struct Dyn 2023; 41:7651-7664. [PMID: 36120948 DOI: 10.1080/07391102.2022.2123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Multidrug resistance (MDR) is a fundamental reason for the fiasco of carcinoma chemotherapy. A wide variety of anticarcinoma drugs are expelled from neoplasm cells through the ATP-binding cassette (ABC) transporter superfamily, rendering the neoplasm cells resistant to treatment. The ATP-binding cassette transporter G2 (ABCG2, gene symbol BCRP) is an ABC efflux transporter that plays a key function in MDR to antineoplastic therapies. For these reasons, the identification of medicaments as BCRP inhibitors could assist in discovering better curative approaches for breast cancer therapy. Because of the deficiency of prospective BCRP inhibitors, the SuperDRUG2 database was virtually screened for inhibitor activity towards the BCRP transporter using molecular docking computations. The most potent drug candidates were then characterized utilizing molecular dynamics (MD) simulations. Furthermore, molecular mechanics-generalized Born surface area (MM-GBSA) binding affinities of the most potent drug candidates were estimated. Based on the MM-GBSA binding affinities throughout 150 ns MD simulations, three drugs-namely zotarolimus (SD002595), temsirolimus (SD003393), and glecaprevir (SD006009)-revealed greater binding affinities towards BCRP transporter compared to the co-crystallized BWQ ligand with ΔGbinding values of -86.6 ± 5.6, -79.5 ± 8.0, -75.8 ± 4.6 and -59.5 ± 4.1 kcal/mol, respectively. The steadiness of these promising drugs bound with BCRP transporter was examined utilizing their structural and energetical analyses throughout a 150 ns MD simulation. To imitate the physiological environment, 150 ns MD simulations for the identified drugs bound with BCRP transporter were conducted in the 1-palmitoyl-2-oleoyl-phosphatidylcholine lipid bilayer. These findings identify zotarolimus, temsirolimus and glecaprevir as auspicious anti-MDR drug leads that warrant further experimental assays.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Alaa H M Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Ekram Ismail Fagiree
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Stefanski CD, Arnason A, Maloney S, Kotsen J, Powers E, Zhang JT, Prosperi JR. APC Loss Prevents Doxorubicin-Induced Cell Death by Increasing Drug Efflux and a Chemoresistant Cell Population in Breast Cancer. Int J Mol Sci 2023; 24:7621. [PMID: 37108784 PMCID: PMC10145529 DOI: 10.3390/ijms24087621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Chemoresistance is a major health concern affecting cancer patients. Resistance is multifactorial, with one mechanism being the increased expression of ABC transporters (such as MDR1 and MRP1), which are drug efflux transporters capable of preventing intracellular accumulation of drugs and cell death. Our lab showed that the loss of Adenomatous Polyposis Coli (APC) caused an intrinsic resistance to doxorubicin (DOX), potentially through an enhanced tumor-initiating cell (TIC) population and the increased activation of STAT3 mediating the expression of MDR1 in the absence of WNT being activated. Here, in primary mouse mammary tumor cells, the loss of APC decreased the accumulation of DOX while increasing the protein levels of MDR1 and MRP1. We demonstrated decreased APC mRNA and protein levels in breast cancer patients compared with normal tissue. Using patient samples and a panel of human breast cancer cell lines, we found no significant trend between APC and either MDR1 or MRP1. Since the protein expression patterns did not show a correlation between the ABC transporters and the expression of APC, we evaluated the drug transporter activity. In mouse mammary tumor cells, the pharmacological inhibition or genetic silencing of MDR1 or MRP1, respectively, decreased the TIC population and increased DOX-induced apoptosis, supporting the use of ABC transporter inhibitors as therapeutic targets in APC-deficient tumors.
Collapse
Affiliation(s)
- Casey D. Stefanski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.D.S.); (A.A.); (J.K.); (E.P.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Anne Arnason
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.D.S.); (A.A.); (J.K.); (E.P.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Sara Maloney
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Janna Kotsen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.D.S.); (A.A.); (J.K.); (E.P.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Elizabeth Powers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.D.S.); (A.A.); (J.K.); (E.P.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA;
| | - Jenifer R. Prosperi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.D.S.); (A.A.); (J.K.); (E.P.)
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| |
Collapse
|
3
|
Ibrahim MAA, Abdelrahman AHM, Badr EAA, Almansour NM, Alzahrani OR, Ahmed MN, Soliman MES, Naeem MA, Shawky AM, Sidhom PA, Mekhemer GAH, Atia MAM. Naturally occurring plant-based anticancerous candidates as prospective ABCG2 inhibitors: an in silico drug discovery study. Mol Divers 2022; 26:3255-3277. [PMID: 35224675 PMCID: PMC9636125 DOI: 10.1007/s11030-022-10389-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
ATP-binding cassette transporter G2 (ABCG2) is an efflux transporter related to the clinical multidrug resistance (MDR) phenomenon. Identifying ABCG2 inhibitors could help discover extraordinary curative strategies for carcinoma remediation. Hitherto, there is no medication drug inhibiting ABCG2 transporter, notwithstanding that a considerable number of drugs have been submitted to clinical-trial and investigational phases. In the search for unprecedented chemical compounds that could inhibit the ABCG2 transporter, an in silico screening was conducted on the Naturally Occurring Plant-based Anticancer Compound-Activity-Target (NPACT) database containing 1574 compounds. Inhibitor-ABCG2 binding affinities were estimated based on molecular docking and molecular minimization (MM) calculations and compared to a co-crystallized inhibitor (BWQ) acting as a reference inhibitor. Molecular dynamics (MD) simulations pursued by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy estimations were further executed for compounds with MM-GBSA//MM binding energies lower than BWQ (calc. - 60.5 kcal/mol). NPACT00968 and NPACT01545 demonstrated auspicious inhibitory activities according to binding affinities (ΔGbinding) over the 100 ns MD simulations that were nearly one and a half folds compared to BWQ (- 100.4, - 94.7, and - 62.9 kcal/mol, respectively). Throughout the 100 ns MD simulations, structural and energetical analyses unveiled outstanding stability of the ABCG2 transporter when bound with NPACT00968 and NPACT01545. In silico calculations hold a promise for those two inhibitors as drug candidates of ABCG2 transporter and emphasize that further in vitro and in vivo experiments are guaranteed.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519 Egypt
| | - Alaa H. M. Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519 Egypt
| | - Esraa A. A. Badr
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519 Egypt
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, 1803 Saudi Arabia
| | - Othman R. Alzahrani
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, 71491 Saudi Arabia
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100 Pakistan
| | - Mahmoud E. S. Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, 4000 Durban South Africa
| | - Mohamed Ahmed Naeem
- Ain Shams University Specialized Hospital, Ain Shams University, Cairo, Egypt
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955 Saudi Arabia
| | - Peter A. Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Gamal A. H. Mekhemer
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519 Egypt
| | - Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, 12619 Egypt
| |
Collapse
|
4
|
Passalacqua MI, Rizzo G, Santarpia M, Curigliano G. 'Why is survival with triple negative breast cancer so low? insights and talking points from preclinical and clinical research'. Expert Opin Investig Drugs 2022; 31:1291-1310. [PMID: 36522800 DOI: 10.1080/13543784.2022.2159805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Triple negative breast cancer is typically related to poor prognosis, early metastasis, and high recurrence rate. Intrinsic and extrinsic biological features of TNBC and resistance mechanisms to conventional therapies can support its aggressive behavior, characterizing TNBC how extremely heterogeneous. Novel combination strategies are under investigation, including immunotherapeutic agents, anti-drug conjugates, PARP inhibitors, and various targeting agents, exploring, in the meanwhile, possible predictive biomarkers to correctly select patients for the optimal treatment for their specific subtype. AREAS COVERED This article examines the main malignity characteristics across different subtype, both histological and molecular, and the resistance mechanisms, both primary and acquired, to different drugs explored in the landscape of TNBC treatment, that lead TNBC to still has high mortality rate. EXPERT OPINION The complexity of TNBC is not only the main reason of its aggressivity, but its heterogeneity should be exploited in terms of therapeutics opportunities, combining agents with different mechanism of action, after a correct selection by biologic or molecular biomarkers. The main goal is to understand what TNBC really is and to act selectively on its characteristics, with a personalized anticancer treatment.
Collapse
Affiliation(s)
- Maria Ilenia Passalacqua
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Graziella Rizzo
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy.,Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology G Barresi, University of Messina, Messina, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, Ieo, European Institute of Oncology Irccs, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milano, Milan, Italy
| |
Collapse
|
5
|
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators. Eur J Med Chem 2022; 237:114346. [DOI: 10.1016/j.ejmech.2022.114346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
|
6
|
Structure-Based Discovery of ABCG2 Inhibitors: A Homology Protein-Based Pharmacophore Modeling and Molecular Docking Approach. Molecules 2021; 26:molecules26113115. [PMID: 34071039 PMCID: PMC8197086 DOI: 10.3390/molecules26113115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
ABCG2 is an ABC membrane protein reverse transport pump, which removes toxic substances such as medicines out of cells. As a result, drug bioavailability is an unexpected change and negatively influences the ADMET (absorption, distribution, metabolism, excretion, and toxicity), leading to multi-drug resistance (MDR). Currently, in spite of promising studies, screening for ABCG2 inhibitors showed modest results. The aim of this study was to search for small molecules that could inhibit the ABCG2 pump. We first used the WISS MODEL automatic server to build up ABCG2 homology protein from 655 amino acids. Pharmacophore models, which were con-structed based on strong ABCG2 inhibitors (IC50 < 1 μM), consist of two hydrophobic (Hyd) groups, two hydrogen bonding acceptors (Acc2), and an aromatic or conjugated ring (Aro|PiR). Using molecular docking method, 714 substances from the DrugBank and 837 substances from the TCM with potential to inhibit the ABCG2 were obtained. These chemicals maybe favor synthesized or extracted and bioactivity testing.
Collapse
|
7
|
Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer 2020; 6:54. [PMID: 33088912 PMCID: PMC7568552 DOI: 10.1038/s41523-020-00197-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is not a unique disease, encompassing multiple entities with marked histopathological, transcriptomic and genomic heterogeneity. Despite several efforts, transcriptomic and genomic classifications have remained merely theoretic and most of the patients are being treated with chemotherapy. Driver alterations in potentially targetable genes, including PIK3CA and AKT, have been identified across TNBC subtypes, prompting the implementation of biomarker-driven therapeutic approaches. However, biomarker-based treatments as well as immune checkpoint inhibitor-based immunotherapy have provided contrasting and limited results so far. Accordingly, a better characterization of the genomic and immune contexture underpinning TNBC, as well as the translation of the lessons learnt in the metastatic disease to the early setting would improve patients' outcomes. The application of multi-omics technologies, biocomputational algorithms, assays for minimal residual disease monitoring and novel clinical trial designs are strongly warranted to pave the way toward personalized anticancer treatment for patients with TNBC.
Collapse
Affiliation(s)
- Antonio Marra
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Dario Trapani
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Giulia Viale
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141 Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| |
Collapse
|
8
|
Peery R, Kyei-Baffour K, Dong Z, Liu J, de Andrade Horn P, Dai M, Liu JY, Zhang JT. Synthesis and Identification of a Novel Lead Targeting Survivin Dimerization for Proteasome-Dependent Degradation. J Med Chem 2020; 63:7243-7251. [PMID: 32421328 DOI: 10.1021/acs.jmedchem.0c00475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Survivin, a homodimeric member of the Inhibitor of Apoptosis Protein (IAP) family, is required for cancer cell survival and overexpressed in almost all solid tumors. However, targeting survivin has been challenging due to its "undruggable" nature. Recently, we used a novel approach to target the dimerization interface and identified inhibitors of two scaffolds that can directly bind to and inhibit survivin dimerization. One of the scaffolds, represented by the compound LQZ-7, contains an undesirable labile hydrazone linker and a potentially nonfunctional furazanopyrazine ring that we attempted to eliminate in this study. We found one compound, 7I, that is more active than the parent compound, LQZ-7, and when given orally effectively inhibits xenograft tumor growth and induces survivin loss in tumors. These findings indicate that 7I with a stable linker and a quinoxaline ring can be used as a lead for further optimization of this novel class of survivin inhibitors.
Collapse
Affiliation(s)
- Robert Peery
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Kwaku Kyei-Baffour
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zizheng Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.,Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jianguo Liu
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Pedro de Andrade Horn
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mingji Dai
- Department of Chemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jing-Yuan Liu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.,Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States.,Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| |
Collapse
|
9
|
Zhang W, Yang Y, Dong Z, Shi Z, Zhang JT. Single-nucleotide polymorphisms in a short basic motif in the ABC transporter ABCG2 disable its trafficking out of endoplasmic reticulum and reduce cell resistance to anticancer drugs. J Biol Chem 2019; 294:20222-20232. [PMID: 31719146 DOI: 10.1074/jbc.ra119.008347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette (ABC) subfamily G member 2 (ABCG2) belongs to the ABC transporter superfamily and has been implicated in multidrug resistance of cancers. Although the structure and function of ABCG2 have been extensively studied, little is known about its biogenesis and the regulation thereof. In this study, using mutagenesis and several biochemical analyses, we show that the positive charges in the vicinity of the RKR motif downstream of the ABC signature drive trafficking of nascent ABCG2 out of the endoplasmic reticulum (ER) onto plasma membranes. Substitutions of and naturally occurring single-nucleotide polymorphisms within these positively charged residues disabled the trafficking of ABCG2 out of the ER. A representative ABCG2 variant in which the RKR motif had been altered underwent increased ER stress-associated degradation. We also found that unlike WT ABCG2, genetic ABCG2 RKR variants have disrupted normal maturation and do not reduce accumulation of the anticancer drug mitoxantrone and no longer confer resistance to the drug. We conclude that the positive charges downstream of the ABC signature motif critically regulate ABCG2 trafficking and maturation. We propose that single-nucleotide polymorphisms of these residues reduce ABCG2 expression via ER stress-associated degradation pathway and may contribute to reduced cancer drug resistance, improving the success of cancer chemotherapy.
Collapse
Affiliation(s)
- Wenji Zhang
- Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yang Yang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zizheng Dong
- Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202.,Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology and Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202 .,Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614
| |
Collapse
|
10
|
Beebe J, Zhang JT. CC-115, a Dual Mammalian Target of Rapamycin/DNA-Dependent Protein Kinase Inhibitor in Clinical Trial, Is a Substrate of ATP-Binding Cassette G2, a Risk Factor for CC-115 Resistance. J Pharmacol Exp Ther 2019; 371:320-326. [PMID: 31455631 DOI: 10.1124/jpet.119.258392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/16/2019] [Indexed: 01/04/2023] Open
Abstract
CC-115, a triazole-containing compound, is a dual mammalian target of rapamycin (mTOR)/DNA-dependent protein kinase (DNA-PK) inhibitor currently in clinical trials. To develop this compound further, we investigated factors that may affect cellular response to CC-115. Previously, fatty acid synthase (FASN) was shown to upregulate DNA-PK activity and contribute to drug resistance; therefore, we hypothesized that FASN may affect cellular response to CC-115. Instead, however, we showed that CC-115 is a substrate of ATP-binding cassette G2 (ABCG2), a member of the ATP-binding cassette transporter superfamily, and that expression of ABCG2, not FASN, affects the potency of CC-115. ABCG2 overexpression significantly increases resistance to CC-115. Inhibiting ABCG2 function, using small-molecule inhibitors, sensitizes cancer cells to CC-115. We also found that CC-115 may be a substrate of ABCB1, another known ABC protein that contributes to drug resistance. These findings suggest that expression of ABC transporters, including ABCB1 and ABCG2, may affect the outcome in clinical trials testing CC-115. Additionally, the data indicate that ABC transporters may be used as markers for future precision use of CC-115. SIGNIFICANCE STATEMENT: In this article, we report our findings on the potential mechanism of resistance to CC-115, a dual inhibitor of mTOR and DNA-PK currently in clinical trials. We show that CC-115 is a substrate of ABCG2 and can be recognized by ABCB1, which contributes to CC-115 resistance. These findings provide novel information and potential guidance on future clinical testing of CC-115.
Collapse
Affiliation(s)
- Jenny Beebe
- Department of Pharmacology and Toxicology (J.B., J.-T.Z.) and IU Simon Cancer Center (J.-T.Z.), Indiana University School of Medicine, Indianapolis, Indiana; and Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.-T.Z.)
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology (J.B., J.-T.Z.) and IU Simon Cancer Center (J.-T.Z.), Indiana University School of Medicine, Indianapolis, Indiana; and Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio (J.-T.Z.)
| |
Collapse
|
11
|
Nedeljković M, Damjanović A. Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge. Cells 2019; 8:E957. [PMID: 31443516 PMCID: PMC6770896 DOI: 10.3390/cells8090957] [Citation(s) in RCA: 473] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Triple-negative (TNBC) is the most lethal subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. Chemotherapy remains the standard of care for TNBC treatment, but unfortunately, patients frequently develop resistance. Accordingly, in recent years, tremendous effort has been made into elucidating the mechanisms of TNBC chemoresistance with the goal of identifying new molecular targets. It has become evident that the development of TNBC chemoresistance is multifaceted and based on the elaborate interplay of the tumor microenvironment, drug efflux, cancer stem cells, and bulk tumor cells. Alterations of multiple signaling pathways govern these interactions. Moreover, TNBC's high heterogeneity, highlighted in the existence of several molecular signatures, presents a significant obstacle to successful treatment. In the present, in-depth review, we explore the contribution of key mechanisms to TNBC chemoresistance as well as emerging strategies to overcome them. We discuss novel anti-tumor agents that target the components of these mechanisms and pay special attention to their current clinical development while emphasizing the challenges still ahead of successful TNBC management. The evidence presented in this review outlines the role of crucial pathways in TNBC survival following chemotherapy treatment and highlights the importance of using combinatorial drug strategies and incorporating biomarkers in clinical studies.
Collapse
Affiliation(s)
- Milica Nedeljković
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia.
| | - Ana Damjanović
- Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Development of precision medicine approaches based on inter-individual variability of BCRP/ ABCG2. Acta Pharm Sin B 2019; 9:659-674. [PMID: 31384528 PMCID: PMC6664102 DOI: 10.1016/j.apsb.2019.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Precision medicine is a rapidly-developing modality of medicine in human healthcare. Based on each patient׳s unique characteristics, more accurate dosages and drug selection can be made to achieve better therapeutic efficacy and less adverse reactions in precision medicine. A patient׳s individual parameters that affect drug transporter action can be used to develop a precision medicine guidance, due to the fact that therapeutic efficacy and adverse reactions of drugs can both be affected by expression and function of drug transporters on the cell membrane surface. The purpose of this review is to summarize unique characteristics of human breast cancer resistant protein (BCRP) and the genetic variability in the BCRP encoded gene ABCG2 in the development of precision medicine. Inter-individual variability of BCRP/ABCG2 can impact choices and outcomes of drug treatment for several diseases, including cancer chemotherapy. Several factors have been implicated in expression and function of BCRP, including genetic, epigenetic, physiologic, pathologic, and environmental factors. Understanding the roles of these factors in controlling expression and function of BCRP is critical for the development of precision medicine based on BCRP-mediated drug transport.
Collapse
Key Words
- 3′-UTR, 3′-untranslated region
- 5-aza-C, 5-aza-2′-deoxycytidine
- ABCG2, ATP-binding cassette subfamily G member 2
- ALL, acute lymphocytic leukemia
- AML, acute myeloid leukemia
- AUC, area under curve
- BCRP
- BCRP, breast cancer resistant protein
- Epigenetics
- FTC, fumitremorgin C
- Gene polymorphisms
- H3K4me3, histone H3 lysine 4 trimethylation
- H3K9me3, histone H3 lysine 9 trimethylation
- H3S10P, histone H3 serine 10 phosphorylation
- HDAC, histone deacetylase
- HIF-1α, hypoxia inducible factor 1 subunit alpha
- HIV-1, human immunodeficiency virus type-1
- HMG-CoA, β-hydroxy-β-methyl-glutaryl-coenzyme A
- MDR, multidrug resistance
- MDR1, multidrug resistance 1
- NBD, nucleotide binding domain
- P-gp, P-glycoprotein
- Physiologic factors
- Precision medicine
- RISC, RNA-induced silencing complex
- SNP, Single nucleotide polymorphism
- TKI, tyrosine kinase inhibitor
- Tat, transactivator protein
- miRNA, microRNA
- siRNA, small RNA interference
Collapse
|
13
|
Tsunekawa R, Katayama K, Hanaya K, Higashibayashi S, Sugimoto Y, Sugai T. Synthesis of 5-Hydroxy-3',4',7-trimethoxyflavone and Related Compounds and Elucidation of Their Reversal Effects on BCRP/ABCG2-Mediated Anticancer Drug Resistance. Chembiochem 2019; 20:210-220. [PMID: 30187992 DOI: 10.1002/cbic.201800431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Indexed: 12/18/2022]
Abstract
3',4',7-Trimethoxyflavone (TMF) has been reported to show a potent reversal effect on drug resistance mediated by breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2). In this study, we designed and synthesized five derivatives with either a hydroxy group or a fluorine atom at C-5 and several kinds of capping moiety at the C-7 hydroxy group, on the same 3',4'-dimethoxy-substituted flavone skeleton. We subsequently evaluated the efficacies of these compounds against BCRP-expressing human leukaemia K562/BCRP cells. Reversal of drug resistance was expressed as the concentration of compound causing a twofold reduction in drug sensitivity (RI50 ). Of the synthesized compounds, the reversal effect of 5-hydroxy-3',4',7-trimethoxyflavone (HTMF, RI50 7.2 nm) towards 7-ethyl-10-hydroxycamptothecin (SN-38) was stronger than that of TMF (RI50 18 nm). Fluoro-substituted 5-fluoro-3',4',7-trimethoxyflavone (FTMF, RI50 25 nm) and monoglycosylated 7-(β-glucosyloxy)-5-hydroxy-3',4'-dimethoxyflavone (GOHDMF, 91 nm) also exhibited reversal effects, whereas the di- and triglycoside derivatives did not. TMF, HTMF and FTMF at 0.01-10 μm upregulated the K562/BCRP cellular accumulation of Hoechst 33342 nuclear staining dye. In addition, western blotting revealed that treatment of K562/BCRP cells with 0.1 μm TMF, HTMF or FTMT suppressed the expression of BCRP. HTMF showed the strongest inhibition of BCRP-mediated efflux and suppression of BCRP expression of the three effective synthesized flavones.
Collapse
Affiliation(s)
- Ryuji Tsunekawa
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kazuhiro Katayama
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kengo Hanaya
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Shuhei Higashibayashi
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takeshi Sugai
- Division of Organic and Biocatalytic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
14
|
Gao JP, Xu W, Liu WT, Yan M, Zhu ZG. Tumor heterogeneity of gastric cancer: From the perspective of tumor-initiating cell. World J Gastroenterol 2018; 24:2567-2581. [PMID: 29962814 PMCID: PMC6021770 DOI: 10.3748/wjg.v24.i24.2567] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/30/2018] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains one of the most common and malignant types of cancer due to its rapid progression, distant metastasis, and resistance to conventional chemotherapy, although efforts have been made to understand the underlying mechanism of this resistance and to improve clinical outcome. It is well recognized that tumor heterogeneity, a fundamental feature of malignancy, plays an essential role in the cancer development and chemoresistance. The model of tumor-initiating cell (TIC) has been proposed to explain the genetic, histological, and phenotypical heterogeneity of GC. TIC accounts for a minor subpopulation of tumor cells with key characteristics including high tumorigenicity, maintenance of self-renewal potential, giving rise to both tumorigenic and non-tumorigenic cancer cells, and resistance to chemotherapy. Regarding tumor-initiating cell of GC (GATIC), substantial studies have been performed to (1) identify the putative specific cell markers for purification and functional validation of GATICs; (2) trace the origin of GATICs; and (3) decode the regulatory mechanism of GATICs. Furthermore, recent studies demonstrate the plasticity of GATIC and the interaction between GATIC and its surrounding factors (TIC niche or tumor microenvironment). All these investigations pave the way for the development of GATIC-targeted therapy, which is in the phase of preclinical studies and clinical trials. Here, we interpret the heterogeneity of GC from the perspectives of TIC by reviewing the above-mentioned fundamental and clinical studies of GATICs. Problems encountered during the GATIC investigations and the potential solutions are also discussed.
Collapse
Affiliation(s)
- Jian-Peng Gao
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Wei Xu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Wen-Tao Liu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Min Yan
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zheng-Gang Zhu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
15
|
An Acetamide Derivative as a Camptothecin Sensitizer for Human Non-Small-Cell Lung Cancer Cells through Increased Oxidative Stress and JNK Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9128102. [PMID: 27843533 PMCID: PMC5098095 DOI: 10.1155/2016/9128102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/31/2016] [Indexed: 11/17/2022]
Abstract
In recent years, combination chemotherapy is a primary strategy for treating lung cancer; however, the issues of antagonism and side effects still limit its applications. The development of chemosensitizer aims to sensitize chemoresistant cancer cells to anticancer drugs and therefore improve the efficacy of chemotherapy. In this study, we examined whether N-[2-(morpholin-4-yl)phenyl]-2-{8-oxatricyclo[7.4.0.0,2,7]trideca-1(9),2(7),3,5,10,12-hexaen-4-yloxy}acetamide (NPOA), an acetamide derivative, sensitizes human non-small-cell lung cancer (NSCLC) H1299 cells towards camptothecin- (CPT-) induced apoptosis effects. Our results demonstrate that the combination of CPT and NPOA enhances anti-lung-cancer effect. The cytometer-based Annexin V/propidium iodide (PI) staining showed that CPT and NPOA cotreatment causes an increased population of apoptotic cells compared to CPT treatment alone. Moreover, Western blotting assay showed an enhancement of Bax expression and caspase cascade leading to cell death of H1299 cells. Besides, CPT and NPOA cotreatment-mediated disruption of mitochondrial membrane potential (MMP) in H1299 cells may function through increasing the activation of the stressed-associated c-Jun N-terminal kinase (JNK). These results showed that NPOA treatment sensitizes H1299 cells towards CPT-induced accumulation of cell cycle S phase and mitochondrial-mediated apoptosis through regulating endogenous ROS and JNK activation. Accordingly, NPOA could be a candidate chemosensitizer of CPT derivative agents such as irinotecan or topotecan in the future.
Collapse
|
16
|
Ranji P, Salmani Kesejini T, Saeedikhoo S, Alizadeh AM. Targeting cancer stem cell-specific markers and/or associated signaling pathways for overcoming cancer drug resistance. Tumour Biol 2016; 37:13059-13075. [DOI: 10.1007/s13277-016-5294-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
|
17
|
Synthesis and in vitro evaluation of novel triazine analogues as anticancer agents and their interaction studies with bovine serum albumin. Eur J Med Chem 2016; 117:59-69. [PMID: 27089212 DOI: 10.1016/j.ejmech.2016.03.088] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/14/2022]
Abstract
A novel series of triazine-benzimidazole analogs has been designed and synthesized for their in vitro anticancer activities. Four compounds (6, 16, 17 and 20) were identified as highly potent anticancer agents against 60 human cancer cell lines with GI50 in the nanomolar range. To improve the drug applications toward cancer cells, there is a need to couple these compounds to some carrier macromolecules. Following this approach, the interaction between triazine-benzimidazole analogues and bovine serum albumin (BSA) has been investigated with UV-Visible and fluorescence spectroscopic methods under physiological conditions. The observed fluorescence quenching indicates that these compounds could efficiently bind with BSA and be transported to the target site.
Collapse
|
18
|
Ren Z, Gu X, Lu B, Chen Y, Chen G, Feng J, Lin J, Zhang Y, Peng H. Anticancer efficacy of a nitric oxide-modified derivative of bifendate against multidrug-resistant cancer cells. J Cell Mol Med 2016; 20:1095-105. [PMID: 26864945 PMCID: PMC4882976 DOI: 10.1111/jcmm.12796] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/22/2015] [Indexed: 01/26/2023] Open
Abstract
The development of multidrug resistance (MDR) not only actively transports a wide range of cytotoxic drugs across drug transporters but is also a complex interaction between a number of important cellular signalling pathways. Nitric oxide donors appear to be a new class of anticancer therapeutics for satisfying all the above conditions. Previously, we reported furoxan‐based nitric oxide‐releasing compounds that exhibited selective antitumour activity in vitro and in vivo. Herein, we demonstrate that bifendate (DDB)‐nitric oxide, a synthetic furoxan‐based nitric oxide‐releasing derivative of bifendate, effectively inhibits the both sensitive and MDR tumour cell viability at a comparatively low concentration. Interestingly, the potency of DDB‐nitric oxide is the independent of inhibition of the functions and expressions of three major ABC transporters. The mechanism of DDB‐nitric oxide appears to be in two modes of actions by inducing mitochondrial tyrosine nitration and apoptosis, as well as by down‐regulating HIF‐1α expression and protein kinase B (AKT), extracellular signal‐regulated kinases (ERK), nuclear factor κB (NF‐κB) activation in MDR cells. Moreover, the addition of a typical nitric oxide scavenger significantly attenuated all the effects of DDB‐nitric oxide, indicating that the cytotoxicity of DDB‐nitric oxide is as a result of higher levels of nitric oxide release in MDR cancer cells. Given that acquired MDR to nitric oxide donors is reportedly difficult to achieve and genetically unstable, compound like DDB‐nitric oxide may be a new type of therapeutic agent for the treatment of MDR tumours.
Collapse
Affiliation(s)
- Zhiguang Ren
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Beijing, China.,Department of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoke Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Bin Lu
- School of Laboratory Medicine and Life Science, Wenzhou Medical College, Wenzhou, China
| | - Yaqiong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Guojiang Chen
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Jiannan Feng
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Jizhen Lin
- Department of Otolaryngology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui Peng
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Beijing, China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Qi J, Dong Z, Liu J, Peery RC, Zhang S, Liu JY, Zhang JT. Effective Targeting of the Survivin Dimerization Interface with Small-Molecule Inhibitors. Cancer Res 2016; 76:453-62. [PMID: 26744521 DOI: 10.1158/0008-5472.can-15-1874] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/15/2015] [Indexed: 11/16/2022]
Abstract
Many oncoproteins are considered undruggable because they lack enzymatic activities. In this study, we present a small-molecule-based anticancer agent that acts by inhibiting dimerization of the oncoprotein survivin, thereby promoting its degradation along with spontaneous apoptosis in cancer cells. Through a combination of computational analysis of the dimerization interface and in silico screening, we identified one compound that induced proteasome-dependent survivin degradation. Analysis of a set of structural analogues led us to identify a lead compound (LQZ-7F), which was effective in blocking the survival of multiple cancer cell lines in a low micromolar concentration range. LQZ-7F induced proteasome-dependent survivin degradation, mitotic arrest, and apoptosis, and it blocked the growth of human tumors in mouse xenograft assays. In addition to providing preclinical proof of concept for a survivin-targeting anticancer agent, our work offers novel in silico screening strategies to therapeutically target homodimeric oncogenic proteins considered undruggable.
Collapse
Affiliation(s)
- Jing Qi
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zizheng Dong
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jianguo Liu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Robert C Peery
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shaobo Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jing-Yuan Liu
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana. Department of Computer and Information Science, Indiana University-Purdue University at Indianapolis, Indiana.
| | - Jian-Ting Zhang
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana. IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
20
|
Studzian M, Bartosz G, Pulaski L. Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1759-71. [PMID: 25918011 DOI: 10.1016/j.bbamcr.2015.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 12/16/2022]
Abstract
ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods.
Collapse
Affiliation(s)
- Maciej Studzian
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland
| | - Lukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland.
| |
Collapse
|
21
|
Sachdeva N, Dolzhenko AV, Lim SJ, Ong WL, Chui WK. An efficient synthesis of 2,4,7-trisubstituted pyrimido[1,2-a][1,3,5]triazin-6-ones. NEW J CHEM 2015. [DOI: 10.1039/c5nj00405e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A practical synthesis of 3,4-dihydro pyrimido[1,2-a][1,3,5]triazin-6-ones, experimental and theoretical assessment of their tautomeric preferences and biological activity results are presented.
Collapse
Affiliation(s)
- Nikhil Sachdeva
- Department of Pharmacy
- Faculty of Science
- National University of Singapore
- Singapore 117543
- Singapore
| | - Anton V. Dolzhenko
- School of Pharmacy
- Monash University Malaysia
- Jalan Lagoon Selatan
- Bandar Sunway
- Malaysia
| | - Seow Joo Lim
- Department of Pharmacy
- Faculty of Science
- National University of Singapore
- Singapore 117543
- Singapore
| | - Wee Ling Ong
- Department of Pharmacy
- Faculty of Science
- National University of Singapore
- Singapore 117543
- Singapore
| | - Wai Keung Chui
- Department of Pharmacy
- Faculty of Science
- National University of Singapore
- Singapore 117543
- Singapore
| |
Collapse
|
22
|
Gu X, Ren Z, Peng H, Peng S, Zhang Y. Bifendate-chalcone hybrids: A new class of potential dual inhibitors of P-glycoprotein and breast cancer resistance protein. Biochem Biophys Res Commun 2014; 455:318-22. [DOI: 10.1016/j.bbrc.2014.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 01/09/2023]
|
23
|
Cheung L, Flemming CL, Watt F, Masada N, Yu DMT, Huynh T, Conseil G, Tivnan A, Polinsky A, Gudkov AV, Munoz MA, Vishvanath A, Cooper DMF, Henderson MJ, Cole SPC, Fletcher JI, Haber M, Norris MD. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4). Biochem Pharmacol 2014; 91:97-108. [PMID: 24973542 DOI: 10.1016/j.bcp.2014.05.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/27/2022]
Abstract
Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application.
Collapse
Affiliation(s)
- Leanna Cheung
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Claudia L Flemming
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Fujiko Watt
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Nanako Masada
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | - Denise M T Yu
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Tony Huynh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Gwenaëlle Conseil
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada.
| | - Amanda Tivnan
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | | | - Andrei V Gudkov
- Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Marcia A Munoz
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Anasuya Vishvanath
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | | | - Michelle J Henderson
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Susan P C Cole
- Division of Cancer Biology & Genetics, Queen's University Cancer Research Institute, Kingston, ON, Canada.
| | - Jamie I Fletcher
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Michelle Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| | - Murray D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, PO Box 81, Randwick 2031, NSW, Australia.
| |
Collapse
|
24
|
Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014; 88:1205-48. [PMID: 24777822 DOI: 10.1007/s00204-014-1224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
|
25
|
Liu RY, Dong Z, Liu J, Zhou L, Huang W, Khoo SK, Zhang Z, Petillo D, Teh BT, Qian CN, Zhang JT. Overexpression of asparagine synthetase and matrix metalloproteinase 19 confers cisplatin sensitivity in nasopharyngeal carcinoma cells. Mol Cancer Ther 2013; 12:2157-66. [PMID: 23956056 DOI: 10.1158/1535-7163.mct-12-1190] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Platinum-based concurrent chemoradiotherapy is considered a standard treatment approach for locoregionally advanced nasopharyngeal carcinoma. However, only a minority of patients benefit from this treatment regimen compared with radiotherapy alone. Identification of a set of molecular markers predicting sensitivity of platinum-based chemotherapy may contribute to personalized treatment of patients with nasopharyngeal carcinoma for better clinical outcome with less toxicity. Previously, we generated a cisplatin-sensitive nasopharyngeal carcinoma cell line, S16, by clonal selection from CNE-2 cells and found that eIF3a is upregulated and contributes to cisplatin sensitivity by downregulating the synthesis of nucleotide excision repair proteins. In this study, we conducted a gene expression profiling analysis and found three other genes, asparagine synthetase (ASNS), choriogonadotropin α subunit (CGA), and matrix metalloproteinase 19 (MMP19), that are upregulated in the cisplatin-sensitive S16 cells compared with the CNE-2 cells. However, only ASNS and MMP19, but not CGA, contributes to cisplatin sensitivity by potentiating cisplatin-induced DNA damage and apoptosis. Thus, ASNS and MMP19, along with eIF3a, are the sensitivity factors for cisplatin treatment and may serve as potential candidate molecular markers for predicting cisplatin sensitivity of advanced nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Ran-Yi Liu
- Corresponding Authors: Jian-Ting Zhang, Indiana University School of Medicine, 980 W. Walnut St., Walther Hall-C510, Indianapolis, IN 46202-5424.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jia Y, Zhang Y, Qiao C, Liu G, Zhao Q, Zhou T, Chen G, Li Y, Feng J, Li Y, Zhang Q, Peng H. IGF-1R and ErbB3/HER3 contribute to enhanced proliferation and carcinogenesis in trastuzumab-resistant ovarian cancer model. Biochem Biophys Res Commun 2013; 436:740-5. [DOI: 10.1016/j.bbrc.2013.06.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|
27
|
Jiao X, Zhao L, Ma M, Bai X, He M, Yan Y, Wang Y, Chen Q, Zhao X, Zhou M, Cui Z, Zheng Z, Wang E, Wei M. MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat 2013; 139:717-30. [DOI: 10.1007/s10549-013-2607-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/08/2013] [Indexed: 01/12/2023]
|
28
|
To KKW, Ren SX, Wong CCM, Cho CH. Reversal of ABCG2-mediated multidrug resistance by human cathelicidin and its analogs in cancer cells. Peptides 2013; 40:13-21. [PMID: 23274176 DOI: 10.1016/j.peptides.2012.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 01/16/2023]
Abstract
Multidrug resistance (MDR) of cancer cells to a wide spectrum of anticancer drugs is a major obstacle to successful chemotherapy. It is usually mediated by the overexpression of one of the three major ABC transporters actively pumping cytotoxic drugs out of the cells. There has been great interest in the search for inhibitors toward these transporters with an aim to circumvent resistance. This is usually achieved by screening from natural product library and the subsequent structural modifications. This study reported the reversal of ABCG2-mediated MDR in drug-selected resistant cancer cell lines by a class of host defense antimicrobial peptides, the human cathelicidin LL37 and its fragments. The effective human cathelicidin peptides (LL17-32 and LL13-37) were found to increase the accumulation of mitoxantrone in cancer cell lines with ABCG2 overexpression, thereby circumventing resistance to mitoxantrone. At the effective concentrations of the cathelicidin peptides, cell proliferation of the parental cells without elevated ABCG2 expression was not affected. Result from drug efflux and ATPase assays suggested that both LL17-32 and LL13-37 interact with ABCG2 and inhibit its transport activity in an uncompetitive manner. The peptides were also found to downregulate ABCG2 protein expression in the resistant cells, probably through a lysosomal degradation pathway. Our data suggest that the human cathelicidin may be further developed for sensitizing resistant cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Room 801N, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, New Territories, Hong Kong, China.
| | | | | | | |
Collapse
|
29
|
Zander SAL, Beijnen JH, van Tellingen O. Sensitive method for plasma and tumor Ko143 quantification using reversed-phase high-performance liquid chromatography and fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 913-914:129-36. [PMID: 23291288 DOI: 10.1016/j.jchromb.2012.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 10/31/2012] [Accepted: 11/05/2012] [Indexed: 01/16/2023]
Abstract
The fumitremorgin C analogue Ko143 is a potent and selective inhibitor of the ATP-binding cassette transporter ABCG2. To support in vivo ABCG2 resistance studies, we developed a sensitive and selective method for Ko143 quantification in plasma and tumor samples, using the parent compound fumitremorgin C as internal standard. Sample pretreatment by liquid-liquid extraction in diethyl ether yielded a recovery of 50% from human and mouse plasma. Pretreated samples were separated by reversed-phase high-performance liquid chromatography with fluorescence detection at 295nm excitation and 350nm emission wavelengths. Sharp chromatographic peaks were obtained with a 5μm GraceSmart C18 column. The mobile phase consisted of methanol:10mM ammonium acetate pH 5.0 (62:38, v/v), delivered at a flow rate of 0.2mL/min. Acceptable accuracy and precision of ±15% were achieved within the linear dynamic range of the calibration curve (2-500ng/mL) for human and mouse plasma samples. Mouse tumor tissue samples required the use of a calibration curve prepared in the same matrix due to the lower recovery of 40% from this matrix. Then, accuracy and precision were within the generally accepted range of ±15% for bioanalytical assays. Ko143 was stable in human plasma for up to 3 repeated freeze-thaw cycles and when stored at room temperature for up to 72h. However, when kept at room temperature in mouse plasma, Ko143 was rapidly degraded by esterase activity, which could be prevented by collection of blood into sodium fluoride-containing tubes and maintaining samples on ice during pretreatment. A preliminary pharmacokinetics study in mice demonstrated the applicability of this assay for ABCG2 resistance studies in vivo.
Collapse
Affiliation(s)
- Serge A L Zander
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
30
|
EZN-2208 (PEG-SN38) overcomes ABCG2-mediated topotecan resistance in BRCA1-deficient mouse mammary tumors. PLoS One 2012; 7:e45248. [PMID: 23028879 PMCID: PMC3444454 DOI: 10.1371/journal.pone.0045248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/16/2012] [Indexed: 12/12/2022] Open
Abstract
BRCA1 dysfunction in hereditary breast cancer causes defective homology-directed DNA repair and sensitivity towards DNA damaging agents like the clinically used topoisomerase I inhibitors topotecan and irinotecan. Using our conditional K14cre;Brca1F/F;p53F/F mouse model, we showed previously that BRCA1;p53-deficient mammary tumors initially respond to topotecan, but frequently acquire resistance by overexpression of the efflux transporter ABCG2. Here, we tested the pegylated SN38 compound EZN-2208 as a novel approach to treat BRCA1-mutated tumors that express ABCG2. We found that EZN-2208 therapy resulted in more pronounced and durable responses of ABCG2-positive tumors than topotecan or irinotecan therapy. We also evaluated tumor-specific ABCG2 inhibition by Ko143 in Abcg2−/− host animals that carried tumors with topotecan-induced ABCG2 expression. Addition of Ko143 moderately increased overall survival of these animals, but did not yield tumor responses like those seen after EZN-2208 therapy. Our results suggest that pegylation of Top1 inhibitors may be a useful strategy to circumvent efflux transporter-mediated resistance and to improve their efficacy in the clinic.
Collapse
|
31
|
Li Y, Zhao L, Sun H, Yu J, Li N, Liang J, Wang Y, He M, Bai X, Yu Z, Zheng Z, Mi X, Wang E, Wei M. Gene silencing of FANCF potentiates the sensitivity to mitoxantrone through activation of JNK and p38 signal pathways in breast cancer cells. PLoS One 2012; 7:e44254. [PMID: 22952942 PMCID: PMC3429446 DOI: 10.1371/journal.pone.0044254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/31/2012] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia complementation group-F (FANCF) is a key factor to maintain the function of FA/BRCA, a DNA-damage response pathway. However, the functional role of FANCF in breast cancer has not been elucidated. In this study, we examined the effects and mechanisms of FANCF-RNAi on the sensitivity of breast cancer cells to mitoxantrone (MX). FANCF silencing by FANCF-shRNA blocked functions of FA/BRCA pathway through inhibition of FANCD2 mono-ubiquitination in breast cancer cell lines MCF-7 and T-47D. In addition, FANCF shRNA inhibited cell proliferation, induced apoptosis, and chromosome fragmentation in both breast cancer cells. We also found that FANCF silencing potentiated the sensitivity to MX in breast cancer cells, accompanying with an increase in intracellular MX accumulation and a decrease in BCRP expression. Furthermore, we found that the blockade of FA/BRCA pathway by FANCF-RNAi activated p38 and JNK MAPK signal pathways in response to MX treatment. BCRP expression was restored by p38 inhibitor SB203580, but not by JNK inhibitor SP600125. FANCF silencing increased JNK and p38 mediated activation of p53 in MX-treated breast cancer cells, activated the mitochondrial apoptosis pathway. Our findings indicate that FANCF shRNA potentiates the sensitivity of breast cancer cells to MX, suggesting that FANCF may be a potential target for therapeutic strategies for the treatment of breast tumors.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Haigang Sun
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Jiankun Yu
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Na Li
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Jingwei Liang
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Yan Wang
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Miao He
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Xuefeng Bai
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Zhaojin Yu
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
| | - Zhihong Zheng
- Institute of Pathophysiology, China Medical University, Shenyang City, Liaoning, China
| | - Xiaoyi Mi
- Institute of Pathophysiology, China Medical University, Shenyang City, Liaoning, China
| | - Enhua Wang
- Institute of Pathophysiology, China Medical University, Shenyang City, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, China Medical University, Shenyang City, Liaoning, China
- Institute of Pathophysiology, China Medical University, Shenyang City, Liaoning, China
- * E-mail:
| |
Collapse
|
32
|
Wei Y, Ma Y, Zhao Q, Ren Z, Li Y, Hou T, Peng H. New use for an old drug: inhibiting ABCG2 with sorafenib. Mol Cancer Ther 2012; 11:1693-702. [PMID: 22593228 DOI: 10.1158/1535-7163.mct-12-0215] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human ABCG2, a member of the ATP-binding cassette transporter superfamily, represents a promising target for sensitizing MDR in cancer chemotherapy. Although lots of ABCG2 inhibitors were identified, none of them has been tested clinically, maybe because of several problems such as toxicity or safety and pharmacokinetic uncertainty of compounds with novel chemical structures. One efficient solution is to rediscover new uses for existing drugs with known pharmacokinetics and safety profiles. Here, we found the new use for sorafenib, which has a dual-mode action by inducing ABCG2 degradation in lysosome in addition to inhibiting its function. Previously, we reported some novel dual-acting ABCG2 inhibitors that showed closer similarity to degradation-induced mechanism of action. On the basis of these ABCG2 inhibitors with diverse chemical structures, we developed a pharmacophore model for identifying the critical pharmacophore features necessary for dual-acting ABCG2 inhibitors. Sorafenib forms impressive alignment with the pharmacophore hypothesis, supporting the argument that sorafenib is a potential ABCG2 inhibitor. This is the first article that sorafenib may be a good candidate for chemosensitizing agent targeting ABCG2-mediated MDR. This study may facilitate the rediscovery of new functions of structurally diverse old drugs and provide a more effective and safe way of sensitizing MDR in cancer chemotherapy.
Collapse
Affiliation(s)
- Yinxiang Wei
- Department of Molecular Immunology, Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Mo W, Qi J, Zhang JT. Different roles of TM5, TM6, and ECL3 in the oligomerization and function of human ABCG2. Biochemistry 2012; 51:3634-41. [PMID: 22497316 DOI: 10.1021/bi300301a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ABCG2 is a member of the ATP-binding cassette transporter superfamily, and its overexpression causes multidrug resistance (MDR) in cancer chemotherapy. ABCG2 may also protect cancer stem cells by extruding cytotoxic materials. ABCG2 has previously been shown to exist as a high-order homo-oligomer consisting of possibly 8-12 subunits, and the oligomerization domain was mapped to the C-terminal domain, including TM5, ECL3, and TM6. In this study, we further investigate this domain in detail for the role of each segment in the oligomerization and drug transport function of ABCG2 using domain swapping and site-directed mutagenesis. We found that none of the three segments (TM5, TM6, and ECL3) is essential for the oligomerization activity of ABCG2 and that any one of these three segments in the full-length context is sufficient to support ABCG2 oligomerization. While TM5 plays an important role in the drug transport function of ABCG2, TM6 and ECL3 are replaceable. Thus, each segment in the TM5-ECL3-TM6 domain plays a distinctive role in the oligomerization and function of ABCG2.
Collapse
Affiliation(s)
- Wei Mo
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | | | | |
Collapse
|
34
|
Nakanishi T, Ross DD. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. CHINESE JOURNAL OF CANCER 2011; 31:73-99. [PMID: 22098950 PMCID: PMC3777471 DOI: 10.5732/cjc.011.10320] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2 (ABCG2) is an ATP-binding cassette (ABC) transporter identified as a molecular cause of multidrug resistance (MDR) in diverse cancer cells. BCRP physiologically functions as a part of a self-defense mechanism for the organism; it enhances elimination of toxic xenobiotic substances and harmful agents in the gut and biliary tract, as well as through the blood-brain, placental, and possibly blood-testis barriers. BCRP recognizes and transports numerous anticancer drugs including conventional chemotherapeutic and targeted small therapeutic molecules relatively new in clinical use. Thus, BCRP expression in cancer cells directly causes MDR by active efflux of anticancer drugs. Because BCRP is also known to be a stem cell marker, its expression in cancer cells could be a manifestation of metabolic and signaling pathways that confer multiple mechanisms of drug resistance, self-renewal (sternness), and invasiveness (aggressiveness), and thereby impart a poor prognosis. Therefore, blocking BCRP-mediated active efflux may provide a therapeutic benefit for cancers. Delineating the precise molecular mechanisms for BCRP gene expression may lead to identification of a novel molecular target to modulate BCRP-mediated MDR. Current evidence suggests that BCRP gene transcription is regulated by a number of trans-acting elements including hypoxia inducible factor 1α, estrogen receptor, and peroxisome proliferator-activated receptor. Furthermore, alternative promoter usage, demethylation of the BCRP promoter, and histone modification are likely associated with drug-induced BCRP overexpression in cancer cells. Finally, PI3K/AKT signaling may play a critical role in modulating BCRP function under a variety of conditions. These biological events seem involved in a complicated manner. Untangling the events would be an essential first step to developing a method to modulate BCRP function to aid patients with cancer. This review will present a synopsis of the impact of BCRP-mediated MDR in cancer cells, and the molecular mechanisms of acquired MDR currently postulated in a variety of human cancers.
Collapse
Affiliation(s)
- Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Kanazawa University School of Pharmaceutical Sciences, Kanazawa, Japan.
| | | |
Collapse
|
35
|
Yamazaki R, Nishiyama Y, Furuta T, Hatano H, Igarashi Y, Asakawa N, Kodaira H, Takahashi H, Aiyama R, Matsuzaki T, Yagi N, Sugimoto Y. Novel acrylonitrile derivatives, YHO-13177 and YHO-13351, reverse BCRP/ABCG2-mediated drug resistance in vitro and in vivo. Mol Cancer Ther 2011; 10:1252-63. [PMID: 21566063 DOI: 10.1158/1535-7163.mct-10-0874] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer resistance protein (BCRP/ABCG2) confers resistance to anticancer drugs such as 7-ethyl-10-hydroxycamptothecin (SN-38, an active metabolite of irinotecan), mitoxantrone, and topotecan. In this study, we examined the reversing effects of YHO-13177, a novel acrylonitrile derivative, and its water-soluble diethylaminoacetate prodrug YHO-13351 on the BCRP-mediated drug resistance. YHO-13177 potentiated the cytotoxicity of SN-38, mitoxantrone, and topotecan in both BCRP-transduced human colon cancer HCT116 (HCT116/BCRP) cells and SN-38-resistant human lung cancer A549 (A549/SN4) cells that express BCRP, but had little effect in the parental cells. In addition, YHO-13177 potentiated the cytotoxicity of SN-38 in human lung cancer NCI-H460 and NCI-H23, myeloma RPMI-8226, and pancreatic cancer AsPC-1 cells that intrinsically expressed BCRP. In contrast, it had no effect on P-glycoprotein-mediated paclitaxel resistance in MDR1-transduced human leukemia K562 cells and multidrug resistance-related protein 1-mediated doxorubicin resistance in MRP1-transfected human epidermoid cancer KB-3-1 cells. YHO-13177 increased the intracellular accumulation of Hoechst 33342, a substrate of BCRP, at 30 minutes and partially suppressed the expression of BCRP protein at more than 24 hours after its treatment in both HCT116/BCRP and A549/SN4 cells. In mice, YHO-13351 was rapidly converted into YHO-13177 after its oral or intravenous administration. Coadministration of irinotecan with YHO-13351 significantly increased the survival time of mice inoculated with BCRP-transduced murine leukemia P388 cells and suppressed the tumor growth in an HCT116/BCRP xenograft model, whereas irinotecan alone had little effect in these tumor models. These findings suggest that YHO-13351, a prodrug of YHO-13177, could be clinically useful for reversing BCRP-mediated drug resistance in cancer chemotherapy.
Collapse
Affiliation(s)
- Ryuta Yamazaki
- Yakult Central Institute for Microbiological Research, Yakult Honsha Co., Ltd., 1796 Yaho, Kunitachi-shi, Tokyo, 186-8650 Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mo W, Zhang JT. Human ABCG2: structure, function, and its role in multidrug resistance. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 3:1-27. [PMID: 22509477 PMCID: PMC3325772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 03/25/2011] [Indexed: 05/31/2023]
Abstract
Human ABCG2 is a member of the ATP-binding cassette (ABC) transporter superfamily and is known to contribute to multidrug resistance (MDR) in cancer chemotherapy. Among ABC transporters that are known to cause MDR, ABCG2 is particularly interesting for its potential role in protecting cancer stem cells and its complex oligomeric structure. Recent studies have also revealed that the biogenesis of ABCG2 could be modulated by small molecule compounds. These modulators, upon binding to ABCG2, accelerate the endocytosis and trafficking to lysosome for degradation and effectively reduce the half-life of ABCG2. Hence, targeting ABCG2 stability could be a new venue for therapeutic discovery to sensitize drug resistant human cancers. In this report, we review recent progress on understanding the structure, function, biogenesis, as well as physiological and pathophysiological functions of ABCG2.
Collapse
Affiliation(s)
- Wei Mo
- Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine Indianapolis, IN 46202, USA
| | | |
Collapse
|
37
|
Meyer zu Schwabedissen HE, Kroemer HK. In vitro and in vivo evidence for the importance of breast cancer resistance protein transporters (BCRP/MXR/ABCP/ABCG2). Handb Exp Pharmacol 2011:325-371. [PMID: 21103975 DOI: 10.1007/978-3-642-14541-4_9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The breast cancer resistance protein (BCRP/ABCG2) is a member of the G-subfamiliy of the ATP-binding cassette (ABC)-transporter superfamily. This half-transporter is assumed to function as an important mechanism limiting cellular accumulation of various compounds. In context of its tissue distribution with localization in the sinusoidal membrane of hepatocytes, and in the apical membrane of enterocytes ABCG2 is assumed to function as an important mechanism facilitating hepatobiliary excretion and limiting oral bioavailability, respectively. Indeed functional assessment performing mouse studies with genetic deletion or chemical inhibition of the transporter, or performing pharmacogenetic studies in humans support this assumption. Furthermore the efflux function of ABCG2 has been linked to sanctuary blood tissue barriers as described for placenta and the central nervous system. However, in lactating mammary glands ABCG2 increases the transfer of substrates into milk thereby increasing the exposure to potential noxes of a breastfed newborn. With regard to its broad substrate spectrum including various anticancer drugs and environmental carcinogens the function of ABCG2 has been associated with multidrug resistance and tumor development/progression. In terms of cancer biology current research is focusing on the expression and function of ABCG2 in immature stem cells. Recent findings support the notion that the physiological function of ABCG2 is involved in the elimination of uric acid resulting in higher risk for developing gout in male patients harboring genetic variants. Taken together ABCG2 is implicated in various pathophysiological and pharmacological processes.
Collapse
Affiliation(s)
- Henriette E Meyer zu Schwabedissen
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
38
|
Peng H, Qi J, Dong Z, Zhang JT. Dynamic vs static ABCG2 inhibitors to sensitize drug resistant cancer cells. PLoS One 2010; 5:e15276. [PMID: 21151870 PMCID: PMC2998423 DOI: 10.1371/journal.pone.0015276] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/03/2010] [Indexed: 12/14/2022] Open
Abstract
Human ABCG2, a member of the ATP-binding cassette transporter superfamily, plays a key role in multidrug resistance and protecting cancer stem cells. ABCG2-knockout had no apparent adverse effect on the development, biochemistry, and life of mice. Thus, ABCG2 is an interesting and promising target for development of chemo-sensitizing agents for better treatment of drug resistant cancers and for eliminating cancer stem cells. Previously, we reported a novel two mode-acting ABCG2 inhibitor, PZ-39, that induces ABCG2 degradation in addition to inhibiting its activity. In this manuscript, we report our recent progresses in identifying two different groups of ABCG2 inhibitors with one inhibiting only ABCG2 function (static) and the other induces ABCG2 degradation in lysosome in addition to inhibiting its function (dynamic). Thus, the inhibitor-induced ABCG2 degradation may be more common than we previously anticipated and further investigation of the dynamic inhibitors that induce ABCG2 degradation may provide a more effective way of sensitizing ABCG2-mediated MDR in cancer chemotherapy.
Collapse
Affiliation(s)
- Hui Peng
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jing Qi
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zizheng Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
39
|
Hikita T, Oneyama C, Okada M. Purvalanol A, a CDK inhibitor, effectively suppresses Src-mediated transformation by inhibiting both CDKs and c-Src. Genes Cells 2010; 15:1051-62. [DOI: 10.1111/j.1365-2443.2010.01439.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
van de Ven R, Oerlemans R, van der Heijden JW, Scheffer GL, de Gruijl TD, Jansen G, Scheper RJ. ABC drug transporters and immunity: novel therapeutic targets in autoimmunity and cancer. J Leukoc Biol 2009; 86:1075-87. [PMID: 19745159 DOI: 10.1189/jlb.0309147] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ABC transporters were identified originally for their contribution to clinical MDR as a result of their capacity to extrude various unrelated cytotoxic drugs. More recent reports have shown that ABC transporters can play important roles in the development, differentiation, and maturation of immune cells and are involved in migration of immune effector cells to sites of inflammation. Many of the currently identified, endogenous ABC transporter substrates have immunostimulating effects. Increasing the expression of ABC transporters on immune cells and thereby enhancing immune cell development or functionality may be beneficial to immunotherapy in the field of oncology. On the contrary, in the treatment of autoimmune diseases, blockade of these transporters may prove beneficial, as it could dampen disease activity by compromising immune effector cell functions. This review will focus on the expression, regulation, and substrate specificity of ABC transporters in relation to functional activities of immune effector cells and discusses implications for the treatment of cancer on the one hand and autoimmune diseases on the other.
Collapse
Affiliation(s)
- Rieneke van de Ven
- Department of Pathology, VU University Medical Center/Cancer Center Amsterdam, Amsterdam, Zuid Holland 1081 HV The Netherlands
| | | | | | | | | | | | | |
Collapse
|