1
|
Davis E, Avniel-Polak S, Abu-Kamel S, Antman I, Saadoun T, Brim C, Jumaa M, Maron Y, Maimon O, Bel-Ange A, Atlan K, Tzur T, Abu Akar F, Wald O, Izhar U, Hecht M, Grozinsky-Glasberg S, Drier Y. Enhancer landscape of lung neuroendocrine tumors reveals regulatory and developmental signatures with potential theranostic implications. Proc Natl Acad Sci U S A 2024; 121:e2405001121. [PMID: 39361648 PMCID: PMC11474083 DOI: 10.1073/pnas.2405001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Well-differentiated low-grade lung neuroendocrine tumors (lung carcinoids or LNETs) are histopathologically classified as typical and atypical LNETs, but each subtype is still heterogeneous at both the molecular level and its clinical manifestation. Here, we report genome-wide profiles of primary LNETs' cis-regulatory elements by H3K27ac ChIP-seq with matching RNA-seq profiles. Analysis of these regulatory landscapes revealed three regulatory subtypes, independent of the typical/atypical classification. We identified unique differentiation signals that delineate each subtype. The "proneuronal" subtype emerges under the influence of ASCL1, SOX4, and TCF4 transcription factors, embodying a pronounced proneuronal signature. The "luminal-like" subtype is characterized by gain of acetylation at markers of luminal cells and GATA2 activation and loss of LRP5 and OTP. The "HNF+" subtype is characterized by a robust enhancer landscape driven by HNF1A, HNF4A, and FOXA3, with notable acetylation and expression of FGF signaling genes, especially FGFR3 and FGFR4, pivotal components of the FGF pathway. Our findings not only deepen the understanding of LNETs' regulatory and developmental diversity but also spotlight the HNF+ subtype's reliance on FGFR signaling. We demonstrate that targeting this pathway with FGF inhibitors curtails tumor growth both in vitro and in xenograft models, unveiling a potential vulnerability and paving the way for targeted therapies. Overall, our work provides an important resource for studying LNETs to reveal regulatory networks, differentiation signals, and therapeutically relevant dependencies.
Collapse
Affiliation(s)
- Ester Davis
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Shani Avniel-Polak
- The Neuroendocrine Tumor Unit, European Neuroendocrine Tumor Society Center of Excellence, Division of Internal Medicine, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Shahd Abu-Kamel
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Israel Antman
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Tsipora Saadoun
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Chava Brim
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Mohammad Jumaa
- Department of Pathology, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Yariv Maron
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Ofra Maimon
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of Oncology, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Anat Bel-Ange
- The Neuroendocrine Tumor Unit, European Neuroendocrine Tumor Society Center of Excellence, Division of Internal Medicine, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Karine Atlan
- Department of Pathology, Hadassah Medical Center, Jerusalem9112102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Tomer Tzur
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of Plastic and Reconstructive Surgery, Hadassah Medical Center, Jerusalem9112102, Israel
| | - Firas Abu Akar
- The Edith Wolfson Medical Center, Holon5822012, Israel
- Department of General Surgery, Faculty of Medicine, Al-Quds University, East Jerusalem, Palestinian Territories
- Department of Thoracic Surgery, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv6997801, Israel
| | - Ori Wald
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of General Surgery, Faculty of Medicine, Al-Quds University, East Jerusalem, Palestinian Territories
| | - Uzi Izhar
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
- Department of General Surgery, Faculty of Medicine, Al-Quds University, East Jerusalem, Palestinian Territories
| | - Merav Hecht
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Simona Grozinsky-Glasberg
- The Neuroendocrine Tumor Unit, European Neuroendocrine Tumor Society Center of Excellence, Division of Internal Medicine, Hadassah Medical Center, Jerusalem9112102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9112102, Israel
| |
Collapse
|
2
|
Chen W, Guo L, Wei W, Cai C, Wu G. Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation is essential for maintenance of mammary stem cell activity. Cell Rep 2024; 43:114762. [PMID: 39321020 DOI: 10.1016/j.celrep.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Adult mammary stem cells (aMaSCs) are vital to tissue expansion and remodeling during the process of postnatal mammary development. The protein C receptor (Procr) is one of the well-identified surface markers of multipotent aMaSCs. However, an understanding of the regulatory mechanisms governing Procr's protein stability remains incomplete. In this study, we identified Glycoprotein m6a (Gpm6a) as a critical protein for aMaSC activity modulation by using the Gpm6a knockout mouse model. Interestingly, we determined that Gpm6a depletion results in a reduction of Procr protein stability. Mechanistically, Gpm6a regulates Procr protein stability by mediating the formation of lipid rafts, a process requiring Zdhhc1 and Zdhhc2 to palmitate Gpm6a at Cys17,18 and Cys246 sites. Our findings highlight an important mechanism involving Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation for the regulation of Procr stability, aMaSC activity, and postnatal mammary development.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Guo
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
3
|
Heijmans N, Wiese KE, Jonkers J, van Amerongen R. Transcriptomic Analysis of Pubertal and Adult Virgin Mouse Mammary Epithelial and Stromal Cell Populations. J Mammary Gland Biol Neoplasia 2024; 29:13. [PMID: 38916673 PMCID: PMC11199289 DOI: 10.1007/s10911-024-09565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024] Open
Abstract
Conflicting data exist as to how mammary epithelial cell proliferation changes during the reproductive cycle. To study the effect of endogenous hormone fluctuations on gene expression in the mouse mammary gland, we performed bulk RNAseq analyses of epithelial and stromal cell populations that were isolated either during puberty or at different stages of the adult virgin estrous cycle. Our data confirm prior findings that proliferative changes do not occur in every mouse in every cycle. We also show that during the estrous cycle the main gene expression changes occur in adipocytes and fibroblasts. Finally, we present a comprehensive overview of the Wnt gene expression landscape in different mammary gland cell types in pubertal and adult mice. This work contributes to understanding the effects of physiological hormone fluctuations and locally produced signaling molecules on gene expression changes in the mammary gland during the reproductive cycle and should be a useful resource for future studies investigating gene expression patterns in different cell types across different developmental timepoints.
Collapse
Affiliation(s)
- Nika Heijmans
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | - Katrin E Wiese
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Satta JP, Lan Q, Taketo MM, Mikkola ML. Stabilization of Epithelial β-Catenin Compromises Mammary Cell Fate Acquisition and Branching Morphogenesis. J Invest Dermatol 2024; 144:1223-1237.e10. [PMID: 38159590 DOI: 10.1016/j.jid.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024]
Abstract
The Wnt/β-catenin pathway plays a critical role in cell fate specification, morphogenesis, and stem cell activation across diverse tissues, including the skin. In mammals, the embryonic surface epithelium gives rise to the epidermis as well as the associated appendages including hair follicles and mammary glands, both of which depend on epithelial Wnt/β-catenin activity for initiation of their development. Later on, Wnts are thought to enhance mammary gland growth and branching, whereas in hair follicles, they are essential for hair shaft formation. In this study, we report a strong downregulation of epithelial Wnt/β-catenin activity as the mammary bud progresses to branching. We show that forced activation of epithelial β-catenin severely compromises embryonic mammary gland branching. However, the phenotype of conditional Lef1-deficient embryos implies that a low level of Wnt/β-catenin activity is necessary for mammary cell survival. Transcriptomic profiling suggests that sustained high β-catenin activity leads to maintenance of mammary bud gene signature at the expense of outgrowth/branching gene signature. In addition, it leads to upregulation of epidermal differentiation genes. Strikingly, we find a partial switch to hair follicle fate early on upon stabilization of β-catenin, suggesting that the level of epithelial Wnt/β-catenin signaling activity may contribute to the choice between skin appendage identities.
Collapse
Affiliation(s)
- Jyoti Prabha Satta
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland
| | - Qiang Lan
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland
| | - Makoto Mark Taketo
- Colon Cancer Project, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Marja L Mikkola
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HILIFE), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Wang C, Li Y, Miao X, Wang Y, Yang G. Knockdown of LRP5 Promotes Proliferation and Invasion of Tongue Squamous Cell Carcinoma through Compensatory Activation of Akt Signaling. J Cancer 2024; 15:3215-3226. [PMID: 38706907 PMCID: PMC11064261 DOI: 10.7150/jca.93585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
The role of LRP5, a critical receptor in the Wnt signaling pathway, remains unexplored in tongue squamous cell carcinoma (TSCC). This study investigates the impact of LRP5 knockdown on the biological behaviors of TSCC cell lines both in vitro and in vivo. Our findings indicate that LRP5 knockdown significantly enhances cell proliferation, migration, and invasion in CAL27 and SCC25 cell lines. RNA-seq analysis reveals compensatory activation of the Akt pathway, with 119 genes significantly upregulated post-LRP5 knockdown. Elevated MMP1 expression suggests its potential involvement in TSCC progression. Western blot analysis demonstrates increased Akt phosphorylation, upregulated proliferation-related PCNA, and downregulated apoptosis-related caspase-3 after LRP5 knockdown. Down-regulation of E-cadherin and β-Catenin, proteins associated with cell adhesion and invasion, further elucidates the molecular mechanism underlying increased cell migration and invasion. Our study concludes that compensatory Akt pathway activation is essential for the LRP5 knockdown-induced migration and proliferation of CAL27 and SCC25 cells. These results highlight LRP5 as a potential therapeutic target for TSCC. Simultaneous inhibition of Wnt and Akt signaling emerges as a promising approach for TSCC treatment.
Collapse
Affiliation(s)
| | | | | | | | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
6
|
CDK14 inhibition reduces mammary stem cell activity and suppresses triple negative breast cancer progression. Cell Rep 2022; 40:111331. [PMID: 36103813 DOI: 10.1016/j.celrep.2022.111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/09/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays an important role in regulating mammary organogenesis and oncogenesis. However, therapeutic methods targeting the Wnt pathway against breast cancer have been limited. To address this challenge, we investigate the function of cyclin-dependent kinase 14 (CDK14), a member of the Wnt signaling pathway, in mammary development and breast cancer progression. We show that CDK14 is expressed in the mammary basal layer and elevated in triple negative breast cancer (TNBC). CDK14 knockdown reduces the colony-formation ability and regeneration capacity of mammary basal cells and inhibits the progression of murine MMTV-Wnt-1 basal-like mammary tumor. CDK14 knockdown or pharmacological inhibition by FMF-04-159-2 suppresses the progression and metastasis of TNBC. Mechanistically, CDK14 inhibition inhibits mammary regeneration and TNBC progression by attenuating Wnt/β-catenin signaling. These findings highlight the significance of CDK14 in mammary development and TNBC progression, shedding light on CDK14 as a promising therapeutic target for TNBC.
Collapse
|
7
|
Abreu de Oliveira WA, El Laithy Y, Bruna A, Annibali D, Lluis F. Wnt Signaling in the Breast: From Development to Disease. Front Cell Dev Biol 2022; 10:884467. [PMID: 35663403 PMCID: PMC9157790 DOI: 10.3389/fcell.2022.884467] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt cascade is a primordial developmental signaling pathway that plays a myriad of essential functions throughout development and adult homeostasis in virtually all animal species. Aberrant Wnt activity is implicated in embryonic and tissue morphogenesis defects, and several diseases, most notably cancer. The role of Wnt signaling in mammary gland development and breast cancer initiation, maintenance, and progression is far from being completely understood and is rather shrouded in controversy. In this review, we dissect the fundamental role of Wnt signaling in mammary gland development and adult homeostasis and explore how defects in its tightly regulated and intricated molecular network are interlinked with cancer, with a focus on the breast.
Collapse
Affiliation(s)
- Willy Antoni Abreu de Oliveira
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| | - Youssef El Laithy
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Alejandra Bruna
- Centre for Paediatric Oncology Experimental Medicine, Centre for Cancer Evolution, Molecular Pathology Division, London, United Kingdom
| | - Daniela Annibali
- Department of Oncology, Gynecological Oncology Laboratory, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| |
Collapse
|
8
|
Yu Z, Shen X, Hu C, Zeng J, Wang A, Chen J. Molecular Mechanisms of Isolated Polycystic Liver Diseases. Front Genet 2022; 13:846877. [PMID: 35571028 PMCID: PMC9104337 DOI: 10.3389/fgene.2022.846877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic liver disease (PLD) is a rare autosomal dominant disorder including two genetically and clinically distinct forms: autosomal dominant polycystic kidney disease (ADPKD) and isolated polycystic liver disease (PCLD). The main manifestation of ADPKD is kidney cysts, while PCLD has predominantly liver presentations with mild or absent kidney cysts. Over the past decade, PRKCSH, SEC63, ALG8, and LRP5 have been candidate genes of PCLD. Recently, more candidate genes such as GANAB, SEC61B, and ALR9 were also reported in PCLD patients. This review focused on all candidate genes of PCLD, including the newly established novel candidate genes. In addition, we also discussed some other genes which might also contribute to the disease.
Collapse
Affiliation(s)
- Ziqi Yu
- Munich Medical Research School, LMU Munich, Munich, Germany
| | - Xiang Shen
- Munich Medical Research School, LMU Munich, Munich, Germany
| | - Chong Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Jun Zeng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Aiyao Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| |
Collapse
|
9
|
Ter Steege EJ, Bakker ERM. The role of R-spondin proteins in cancer biology. Oncogene 2021; 40:6469-6478. [PMID: 34663878 PMCID: PMC8616751 DOI: 10.1038/s41388-021-02059-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
R-spondin (RSPO) proteins constitute a family of four secreted glycoproteins (RSPO1-4) that have appeared as multipotent signaling ligands. The best-known molecular function of RSPOs lie within their capacity to agonize the Wnt/β-catenin signaling pathway. As RSPOs act upon cognate receptors LGR4/5/6 that are typically expressed by stem cells and progenitor cells, RSPO proteins importantly potentiate Wnt/β-catenin signaling especially within these proliferative stem cell compartments. Since multiple organs express LGR4/5/6 receptors and RSPO ligands within their stem cell niches, RSPOs can exert an influential role in stem cell regulation throughout the body. Inherently, over the last decade a multitude of reports implicated the deregulation of RSPOs in cancer development. First, RSPO2 and RSPO3 gene fusions with concomitant enhanced expression have been identified in colon cancer patients, and proposed as an alternative driver of Wnt/β-catenin hyperactivation that earmarks cancer in the colorectal tract. Moreover, the causal oncogenic capacity of RSPO3 overactivation has been demonstrated in the mouse intestine. As a paradigm organ in this field, most of current knowledge about RSPOs in cancer is derived from studies in the intestinal tract. However, RSPO gene fusions as well as enhanced RSPO expression have been reported in multiple additional cancer types, affecting different organs that involve divergent stem cell hierarchies. Importantly, the emerging oncogenic role of RSPO and its potential clinical utility as a therapeutic target have been recognized and investigated in preclinical and clinical settings. This review provides a survey of current knowledge on the role of RSPOs in cancer biology, addressing the different organs implicated, and of efforts made to explore intervention opportunities in cancer cases with RSPO overrepresentation, including the potential utilization of RSPO as novel therapeutic target itself.
Collapse
Affiliation(s)
- Eline J Ter Steege
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elvira R M Bakker
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Abstract
Somatic stem cells are distinguished by their capacity to regenerate themselves and also to produce daughter cells that will differentiate. Self-renewal is achieved through the process of asymmetric cell division which helps to sustain tissue morphogenesis as well as maintain homeostasis. Asymmetric cell division results in the development of two daughter cells with different fates after a single mitosis. Only one daughter cell maintains "stemness" while the other differentiates and achieves a non-stem cell fate. Stem cells also have the capacity to undergo symmetric division of cells that results in the development of two daughter cells which are identical. Symmetric division results in the expansion of the stem cell population. Imbalances and deregulations in these processes can result in diseases such as cancer. Adult mammary stem cells (MaSCs) are a group of cells that play a critical role in the expansion of the mammary gland during puberty and any subsequent pregnancies. Furthermore, given the relatively long lifespans and their capability to undergo self-renewal, adult stem cells have been suggested as ideal candidates for transformation events that lead to the development of cancer. With the possibility that MaSCs can act as the source cells for distinct breast cancer types; understanding their regulation is an important field of research. In this review, we discuss asymmetric cell division in breast/mammary stem cells and implications on further research. We focus on the background history of asymmetric cell division, asymmetric cell division monitoring techniques, identified molecular mechanisms of asymmetric stem cell division, and the role asymmetric cell division may play in breast cancer.
Collapse
Affiliation(s)
| | - Brian W Booth
- Department of Bioengineering, Head-Cellular Engineering Laboratory, 401-1 Rhodes Engineering Research Center, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
11
|
Chen W, Wei W, Yu L, Zhang X, Huang F, Zheng Q, Wang L, Cai C. Baicalin Promotes Mammary Gland Development via Steroid-Like Activities. Front Cell Dev Biol 2021; 9:682469. [PMID: 34295892 PMCID: PMC8290356 DOI: 10.3389/fcell.2021.682469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 12/03/2022] Open
Abstract
Baicalin, the main flavonoid component extracted from Scutellaria roots, has a variety of biological activities and is therefore used in the treatment of many kinds of diseases. However, whether baicalin affects the normal development of tissues and organs is still unclear. Here, using a mouse mammary gland model, we investigated the effects of baicalin on the expansion of mammary stem cells (MaSCs) and mammary development, as well as breast cancer progression. Interestingly, we found that baicalin administration significantly accelerates duct elongation at puberty, and promotes alveolar development and facilitates milk secretion during pregnancy. Furthermore, self-renewal of MaSCs was significantly promoted in the presence of baicalin. Moreover, in a tumor xenograft model, baicalin promoted tumor growth of the MDA-MB-231 cell line, but suppressed tumor growth of the ZR-751 cell line. Mechanistically, baicalin can induce expression of the protein C receptor, while inhibiting the expression of the estrogen receptor. Transcriptome analysis revealed that baicalin is involved in signaling pathways related to mammary gland development, immune response, and cell cycle control. Taken together, our results from comprehensive investigation of the biological activity of baicalin provide a theoretical basis for its rational clinical application.
Collapse
Affiliation(s)
- Weizhen Chen
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China
| | - Wei Wei
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China
| | - Liya Yu
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xin Zhang
- Guangzhou University of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou, China
| | - Fujing Huang
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China
| | - Qiping Zheng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Hematological Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China.,Shenzhen Academy of Peptide Targeting Technology at Pingshan, Shenzhen Tyercan Bio-pharm Co., Ltd., Shenzhen, China
| | - Lingli Wang
- Guangzhou University of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou, China
| | - Cheguo Cai
- Department of Orthopaedics, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Medical Research Institute, Wuhan University, Wuhan, China.,Dongguan and Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan City, China.,Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| |
Collapse
|
12
|
Erfani S, Hua H, Pan Y, Zhou BP, Yang XH. The Context-Dependent Impact of Integrin-Associated CD151 and Other Tetraspanins on Cancer Development and Progression: A Class of Versatile Mediators of Cellular Function and Signaling, Tumorigenesis and Metastasis. Cancers (Basel) 2021; 13:cancers13092005. [PMID: 33919420 PMCID: PMC8122392 DOI: 10.3390/cancers13092005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Tetraspanins are a family of molecules abundantly expressed on the surface of normal or tumor cells. They have been implicated in recruiting or sequestering key molecular regulators of malignancy of a variety of human cancers, including breast and lung cancers, glioblastoma and leukemia. Yet, how their actions take place remains mysterious due to a lack of traditional platform for molecular interactions. The current review digs into this mystery by examining findings from recent studies of multiple tetraspanins, particularly CD151. The molecular basis for differential impact of tetraspanins on tumor development, progression, and spreading to secondary sites is highlighted, and the complexity and plasticity of their control over tumor cell activities and interaction with their surroundings is discussed. Finally, an outlook is provided regarding tetraspanins as candidate biomarkers and targets for the diagnosis and treatment of human cancer. Abstract As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs), and the Wnt/β-catenin pathway, as well as the dynamics of exosome and cellular metabolism. Finally, we discuss the implications of the highly plastic nature and epigenetic susceptibility of CD151 expression, function, and signaling for clinical diagnosis and therapeutic intervention for human cancer.
Collapse
Affiliation(s)
- Sonia Erfani
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Pharmacy Department, St. Elizabeth Healthcare, Edgewood, KY 41017, USA
| | - Hui Hua
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China; (H.H.); (Y.P.)
- Provincial Hospital, Hefei, Anhui 230001, China
| | - Binhua P. Zhou
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-323-1996
| |
Collapse
|
13
|
Wang J, Song W, Yang R, Li C, Wu T, Dong XB, Zhou B, Guo X, Chen J, Liu Z, Yu QC, Li W, Fu J, Zeng YA. Endothelial Wnts control mammary epithelial patterning via fibroblast signaling. Cell Rep 2021; 34:108897. [PMID: 33789106 DOI: 10.1016/j.celrep.2021.108897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial and fibroblast niches are crucial for epithelial organs. How these heterotypic cells interact is of great interest. In this study, we reveal an axis of signaling in which fibroblasts relay Wnt signals from the endothelial niche to organize epithelial patterning. We generate an Axin2-membrane GFP (mGFP) reporter mouse and observe robust Wnt/β-catenin signaling activities in fibroblasts surrounding the mammary epithelium. To enable cell-type-specific gene manipulation in vitro, we establish an organoid system via coculture of endothelial cells (ECs), fibroblasts, and mammary epithelial cells. Deletion of β-catenin in fibroblasts impedes epithelium branching, and ECs are responsible for the activation of Wnt/β-catenin signaling in fibroblasts. In vivo, EC deletion of Wntless inhibits Wnt/β-catenin signaling activity in fibroblasts, rendering a reduction in epithelial branches. These findings highlight the significance of the endothelial niche in tissue patterning, shedding light on the interactive mechanisms in which distinct niche components orchestrate epithelial organogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Jingqiang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Wenqian Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ruikai Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ting Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao Bing Dong
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xizhi Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Wen Li
- Center of reproductive medicine, Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Junfen Fu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
14
|
Abstract
Wnt signaling is an important morphogenetic signaling pathway best known for its essential role in determining embryonic cell fates; it is often activated to re-specify fetal cells or to maintain the lineage flexibility of somatic stem cells. In this review, we consider the role of this pathway in the remarkable process of differentiation, growth and morphogenesis of the mammary gland during embryogenesis, ductal outgrowth and pregnancy. Specifically, mammary stem cells are compared with stem cells from other tissues, to identify commonalities and differences. Wnt signaling is known to be required to maintain the bipotent basal stem cell present in adult mammary ductal trees, however, the absence of this stem cell has little effect on growth or morphogenesis, and Wnt signaling is not induced during the ductal/alveolar expansion during pregnancy. The evidence for pre-determined hierarchies of mammary epithelial cells is reviewed, together with the role of signaling between mixtures of specified mammary epithelial cells in the maintenance of Wnt-dependent clonagenic stem cells. The dazzling variety of Wnt signaling components expressed by mammary epithelial cells is presented, along with some potential stromal sources of Wnt proteins that may be important starting points for the induction of plasticity in the epithelium.
Collapse
Affiliation(s)
- Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
15
|
Kothari C, Diorio C, Durocher F. The Importance of Breast Adipose Tissue in Breast Cancer. Int J Mol Sci 2020; 21:ijms21165760. [PMID: 32796696 PMCID: PMC7460846 DOI: 10.3390/ijms21165760] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is a complex endocrine organ, with a role in obesity and cancer. Adipose tissue is generally linked to excessive body fat, and it is well known that the female breast is rich in adipose tissue. Hence, one can wonder: what is the role of adipose tissue in the breast and why is it required? Adipose tissue as an organ consists of adipocytes, an extracellular matrix (ECM) and immune cells, with a significant role in the dynamics of breast changes throughout the life span of a female breast from puberty, pregnancy, lactation and involution. In this review, we will discuss the importance of breast adipose tissue in breast development and its involvement in breast changes happening during pregnancy, lactation and involution. We will focus on understanding the biology of breast adipose tissue, with an overview on its involvement in the various steps of breast cancer development and progression. The interaction between the breast adipose tissue surrounding cancer cells and vice-versa modifies the tumor microenvironment in favor of cancer. Understanding this mutual interaction and the role of breast adipose tissue in the tumor microenvironment could potentially raise the possibility of overcoming breast adipose tissue mediated resistance to therapies and finding novel candidates to target breast cancer.
Collapse
Affiliation(s)
- Charu Kothari
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada;
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
- Department of Preventive and Social Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada;
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48508)
| |
Collapse
|
16
|
Kluz PN, Kolb R, Xie Q, Borcherding N, Liu Q, Luo Y, Kim MC, Wang L, Zhang Y, Li W, Stipp C, Gibson-Corley KN, Zhao C, Qi HH, Bellizzi A, Tao AW, Sugg S, Weigel RJ, Zhou D, Shen X, Zhang W. Cancer cell-intrinsic function of CD177 in attenuating β-catenin signaling. Oncogene 2020; 39:2877-2889. [PMID: 32042113 PMCID: PMC7127950 DOI: 10.1038/s41388-020-1203-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Aiming to identify immune molecules with a novel function in cancer pathogenesis, we found the cluster of differentiation 177 (CD177), a known neutrophil antigen, to be positively correlated with relapse-free (RFS), metastasis-free (MFS) or overall survival (OS) in breast cancer. Additionally, CD177 expression is correlated with good prognosis in several other solid cancers including prostate, cervical, and lung. Focusing on breast cancer, we found that CD177 is expressed in normal breast epithelial cells and is significantly reduced in invasive cancers. Loss of CD177 leads to hyperproliferative mammary epithelium and contributes to breast cancer pathogenesis. Mechanistically, we found that CD177-deficiency is associated with an increase in β-Catenin signaling. Here we identified CD177 as a novel regulator of mammary epithelial proliferation and breast cancer pathogenesis likely via the modulation of Wnt/β-Catenin signaling pathway, a key signaling pathway involved in multiple cancer types.
Collapse
Affiliation(s)
- Paige N Kluz
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA.,Free Radical and Radiation Biology Program, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Qing Xie
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA.,Tumor Signaling and Transduction Laboratory, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, China
| | - Nicholas Borcherding
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA.,Medical Science Training Program, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Qi Liu
- Department of Anatomy and Cell Biology, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Yuewan Luo
- Free Radical and Radiation Biology Program, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Myung-Chul Kim
- Free Radical and Radiation Biology Program, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Linna Wang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yinan Zhang
- Department of Biology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Wei Li
- Free Radical and Radiation Biology Program, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Christopher Stipp
- Department of Biology, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA.,Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA.,Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Chen Zhao
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Hank H Qi
- Department of Anatomy and Cell Biology, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Andrew Bellizzi
- Department of Pathology, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA.,Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Andy W Tao
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Sonia Sugg
- Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA.,Department of Surgery, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Ronald J Weigel
- Holden Comprehensive Cancer Center, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA.,Department of Surgery, University of Iowa, College of Medicine, Iowa City, IA, 52242-1109, USA
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Xian Shen
- Division of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China.
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
17
|
van Schie EH, van Amerongen R. Aberrant WNT/CTNNB1 Signaling as a Therapeutic Target in Human Breast Cancer: Weighing the Evidence. Front Cell Dev Biol 2020; 8:25. [PMID: 32083079 PMCID: PMC7005411 DOI: 10.3389/fcell.2020.00025] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
WNT signaling is crucial for tissue morphogenesis during development in all multicellular animals. After birth, WNT/CTNNB1 responsive stem cells are responsible for tissue homeostasis in various organs and hyperactive WNT/CTNNB1 signaling is observed in many different human cancers. The first link between WNT signaling and breast cancer was established almost 40 years ago, when Wnt1 was identified as a proto-oncogene capable of driving mammary tumor formation in mice. Since that discovery, there has been a dedicated search for aberrant WNT signaling in human breast cancer. However, much debate and controversy persist regarding the importance of WNT signaling for the initiation, progression or maintenance of different breast cancer subtypes. As the first drugs designed to block functional WNT signaling have entered clinical trials, many questions about the role of aberrant WNT signaling in human breast cancer remain. Here, we discuss three major research gaps in this area. First, we still lack a basic understanding of the function of WNT signaling in normal human breast development and physiology. Second, the overall extent and precise effect of (epi)genetic changes affecting the WNT pathway in different breast cancer subtypes are still unknown. Which underlying molecular and cell biological mechanisms are disrupted as a result also awaits further scrutiny. Third, we survey the current status of targeted therapeutics that are aimed at interfering with the WNT pathway in breast cancer patients and highlight the importance and complexity of selecting the subset of patients that may benefit from treatment.
Collapse
Affiliation(s)
| | - Renée van Amerongen
- Section of Molecular Cytology and van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Fu NY, Nolan E, Lindeman GJ, Visvader JE. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development. Physiol Rev 2019; 100:489-523. [PMID: 31539305 DOI: 10.1152/physrev.00040.2018] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammary gland is a highly dynamic organ that undergoes profound changes within its epithelium during puberty and the reproductive cycle. These changes are fueled by dedicated stem and progenitor cells. Both short- and long-lived lineage-restricted progenitors have been identified in adult tissue as well as a small pool of multipotent mammary stem cells (MaSCs), reflecting intrinsic complexity within the epithelial hierarchy. While unipotent progenitor cells predominantly execute day-to-day homeostasis and postnatal morphogenesis during puberty and pregnancy, multipotent MaSCs have been implicated in coordinating alveologenesis and long-term ductal maintenance. Nonetheless, the multipotency of stem cells in the adult remains controversial. The advent of large-scale single-cell molecular profiling has revealed striking changes in the gene expression landscape through ontogeny and the presence of transient intermediate populations. An increasing number of lineage cell-fate determination factors and potential niche regulators have now been mapped along the hierarchy, with many implicated in breast carcinogenesis. The emerging diversity among stem and progenitor populations of the mammary epithelium is likely to underpin the heterogeneity that characterizes breast cancer.
Collapse
Affiliation(s)
- Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma Nolan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Visvader
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Tharmapalan P, Mahendralingam M, Berman HK, Khokha R. Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention. EMBO J 2019; 38:e100852. [PMID: 31267556 PMCID: PMC6627238 DOI: 10.15252/embj.2018100852] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/11/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer prevention is daunting, yet not an unsurmountable goal. Mammary stem and progenitors have been proposed as the cells-of-origin in breast cancer. Here, we present the concept of limiting these breast cancer precursors as a risk reduction approach in high-risk women. A wealth of information now exists for phenotypic and functional characterization of mammary stem and progenitor cells in mouse and human. Recent work has also revealed the hormonal regulation of stem/progenitor dynamics as well as intrinsic lineage distinctions between mammary epithelial populations. Leveraging these insights, molecular marker-guided chemoprevention is an achievable reality.
Collapse
Affiliation(s)
| | - Mathepan Mahendralingam
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Hal K Berman
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| | - Rama Khokha
- Princess Margaret Cancer CentreUniversity Health NetworkUniversity of TorontoTorontoONCanada
| |
Collapse
|
20
|
Anstine LJ, Keri R. A new view of the mammary epithelial hierarchy and its implications for breast cancer initiation and metastasis. ACTA ACUST UNITED AC 2019; 5. [PMID: 32395618 DOI: 10.20517/2394-4722.2019.24] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The existence of mammary epithelial stem cell (MaSC) populations capable of mediating mammary gland development and homeostasis has been established for over a decade. A combination of lineage tracing and mammary gland transplantation studies has affirmed that MaSCs and their downstream progenitors are organized in a hierarchal manner; however, these techniques have failed to illuminate the complete spectrum of epithelial intermediate populations or their spatial and temporal relationships. The advent of single cell sequencing technology has allowed for characterization of highly heterogeneous tissues at high resolution. In the last two years, the remarkable advances in single cell RNA sequencing (scRNA-seq) technologies have been leveraged to address the heterogeneity of the mammary epithelium. These studies have afforded fresh insights into the transcriptional differentiation hierarchy and its chronology. Importantly, these data have led to a major conceptual shift in which the rigid boundaries separating stem, progenitor, and differentiated epithelial populations have been deconstructed, resulting in a new more fluid and flexible model of epithelial differentiation. The emerging view of the mammary epithelial hierarchy has important implications for mammary development, carcinogenesis, and metastasis, providing novel insights into the underlying cellular states that may promote malignant phenotypes.
Collapse
Affiliation(s)
- Lindsey J Anstine
- Department of Pharmacology, CWRU School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruth Keri
- Department of Pharmacology, CWRU School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Stem Cells and Cellular Origins of Mammary Gland: Updates in Rationale, Controversies, and Cancer Relevance. Stem Cells Int 2019; 2019:4247168. [PMID: 30728840 PMCID: PMC6341275 DOI: 10.1155/2019/4247168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 01/31/2023] Open
Abstract
Evidences have supported the pivotal roles of stem cells in mammary gland development. Many molecular markers have been identified to characterize mammary stem cells. Cellular fate mapping of mammary stem cells by lineage tracing has put unprecedented insights into the mammary stem cell biology, which identified two subtypes of mammary stem cells, including unipotent and multipotent, which specifically differentiate to luminal or basal cells. The emerging single-cell sequencing profiles have given a more comprehensive understanding on the cellular hierarchy and lineage signatures of mammary epithelium. Besides, the stem cell niche worked as an essential regulator in sustaining the functions of mammary stem cells. In this review, we provide an overview of the characteristics of mammary stem cells. The cellular origins of mammary gland are discussed to understand the stem cell heterogeneity and their diverse differentiations. Importantly, current studies suggested that the breast cancer stem cells may originate from the mammary stem cells after specific mutations, indicating their close relationships. Here, we also outline the recent advances and controversies in the cancer relevance of mammary stem cells.
Collapse
|
22
|
Ashad-Bishop K, Garikapati K, Lindley LE, Jorda M, Briegel KJ. Loss of Limb-Bud-and-Heart (LBH) attenuates mammary hyperplasia and tumor development in MMTV-Wnt1 transgenic mice. Biochem Biophys Res Commun 2018; 508:536-542. [PMID: 30509497 DOI: 10.1016/j.bbrc.2018.11.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 01/31/2023]
Abstract
WNT/β-catenin signaling plays pivotal roles in mammary development and tumorigenesis; and aberrant activation of this pathway is frequently observed in human breast cancer, correlating with poor outcome. However, the mechanisms underlying WNT-driven mammary tumorigenesis remain incompletely understood. Here, we used mouse mammary tumor virus (MMTV)-Wnt1 transgenic mice, which develop aggressive mammary adenocarcinomas, to examine whether Limb-Bud-and-Heart (LBH) - a WNT/β-catenin target transcription co-factor overexpressed in human triple-negative breast cancers with WNT pathway hyperactivation, contributes to WNT-induced tumorigenesis. We found LBH is specifically overexpressed in basal epithelial tumor cells of MMTV-Wnt1 mammary tumors reminiscent of its basal cell-restricted expression in the normal postnatal mammary gland. To determine the role of LBH in mammary tumorigenesis, we crossed MMTV-Wnt1 mice with basal epithelial-specific Keratin 14/K14-Cre;LbhloxP knockout mice. Mammary glands from virgin LBH-deficient MMTV-Wnt1 mice exhibited reduced hyperplasia, cell proliferation and increased apoptosis. Importantly, LBH inactivation in mammary epithelium significantly delayed tumor onset in MMTV-Wnt1 transgenic mice, with a median tumor-free survival of 32.5 weeks compared to 22.5 weeks in control LBH wild type MMTV-Wnt1 mice (p < 0.05). This data provides the first evidence that LBH plays an essential role in WNT-induced mammary tumorigenesis by promoting hyperplastic growth and tumor formation.
Collapse
Affiliation(s)
- Kilan Ashad-Bishop
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Surgery, Molecular Oncology Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Koteswararao Garikapati
- Department of Surgery, Molecular Oncology Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Linsey E Lindley
- Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Merce Jorda
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Karoline J Briegel
- Department of Surgery, Molecular Oncology Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
23
|
Adorno M, di Robilant BN, Sikandar SS, Acosta VH, Antony J, Heller CH, Clarke MF. Usp16 modulates Wnt signaling in primary tissues through Cdkn2a regulation. Sci Rep 2018; 8:17506. [PMID: 30504774 PMCID: PMC6269430 DOI: 10.1038/s41598-018-34562-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 08/13/2018] [Indexed: 11/09/2022] Open
Abstract
Regulation of the Wnt pathway in stem cells and primary tissues is still poorly understood. Here we report that Usp16, a negative regulator of Bmi1/PRC1 function, modulates the Wnt pathway in mammary epithelia, primary human fibroblasts and MEFs, affecting their expansion and self-renewal potential. In mammary glands, reduced levels of Usp16 increase tissue responsiveness to Wnt, resulting in upregulation of the downstream Wnt target Axin2, expansion of the basal compartment and increased in vitro and in vivo epithelial regeneration. Usp16 regulation of the Wnt pathway in mouse and human tissues is at least in part mediated by activation of Cdkn2a, a regulator of senescence. At the molecular level, Usp16 affects Rspo-mediated phosphorylation of LRP6. In Down’s Syndrome (DS), triplication of Usp16 dampens the activation of the Wnt pathway. Usp16 copy number normalization restores normal Wnt activation in Ts65Dn mice models. Genetic upregulation of the Wnt pathway in Ts65Dn mice rescues the proliferation defect observed in mammary epithelial cells. All together, these findings link important stem cell regulators like Bmi1/Usp16 and Cdkn2a to Wnt signaling, and have implications for designing therapies for conditions, like DS, aging or degenerative diseases, where the Wnt pathway is hampered.
Collapse
Affiliation(s)
- Maddalena Adorno
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Benedetta Nicolis di Robilant
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Shaheen Shabbir Sikandar
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Veronica Haro Acosta
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA.,Molecular and Computational Biology Department, University of Southern California, Los Angeles, California, 90087, USA
| | - Jane Antony
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Craig H Heller
- Department of Biology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Michael F Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, 94305, USA.
| |
Collapse
|
24
|
Hollern DP, Contreras CM, Dance-Barnes S, Silva GO, Pfefferle AD, Xiong J, Darr DB, Usary J, Mott KR, Perou CM. A mouse model featuring tissue-specific deletion of p53 and Brca1 gives rise to mammary tumors with genomic and transcriptomic similarities to human basal-like breast cancer. Breast Cancer Res Treat 2018; 174:143-155. [PMID: 30484104 PMCID: PMC6418066 DOI: 10.1007/s10549-018-5061-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Purpose and methods In human basal-like breast cancer, mutations and deletions in TP53 and BRCA1 are frequent oncogenic events. Thus, we interbred mice expressing the CRE-recombinase with mice harboring loxP sites at TP53 and BRCA1 (K14-Cre; p53f/f Brca1f/f) to test the hypothesis that tissue-specific deletion of TP53 and BRCA1 would give rise to tumors reflective of human basal-like breast cancer. Results In support of our hypothesis, these transgenic mice developed tumors that express basal-like cytokeratins and demonstrated intrinsic gene expression features similar to human basal-like tumors. Array comparative genomic hybridization revealed a striking conservation of copy number alterations between the K14-Cre; p53f/f Brca1f/f mouse model and human basal-like breast cancer. Conserved events included MYC amplification, KRAS amplification, and RB1 loss. Microarray analysis demonstrated that these DNA copy number events also led to corresponding changes in signatures of pathway activation including high proliferation due to RB1 loss. K14-Cre; p53f/f Brca1f/f also matched human basal-like breast cancer for a propensity to have immune cell infiltrates. Given the long latency of K14-Cre; p53f/f Brca1f/f tumors (~ 250 days), we created tumor syngeneic transplant lines, as well as in vitro cell lines, which were tested for sensitivity to carboplatin and paclitaxel. These therapies invoked acute regression, extended overall survival, and resulted in gene expression signatures of an anti-tumor immune response. Conclusion These findings demonstrate that this model is a valuable preclinical resource for the study of human basal-like breast cancer. Electronic supplementary material The online version of this article (10.1007/s10549-018-5061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Cristina M Contreras
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Stephanie Dance-Barnes
- Department of Biological Sciences, Winston Salem State University, Winston-Salem, NC, 27110, USA
| | - Grace O Silva
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Adam D Pfefferle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jessie Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA
| | - Jerry Usary
- Arrow Genomics LLC, Chapel Hill, NC, 27517, USA
| | - Kevin R Mott
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, CB#7264, Chapel Hill, NC, 27599, USA. .,Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
25
|
Olabi S, Ucar A, Brennan K, Streuli CH. Integrin-Rac signalling for mammary epithelial stem cell self-renewal. Breast Cancer Res 2018; 20:128. [PMID: 30348189 PMCID: PMC6198444 DOI: 10.1186/s13058-018-1048-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Background Stem cells are precursors for all mammary epithelia, including ductal and alveolar epithelia, and myoepithelial cells. In vivo mammary epithelia reside in a tissue context and interact with their milieu via receptors such as integrins. Extracellular matrix receptors coordinate important cellular signalling platforms, of which integrins are the central architects. We have previously shown that integrins are required for mammary epithelial development and function, including survival, cell cycle, and polarity, as well as for the expression of mammary-specific genes. In the present study we looked at the role of integrins in mammary epithelial stem cell self-renewal. Methods We used an in vitro stem cell assay with primary mouse mammary epithelial cells isolated from genetically altered mice. This involved a 3D organoid assay, providing an opportunity to distinguish the stem cell- or luminal progenitor-driven organoids as structures with solid or hollow appearances, respectively. Results We demonstrate that integrins are essential for the maintenance and self-renewal of mammary epithelial stem cells. Moreover integrins activate the Rac1 signalling pathway in stem cells, which leads to the stimulation of a Wnt pathway, resulting in expression of β-catenin target genes such as Axin2 and Lef1. Conclusions Integrin/Rac signalling has a role in specifying the activation of a canonical Wnt pathway that is required for mammary epithelial stem cell self-renewal. Electronic supplementary material The online version of this article (10.1186/s13058-018-1048-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Safiah Olabi
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ahmet Ucar
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Keith Brennan
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
26
|
Nag JK, Kancharla A, Maoz M, Turm H, Agranovich D, Gupta CL, Uziely B, Bar-Shavit R. Low-density lipoprotein receptor-related protein 6 is a novel coreceptor of protease-activated receptor-2 in the dynamics of cancer-associated β-catenin stabilization. Oncotarget 2018; 8:38650-38667. [PMID: 28418856 PMCID: PMC5503561 DOI: 10.18632/oncotarget.16246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 02/17/2017] [Indexed: 01/28/2023] Open
Abstract
Protease-activated receptor-2 (PAR2) plays a central role in cancer; however, the molecular machinery of PAR2-instigated tumors remains to be elucidated. We show that PAR2 is a potent inducer of β-catenin stabilization, a core process in cancer biology, leading to its transcriptional activity. Novel association of low-density lipoprotein-related protein 6 (LRP6), a known coreceptor of Frizzleds (Fz), with PAR2 takes place following PAR2 activation. The association between PAR2 and LRP6 was demonstrated employing co-immunoprecipitation, bioluminescence resonance energy transfer (BRET), and confocal microscopy analysis. The association was further supported by ZDOCK protein-protein server. PAR2-LRP6 interaction promotes rapid phosphorylation of LRP6, which results in the recruitment of Axin. Confocal microscopy of PAR2-driven mammary gland tumors in vivo, as well as in vitro confirms the association between PAR2 and LRP6. Indeed, shRNA silencing of LRP6 potently inhibits PAR2-induced β-catenin stabilization, demonstrating its critical role in the induced path. We have previously shown a novel link between protease-activated receptor-1 (PAR1) and β-catenin stabilization, both in a transgenic (tg) mouse model with overexpression of human PAR1 (hPar1) in the mammary glands, and in cancer epithelial cell lines. Unlike in PAR1-Gα13 axis, both Gα12 and Gα13 are equally involved in PAR2-induced β-catenin stabilization. Disheveled (DVL) is translocated to the cell nucleus through the DVL-PDZ domain. Collectively, our data demonstrate a novel PAR2-LRP6-Axin interaction as a key axis of PAR2-induced β-catenin stabilization in cancer. This newly described axis enhances our understanding of cancer biology, and opens new avenues for future development of anti-cancer therapies.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Arun Kancharla
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Myriam Maoz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Hagit Turm
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Daniel Agranovich
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Beatrice Uziely
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
27
|
Chakrabarti R, Celià-Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, Hwang J, Peng J, Nixon B, Grady JJ, DeCoste C, Gao J, van Es JH, Li MO, Aifantis I, Clevers H, Kang Y. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science 2018; 360:science.aan4153. [PMID: 29773667 DOI: 10.1126/science.aan4153] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/04/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
Abstract
The stem cell niche is a specialized environment that dictates stem cell function during development and homeostasis. We show that Dll1, a Notch pathway ligand, is enriched in mammary gland stem cells (MaSCs) and mediates critical interactions with stromal macrophages in the surrounding niche in mouse models. Conditional deletion of Dll1 reduced the number of MaSCs and impaired ductal morphogenesis in the mammary gland. Moreover, MaSC-expressed Dll1 activates Notch signaling in stromal macrophages, increasing their expression of Wnt family ligands such as Wnt3, Wnt10A, and Wnt16, thereby initiating a feedback loop that promotes the function of Dll1-expressing MaSCs. Together, these findings reveal functionally important cross-talk between MaSCs and their macrophageal niche through Dll1-mediated Notch signaling.
Collapse
Affiliation(s)
- Rumela Chakrabarti
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. .,Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Toni Celià-Terrassa
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sushil Kumar
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiang Hang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Abrar Choudhury
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Julie Hwang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jia Peng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Briana Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John J Grady
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Christina DeCoste
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jie Gao
- Department of Pathology, NYU Langone Medical Center, New York City, NY 10016, USA
| | - Johan H van Es
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, Netherlands
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Langone Medical Center, New York City, NY 10016, USA
| | - Hans Clevers
- Department of Pathology, NYU Langone Medical Center, New York City, NY 10016, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
28
|
Sharma M, Castro-Piedras I, Simmons GE, Pruitt K. Dishevelled: A masterful conductor of complex Wnt signals. Cell Signal 2018; 47:52-64. [PMID: 29559363 DOI: 10.1016/j.cellsig.2018.03.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/21/2022]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity [1-3]. The Dsh gene (Dsh/Dvl, in Drosophila and vertebrates respectively) gained popularity when it was discovered that it plays a key role in segment polarity during early embryonic development in Drosophila [4]. Subsequently, the vertebrate homolog of Dishevelled genes were identified in Xenopus (Xdsh), mice (Dvl1, Dvl2, Dvl3), and in humans (DVL1, DVL2, DVL3) [5-10]. Dishevelled functions as a principal component of Wnt signaling pathway and governs several cellular processes including cell proliferation, survival, migration, differentiation, polarity and stem cell renewal. This review will revisit seminal discoveries and also summarize recent advances in characterizing the role of Dishevelled in both normal and pathophysiological settings.
Collapse
Affiliation(s)
- Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Glenn E Simmons
- Department of Biomedical Sciences, University of Minnesota, School of Medicine, Duluth, MN, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
29
|
Bresson L, Faraldo MM, Di-Cicco A, Quintanilla M, Glukhova MA, Deugnier MA. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling. Development 2018; 145:dev.160382. [PMID: 29361573 DOI: 10.1242/dev.160382] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/15/2018] [Indexed: 12/28/2022]
Abstract
Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/β-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of β-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/β-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/β-catenin signaling, a key pathway in mammary development and tumorigenesis.
Collapse
Affiliation(s)
- Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,Université Paris Sud, Université Paris-Saclay, F-91405, Orsay, France.,Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
| | - Marisa M Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,INSERM, Paris, F-75013, France
| | - Amandine Di-Cicco
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Marina A Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,INSERM, Paris, F-75013, France
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France .,INSERM, Paris, F-75013, France
| |
Collapse
|
30
|
Kahn M. Wnt Signaling in Stem Cells and Cancer Stem Cells: A Tale of Two Coactivators. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:209-244. [PMID: 29389517 DOI: 10.1016/bs.pmbts.2017.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt signaling in stem cells plays critical roles in development, normal adult physiology, and disease. In this chapter, we focus on the role of the Wnt signaling pathway in somatic stem cell biology and its critical role in normal tissue homeostasis and cancer. Wnt signaling can both maintain potency and initiate differentiation in somatic stem cells, depending on the cellular and environmental context. Based principally on studies from our lab, we will explain the dichotomous behavior of this signaling pathway in determining stem cell fate decisions, placing special emphasis on the interaction of β-catenin with either of the two highly homologous Kat3 coactivator proteins, CBP and p300. We will also discuss our results, both preclinical and clinical, demonstrating that small molecule modulators of the β-catenin/Kat3 coactivator interaction can be safely utilized to shift the balance between maintenance of potency and initiation of differentiation.
Collapse
Affiliation(s)
- Michael Kahn
- Beckman Research Institute of the City of Hope, Duarte, CA, United States.
| |
Collapse
|
31
|
The Wnt Signaling Landscape of Mammary Stem Cells and Breast Tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:271-298. [DOI: 10.1016/bs.pmbts.2017.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Guo L, Wang X, Yang Y, Xu H, Zhang Z, Yin L, Wang Y, Yang M, Zhao S, Bai S, Zhao L, Wang Z, Lian X, Liu Y, Zhang Q. Methylation of DACT2 contributes to the progression of breast cancer through activating WNT signaling pathway. Oncol Lett 2017; 15:3287-3294. [PMID: 29435071 DOI: 10.3892/ol.2017.7633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/11/2016] [Indexed: 12/16/2022] Open
Abstract
The activation of the Wnt/β-catenin signaling pathway has been demonstrated to play important roles in breast carcinogenesis and to be associated with a poorer prognosis in breast cancer patients. However, genetic mutation is not the major reason for Wnt/β-catenin activation in breast cancer. Dishevelled-associated antagonist of β-catenin homolog 2 (DACT2) is a negative regulator of β-catenin and acts as a tumor suppressor in numerous cancer types; however, the expression change and potential role of DACT2 in breast cancer is unknown. The present study detected the expression and function of DACT2 in breast cancer progression. It was identified that the expression of DACT2 significantly decreased in breast cancer tissues compared with paired adjacent normal breast tissues. Additional investigation demonstrated that the hypermethylation of DACT2 gene promoter contributes to the loss of the gene in breast cancer. It was also demonstrated that DACT2 is a tumor suppressor in breast cancer and inhibits the proliferation and invasion of breast cancer cells by repressing the expression of β-catenin target genes associated with tumor growth and metastasis. The present study indicates that the loss of DACT2 may contribute to breast cancer progression and provides a promising therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Li Guo
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaohong Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yuguang Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Hongchun Xu
- Department of Thoracic Surgery, Mudanjiang Tumor Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Zhihong Zhang
- Obstetrics and Gynecology Department, General Hospital of Daqing Oil Field, Daqing, Heilongjiang 163000, P.R. China
| | - Lili Yin
- Obstetrics and Gynecology Department, Heilongjiang Electric Power Hospital, Harbin, Heilongjiang 150090, P.R. China
| | - Yan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Maopeng Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Shu Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Shuping Bai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Ling Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Zhipeng Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xin Lian
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Ying Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
33
|
Zhang H, Li X, Meng W, Zhang L, Zhu X, Bai Z, Yan J, Zhou W. Overexpression of p16ink4a regulates the Wnt/β‑catenin signaling pathway in pancreatic cancer cells. Mol Med Rep 2017; 17:2614-2618. [PMID: 29207089 DOI: 10.3892/mmr.2017.8139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 10/18/2017] [Indexed: 11/05/2022] Open
Abstract
The pathogenesis and etiology of pancreatic cancer remain to be fully elucidated; therefore, associated investigations are required to improve the outcome and prognosis of patients. In the present study, the effects of the overexpression of p16ink4a on the Wnt/β‑catenin signaling pathway were investigated in pancreatic cancer cell lines. Two pancreatic cancer cell lines, Bxpc‑3 and Miapaca‑2, characterized by low expression of p16ink4a, were transfected with the pc‑DNA3.0‑p16ink4a plasmid. After 24 h, Reverse transcription‑polymerase chain reaction and western blot analyses were performed to evaluate the expression of p16ink4a, β‑catenin, which is a key molecule in the Wnt/β‑catenin signaling pathway, c‑myc and cyclin D1, which are molecules downstream of β‑catenin. The expression of p16ink4a was significantly upregulated in the transfected cells. Consequently, the expression of β‑catenin was inhibited, whereas the expression levels of c‑myc and cyclin D1 were not altered significantly. The increased expression of p16ink4a may affect the activity of Wnt/β‑catenin signaling through modulation of the expression of β‑catenin. The results of the present study provide information for the future development of targeted treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Hui Zhang
- The 2nd Department of General Surgery, The First Hospital of Lanzhou University, Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Xun Li
- The 2nd Department of General Surgery, The First Hospital of Lanzhou University, Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Wenbo Meng
- The 2nd Department of General Surgery, The First Hospital of Lanzhou University, Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Lei Zhang
- The 2nd Department of General Surgery, The First Hospital of Lanzhou University, Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Xiaoliang Zhu
- The 2nd Department of General Surgery, The First Hospital of Lanzhou University, Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Zhongtian Bai
- The 2nd Department of General Surgery, The First Hospital of Lanzhou University, Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Jun Yan
- The 2nd Department of General Surgery, The First Hospital of Lanzhou University, Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- The 2nd Department of General Surgery, The First Hospital of Lanzhou University, Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
34
|
Characterization of mammary-specific disruptions for Tph1 and Lrp5 during murine lactation. Sci Rep 2017; 7:15155. [PMID: 29123193 PMCID: PMC5680223 DOI: 10.1038/s41598-017-15508-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Serotonin is a homeostatic regulator of the mammary gland during lactation. The contribution of mammary-derived serotonin to circulating serum serotonin concentrations was previously unknown. We have developed mice with mammary-specific disruptions of tryptophan hydroxylase 1 (Tph1) or low-density lipoprotein receptor-related protein 5 (Lrp5) that are induced during late pregnancy and lactation via use of the whey acidic protein (WAP)-Cre cre-lox system. Our objective was to characterize dams with a lactation- and mammary-specific disruption of Lrp5 (WAP-Cre × Lrp5FL/FL) or Tph1 (WAP-Cre × Tph1FL/FL). Milk yield and pup weights were recorded throughout lactation. Dams were euthanized on d10 postpartum and mammary glands and duodenal tissue were harvested. WAP-Cre × Lrp5FL/FL dams had elevated serotonin concentrations in both the mammary gland and circulation compared to controls. In contrast, WAP-Cre × Tph1FL/FL dams had decreased mammary gland and serum serotonin concentrations compared to controls. Alveolar morphology, milk yield, and pup weights were similar. Mammary-derived serotonin makes a significant contribution to circulating serotonin concentrations during lactation, with no effect on milk yield or alveolar morphology. These transgenic models can and should be confidently used in future lactation studies to further elucidate the contribution of serotonin to the maintenance of lactation.
Collapse
|
35
|
Roberts KJ, Kershner AM, Beachy PA. The Stromal Niche for Epithelial Stem Cells: A Template for Regeneration and a Brake on Malignancy. Cancer Cell 2017; 32:404-410. [PMID: 29017054 PMCID: PMC5679442 DOI: 10.1016/j.ccell.2017.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/06/2017] [Accepted: 08/11/2017] [Indexed: 12/31/2022]
Abstract
Stromal restraint of cancer growth and progression-emerging as a widespread phenomenon in epithelial cancers such as bladder, pancreas, colon, and prostate-appears rooted in stromal cell niche activity. During normal tissue repair, stromal niche signals, often Hedgehog-induced, promote epithelial stem cell differentiation as well as self-renewal, thus specifying a regenerating epithelial pattern. In the case of cancerous tissue, stromal cell-derived differentiation signals in particular may provide a brake on malignant growth. Understanding and therapeutic harnessing of the role of stroma in cancer restraint may hinge on our knowledge of the signaling programs elaborated by the stromal niche.
Collapse
Affiliation(s)
- Kelsey J Roberts
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron M Kershner
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip A Beachy
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Paine IS, Lewis MT. The Terminal End Bud: the Little Engine that Could. J Mammary Gland Biol Neoplasia 2017; 22:93-108. [PMID: 28168376 PMCID: PMC5488158 DOI: 10.1007/s10911-017-9372-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
The mammary gland is one of the most regenerative organs in the body, with the majority of development occurring postnatally and in the adult mammal. Formation of the ductal tree is orchestrated by a specialized structure called the terminal end bud (TEB). The TEB is responsible for the production of mature cell types leading to the elongation of the subtending duct. The TEB is also the regulatory control point for basement membrane deposition, branching, angiogenesis, and pattern formation. While the hormonal control of TEB growth is well characterized, the local regulatory factors are less well understood. Recent studies of pubertal outgrowth and ductal elongation have yielded surprising details in regards to ongoing processes in the TEB. Here we summarize the current understanding of TEB biology, discuss areas of future study, and discuss the use of the TEB as a model for the study of breast cancer.
Collapse
Affiliation(s)
- Ingrid S Paine
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Wnt5a Signaling in Normal and Cancer Stem Cells. Stem Cells Int 2017; 2017:5295286. [PMID: 28491097 PMCID: PMC5405594 DOI: 10.1155/2017/5295286] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/07/2017] [Indexed: 01/31/2023] Open
Abstract
Wnt5a is involved in activating several noncanonical Wnt signaling pathways, which can inhibit or activate canonical Wnt/β-catenin signaling pathway in a receptor context-dependent manner. Wnt5a signaling is critical for regulating normal developmental processes, including stem cell self-renewal, proliferation, differentiation, migration, adhesion, and polarity. Moreover, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a signaling in regulating normal and cancer stem cell self-renewal, cancer cell proliferation, migration, and invasion. In this article, we review recent findings regarding the molecular mechanisms and roles of Wnt5a signaling in stem cells in embryogenesis and in the normal or neoplastic breast or ovary, highlighting that Wnt5a may have different effects on target cells depending on the surface receptors expressed by the target cell.
Collapse
|
38
|
Wnt signaling in triple-negative breast cancer. Oncogenesis 2017; 6:e310. [PMID: 28368389 PMCID: PMC5520491 DOI: 10.1038/oncsis.2017.14] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/09/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling regulates a variety of cellular processes, including cell fate, differentiation, proliferation and stem cell pluripotency. Aberrant Wnt signaling is a hallmark of many cancers. An aggressive subtype of breast cancer, known as triple-negative breast cancer (TNBC), demonstrates dysregulation in canonical and non-canonical Wnt signaling. In this review, we summarize regulators of canonical and non-canonical Wnt signaling, as well as Wnt signaling dysfunction that mediates the progression of TNBC. We review the complex molecular nature of TNBC and the emerging therapies that are currently under investigation for the treatment of this disease.
Collapse
|
39
|
Zhao C, Cai S, Shin K, Lim A, Kalisky T, Lu WJ, Clarke MF, Beachy PA. Stromal Gli2 activity coordinates a niche signaling program for mammary epithelial stem cells. Science 2017; 356:science.aal3485. [PMID: 28280246 DOI: 10.1126/science.aal3485] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
The stem cell niche is a complex local signaling microenvironment that sustains stem cell activity during organ maintenance and regeneration. The mammary gland niche must support its associated stem cells while also responding to systemic hormonal regulation that triggers pubertal changes. We find that Gli2, the major Hedgehog pathway transcriptional effector, acts within mouse mammary stromal cells to direct a hormone-responsive niche signaling program by activating expression of factors that regulate epithelial stem cells as well as receptors for the mammatrophic hormones estrogen and growth hormone. Whereas prior studies implicate stem cell defects in human disease, this work shows that niche dysfunction may also cause disease, with possible relevance for human disorders and in particular the breast growth pathogenesis associated with combined pituitary hormone deficiency.
Collapse
Affiliation(s)
- Chen Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shang Cai
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kunyoo Shin
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyumgbuk 37673, South Korea
| | - Agnes Lim
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomer Kalisky
- Faculty of Engineering and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Wan-Jin Lu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael F Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA. .,Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 2017; 542:313-317. [PMID: 28135720 DOI: 10.1038/nature21046] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
During puberty, the mouse mammary gland develops into a highly branched epithelial network. Owing to the absence of exclusive stem cell markers, the location, multiplicity, dynamics and fate of mammary stem cells (MaSCs), which drive branching morphogenesis, are unknown. Here we show that morphogenesis is driven by proliferative terminal end buds that terminate or bifurcate with near equal probability, in a stochastic and time-invariant manner, leading to a heterogeneous epithelial network. We show that the majority of terminal end bud cells function as highly proliferative, lineage-committed MaSCs that are heterogeneous in their expression profile and short-term contribution to ductal extension. Yet, through cell rearrangements during terminal end bud bifurcation, each MaSC is able to contribute actively to long-term growth. Our study shows that the behaviour of MaSCs is not directly linked to a single expression profile. Instead, morphogenesis relies upon lineage-restricted heterogeneous MaSC populations that function as single equipotent pools in the long term.
Collapse
|
41
|
Mammary stem cells: angels or demons in mammary gland? Signal Transduct Target Ther 2017; 2:16038. [PMID: 29263909 PMCID: PMC5661614 DOI: 10.1038/sigtrans.2016.38] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023] Open
Abstract
A highly dynamic development process exits within the epithelia of mammary gland, featuring morphogenetic variation during puberty, pregnancy, lactation, and regression. The identification of mammary stem cells (MaSCs) via lineage-tracing studies has substantiated a hierarchical organization of the mammary epithelia. A single MaSC is capable of reconstituting the entirely functional mammary gland upon orthotopic transplantation. Although different mammary cell subpopulations can be candidate cells-of-origin for distinct breast tumor subtypes, it still lacks experimental proofs whether MaSCs, the most primitive cells, are the ‘seeds’ of malignant transformation during most, if not all, tumorigenesis in the breast. Here, we review current knowledge of mammary epithelial hierarchy, highlighting the roles of mammary stem/progenitor cells and breast cancer stem cells (BCSCs) along with their key molecular regulators in organ development and cancer evolution. Clarifying these issues will pave the way for developing novel interventions toward stem/progenitor cells in either prevention or treatment of breast cancer (BrCa).
Collapse
|
42
|
Santoro A, Vlachou T, Carminati M, Pelicci PG, Mapelli M. Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Rep 2016; 17:1700-1720. [PMID: 27872203 DOI: 10.15252/embr.201643021] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 01/16/2023] Open
Abstract
Stem cells have the remarkable ability to undergo proliferative symmetric divisions and self-renewing asymmetric divisions. Balancing of the two modes of division sustains tissue morphogenesis and homeostasis. Asymmetric divisions of Drosophila neuroblasts (NBs) and sensory organ precursor (SOP) cells served as prototypes to learn what we consider now principles of asymmetric mitoses. They also provide initial evidence supporting the notion that aberrant symmetric divisions of stem cells could correlate with malignancy. However, transferring the molecular knowledge of circuits underlying asymmetry from flies to mammals has proven more challenging than expected. Several experimental approaches have been used to define asymmetry in mammalian systems, based on daughter cell fate, unequal partitioning of determinants and niche contacts, or proliferative potential. In this review, we aim to provide a critical evaluation of the assays used to establish the stem cell mode of division, with a particular focus on the mammary gland system. In this context, we will discuss the genetic alterations that impinge on the modality of stem cell division and their role in breast cancer development.
Collapse
Affiliation(s)
- Angela Santoro
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Thalia Vlachou
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Manuel Carminati
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| |
Collapse
|
43
|
Wnt/β-catenin signaling pathway activation is required for proliferation of chicken primordial germ cells in vitro. Sci Rep 2016; 6:34510. [PMID: 27687983 PMCID: PMC5062643 DOI: 10.1038/srep34510] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022] Open
Abstract
Here, we investigated the role of the Wnt/β-catenin signaling pathway in chicken primordial germ cells (PGCs) in vitro. We confirmed the expression of Wnt signaling pathway-related genes and the localization of β-catenin in the nucleus, revealing that this pathway is potentially activated in chicken PGCs. Then, using the single-cell pick-up assay, we examined the proliferative capacity of cultured PGCs in response to Wnt ligands, a β-catenin-mediated Wnt signaling activator (6-bromoindirubin-3′-oxime [BIO]) or inhibitor (JW74), in the presence or absence of basic fibroblast growth factor (bFGF). WNT1, WNT3A, and BIO promoted the proliferation of chicken PGCs similarly to bFGF, whereas JW74 inhibited this proliferation. Meanwhile, such treatments in combination with bFGF did not show a synergistic effect. bFGF treatment could not rescue PGC proliferation in the presence of JW74. In addition, we confirmed the translocation of β-catenin into the nucleus by the addition of bFGF after JW74 treatment. These results indicate that there is signaling crosstalk between FGF and Wnt, and that β-catenin acts on PGC proliferation downstream of bFGF. In conclusion, our study suggests that Wnt signaling enhances the proliferation of chicken PGCs via the stabilization of β-catenin and activation of its downstream genes.
Collapse
|
44
|
Mammary Development and Breast Cancer: A Wnt Perspective. Cancers (Basel) 2016; 8:cancers8070065. [PMID: 27420097 PMCID: PMC4963807 DOI: 10.3390/cancers8070065] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.
Collapse
|
45
|
Rios C, D'Ippolito G, Curtis KM, Delcroix GJR, Gomez LA, El Hokayem J, Rieger M, Parrondo R, de Las Pozas A, Perez-Stable C, Howard GA, Schiller PC. Low Oxygen Modulates Multiple Signaling Pathways, Increasing Self-Renewal, While Decreasing Differentiation, Senescence, and Apoptosis in Stromal MIAMI Cells. Stem Cells Dev 2016; 25:848-60. [PMID: 27059084 DOI: 10.1089/scd.2015.0362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human bone marrow multipotent mesenchymal stromal cell (hMSC) number decreases with aging. Subpopulations of hMSCs can differentiate into cells found in bone, vasculature, cartilage, gut, and other tissues and participate in their repair. Maintaining throughout adult life such cell subpopulations should help prevent or delay the onset of age-related degenerative conditions. Low oxygen tension, the physiological environment in progenitor cell-rich regions of the bone marrow microarchitecture, stimulates the self-renewal of marrow-isolated adult multilineage inducible (MIAMI) cells and expression of Sox2, Nanog, Oct4a nuclear accumulation, Notch intracellular domain, notch target genes, neuronal transcriptional repressor element 1 (RE1)-silencing transcription factor (REST), and hypoxia-inducible factor-1 alpha (HIF-1α), and additionally, by decreasing the expression of (i) the proapoptotic proteins, apoptosis-inducing factor (AIF) and Bak, and (ii) senescence-associated p53 expression and β-galactosidase activity. Furthermore, low oxygen increases canonical Wnt pathway signaling coreceptor Lrp5 expression, and PI3K/Akt pathway activation. Lrp5 inhibition decreases self-renewal marker Sox2 mRNA, Oct4a nuclear accumulation, and cell numbers. Wortmannin-mediated PI3K/Akt pathway inhibition leads to increased osteoblastic differentiation at both low and high oxygen tension. We demonstrate that low oxygen stimulates a complex signaling network involving PI3K/Akt, Notch, and canonical Wnt pathways, which mediate the observed increase in nuclear Oct4a and REST, with simultaneous decrease in p53, AIF, and Bak. Collectively, these pathway activations contribute to increased self-renewal with concomitant decreased differentiation, cell cycle arrest, apoptosis, and/or senescence in MIAMI cells. Importantly, the PI3K/Akt pathway plays a central mechanistic role in the oxygen tension-regulated self-renewal versus osteoblastic differentiation of progenitor cells.
Collapse
Affiliation(s)
- Carmen Rios
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida.,2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida
| | - Gianluca D'Ippolito
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida.,3 Department of Orthopaedics, University of Miami Miller School of Medicine , Miami, Florida.,4 Geriatrics Institute, University of Miami Miller School of Medicine , Miami, Florida.,5 Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida.,6 Department of Biomedical Engineering, University of Miami , Coral Gables, Florida
| | - Kevin M Curtis
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida.,2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida
| | - Gaëtan J-R Delcroix
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida.,3 Department of Orthopaedics, University of Miami Miller School of Medicine , Miami, Florida.,5 Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida
| | - Lourdes A Gomez
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida
| | - Jimmy El Hokayem
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida
| | - Megan Rieger
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida
| | - Ricardo Parrondo
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida
| | - Alicia de Las Pozas
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida
| | - Carlos Perez-Stable
- 2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida.,7 Department of Medicine, University of Miami Miller School of Medicine , Miami, Florida
| | - Guy A Howard
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida.,2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida.,7 Department of Medicine, University of Miami Miller School of Medicine , Miami, Florida
| | - Paul C Schiller
- 1 Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, Florida.,2 GRECC and Research Service, Veterans Affairs Medical Center , Miami, Florida.,3 Department of Orthopaedics, University of Miami Miller School of Medicine , Miami, Florida.,4 Geriatrics Institute, University of Miami Miller School of Medicine , Miami, Florida.,5 Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
46
|
Rangel MC, Bertolette D, Castro NP, Klauzinska M, Cuttitta F, Salomon DS. Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer. Breast Cancer Res Treat 2016; 156:211-26. [PMID: 26968398 PMCID: PMC4819564 DOI: 10.1007/s10549-016-3746-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Cancer has been considered as temporal and spatial aberrations of normal development in tissues. Similarities between mammary embryonic development and cell transformation suggest that the underlying processes required for mammary gland development are also those perturbed during various stages of mammary tumorigenesis and breast cancer (BC) development. The master regulators of embryonic development Cripto-1, Notch/CSL, and Wnt/β-catenin play key roles in modulating mammary gland morphogenesis and cell fate specification in the embryo through fetal mammary stem cells (fMaSC) and in the adult organism particularly within the adult mammary stem cells (aMaSC), which determine mammary progenitor cell lineages that generate the basal/myoepithelial and luminal compartments of the adult mammary gland. Together with recognized transcription factors and embryonic stem cell markers, these embryonic regulatory molecules can be inappropriately augmented during tumorigenesis to support the tumor-initiating cell (TIC)/cancer stem cell (CSC) compartment, and the effects of their deregulation may contribute for the etiology of BC, in particular the most aggressive subtype of BC, triple-negative breast cancer (TNBC). This in depth review will present evidence of the involvement of Cripto-1, Notch/CSL, and Wnt/β-catenin in the normal mammary gland morphogenesis and tumorigenesis, from fMaSC/aMaSC regulation to TIC generation and maintenance in TNBC. Specific therapies for treating TNBC by targeting these embryonic pathways in TICs will be further discussed, providing new opportunities to destroy not only the bulk tumor, but also TICs that initiate and promote the metastatic spread and recurrence of this aggressive subtype of BC.
Collapse
Affiliation(s)
- Maria Cristina Rangel
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Daniel Bertolette
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Nadia P Castro
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Malgorzata Klauzinska
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Frank Cuttitta
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - David S Salomon
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
47
|
Gross K, Wronski A, Skibinski A, Phillips S, Kuperwasser C, Dettman RW, Wessels A. Cell Fate Decisions During Breast Cancer Development. J Dev Biol 2016; 4:4. [PMID: 27110512 PMCID: PMC4840277 DOI: 10.3390/jdb4010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/20/2016] [Indexed: 01/07/2023] Open
Abstract
During the formation of breast cancer, many genes become altered as cells evolve progressively from normal to a pre-malignant to a malignant state of growth. How mutations in genes lead to specific subtypes of human breast cancer is only partially understood. Here we review how initial genetic or epigenetic alterations within mammary epithelial cells (MECs) can alter cell fate decisions and put pre-malignant cells on a path towards cancer development with specific phenotypes. Understanding the early stages of breast cancer initiation and progression and how normal developmental processes are hijacked during transformation has significant implications for improving early detection and prevention of breast cancer. In addition, insights gleaned from this understanding may also be important for developing subtype-specific treatment options.
Collapse
Affiliation(s)
- Kayla Gross
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
- Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 145 Harrison Ave., Boston, MA 02111, USA
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St., Boston, MA 02111, USA
| | - Ania Wronski
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
- Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 145 Harrison Ave., Boston, MA 02111, USA
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St., Boston, MA 02111, USA
| | - Adam Skibinski
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St., Boston, MA 02111, USA
| | - Sarah Phillips
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St., Boston, MA 02111, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
- Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 145 Harrison Ave., Boston, MA 02111, USA
- Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St., Boston, MA 02111, USA
| | | | | |
Collapse
|
48
|
Williams BO. Genetically engineered mouse models to evaluate the role of Wnt secretion in bone development and homeostasis. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2016; 172C:24-6. [PMID: 26818176 DOI: 10.1002/ajmg.c.31474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Alterations in components of the Wnt signaling pathway are associated with altered bone development and homeostasis in several human diseases. We created genetically engineered mouse models (GEMMs) that mimic the cellular defect associated with the Porcupine mutations in patients with Goltz Syndrome/Focal Dermal Hypoplasia. These GEMMs were established by utilizing mice containing a conditionally inactivatable allele of Wntless/GPR177 (a gene encoding a protein required for the transport of Porcupine-modified ligand to the plasma membrane for secretion). We crossed this strain to another which drives cre-mediated gene deletion in mature osteoblasts (Osteocalcin-cre) resulted in mice lacking the ability to secrete Wnt ligands in this cell type. These mice displayed severely reduced bone mass and provide a model to understand the effects of disrupting the ability to secrete Wnt ligands on the skeletal system.
Collapse
|
49
|
Abstract
There is substantial evidence that many cancers, including breast cancer, are driven by a population of cells that display stem cell properties. These cells, termed cancer stem cells (CSCs) or tumor initiating cells, not only drive tumor initiation and growth but also mediate tumor metastasis and therapeutic resistance. In this chapter, we summarize current advances in CSC research with a major focus on breast CSCs (BCSCs). We review the prevailing methods to isolate and characterize BCSCs and recent evidence documenting their cellular origins and phenotypic plasticity that enables them to transition between mesenchymal and epithelial-like states. We describe in vitro and clinical evidence that these cells mediate metastasis and treatment resistance in breast cancer, the development of novel strategies to isolate circulating tumor cells (CTCs) that contain CSCs and the use of patient-derived xenograft (PDX) models in preclinical breast cancer research. Lastly, we highlight several signaling pathways that regulate BCSC self-renewal and describe clinical implications of targeting these cells for breast cancer treatment. The development of strategies to effectively target BCSCs has the potential to significantly improve the outcomes for patients with breast cancer.
Collapse
|
50
|
Lrp5 Has a Wnt-Independent Role in Glucose Uptake and Growth for Mammary Epithelial Cells. Mol Cell Biol 2015; 36:871-85. [PMID: 26711269 DOI: 10.1128/mcb.00800-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/07/2015] [Indexed: 01/11/2023] Open
Abstract
Lrp5 is typically described as a Wnt signaling receptor, albeit a less effective Wnt signaling receptor than the better-studied sister isoform, Lrp6. Here we show that Lrp5 is only a minor player in the response to Wnt3a-type ligands in mammary epithelial cells; instead, Lrp5 is required for glucose uptake, and glucose uptake regulates the growth rate of mammary epithelial cells in culture. Thus, a loss of Lrp5 leads to profound growth suppression, whether growth is induced by serum or by specific growth factors, and this inhibition is not due to a loss of Wnt signaling. Depletion of Lrp5 decreases glucose uptake, lactate secretion, and oxygen consumption rates; inhibition of glucose consumption phenocopies the loss of Lrp5 function. Both Lrp5 knockdown and low external glucose induce mitochondrial stress, as revealed by the accumulation of reactive oxygen species (ROS) and the activation of the ROS-sensitive checkpoint, p38α. In contrast, loss of function of Lrp6 reduces Wnt responsiveness but has little impact on growth. This highlights the distinct functions of these two Lrp receptors and an important Wnt ligand-independent role of Lrp5 in glucose uptake in mammary epithelial cells.
Collapse
|