1
|
Ruigrok TJH, Wang X, Sabel-Goedknegt E, Coulon P, Gao Z. A disynaptic basal ganglia connection to the inferior olive: potential for basal ganglia influence on cerebellar learning. Front Syst Neurosci 2023; 17:1176126. [PMID: 37215357 PMCID: PMC10196041 DOI: 10.3389/fnsys.2023.1176126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Recent studies have shown that the cerebellum and the basal ganglia are interconnected at subcortical levels. However, a subcortical basal ganglia connection to the inferior olive (IO), being the source of the olivocerebellar climbing fiber system, is not known. We have used classical tracing with CTb, retrograde transneuronal infection with wildtype rabies virus, conditional tracing with genetically modified rabies virus, and examination of material made available by the Allen Brain Institute, to study potential basal ganglia connections to the inferior olive in rats and mice. We show in both species that parvalbumin-positive, and therefore GABAergic, neurons in the entopeduncular nucleus, representing the rodent equivalent of the internal part of the globus pallidus, innervate a group of cells that surrounds the fasciculus retroflexus and that are collectively known as the area parafascicularis prerubralis. As these neurons supply a direct excitatory input to large parts of the inferior olivary complex, we propose that the entopeduncular nucleus, as a main output station of the basal ganglia, provides an inhibitory influence on olivary excitability. As such, this connection may influence olivary involvement in cerebellar learning and/or could be involved in transmission of reward properties that have recently been established for olivocerebellar signaling.
Collapse
Affiliation(s)
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Patrice Coulon
- Institute de Neurosciences de la Timone, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
2
|
Dablan A, Limon YK, Oktay C, Karaali K. Central tegmental tract hyperintensity: follow-up outcomes from a single-center study. Neuroradiology 2023:10.1007/s00234-023-03149-2. [PMID: 37067564 DOI: 10.1007/s00234-023-03149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
PURPOSE To evaluate the follow-up outcomes of symmetrical central tegmental tract hyperintensity (CTTH) and discuss possible etiological factors involved. METHODS Brain MRI scans of 7028 pediatric patients aged 0 to 18 years obtained between July 2015 and May 2020, were reviewed retrospectively for the presence of CTTH. Clinical data of the patients were retrieved from the hospital information system. Patients with follow-up MRI scans were evaluated separately. RESULTS A total of 5113 patients meeting the study inclusion criteria were identified in whom the prevalence of CTTH was 4.02% (n = 206). Of the patients with CTTH, 40.3% (n = 83) were girls, and the median age was 19 months (range, 1-108). The most common MRI indication was seizures (40.3%, n = 83), and among those with a definitive diagnosis, epilepsy was the most prevalent etiology (7.8%, n = 16). 40.7% (n = 84) of the patients with CTTH had follow-up MRI scans. CTTH disappeared on follow-up in 28.6% (n = 24) of the patients. The median age at CTTH disappearance was 51.5 months, and the mean (± SD) time to CTTH disappearance was 31.50 (± 19.02) months. CONCLUSION CTTH is a radiological finding commonly seen in early childhood but its clinical relevance has not been fully elucidated. While CTTH may be a transient phenomenon representing the maturation process, it may also be associated with a number of clinical conditions. Using a large patient series and follow-up MRI scans, our study shed light on the possible etiological factors of CTTH and its evolution over time.
Collapse
Affiliation(s)
- Ali Dablan
- Department of Radiology, Basaksehir Cam and Sakura City Hospital, TR-34488, İstanbul, Turkey.
| | - Yusuf Kerem Limon
- Department of Radiology, Ercis Country Hospital, TR-65400, Van, Turkey
| | - Cemil Oktay
- Department of Radiology, Adıyaman University Education and Research Hospital, TR-02200, Adıyaman, Turkey
| | - Kamil Karaali
- Department of Radiology, Akdeniz University School of Medicine, TR-07070, Antalya, Turkey
| |
Collapse
|
3
|
Borgognon S, Rouiller EM. Loss of Motor Cortical Inputs to the Red Nucleus after CNS Disorders in Nonhuman Primates. J Neurosci 2023; 43:1682-1691. [PMID: 36693756 PMCID: PMC10010457 DOI: 10.1523/jneurosci.1942-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
The premotor (PM) and primary motor (M1) cortical areas broadcast voluntary motor commands through multiple neuronal pathways, including the corticorubral projection that reaches the red nucleus (RN). However, the respective contribution of M1 and PM to corticorubral projections as well as changes induced by motor disorders or injuries are not known in nonhuman primates. Here, we quantified the density and topography of axonal endings of the corticorubral pathway in RN in intact monkeys, as well as in monkeys subjected to either cervical spinal cord injury (SCI), Parkinson's disease (PD)-like symptoms or primary motor cortex injury (MCI). Twenty adult macaque monkeys of either sex were injected with the biotinylated dextran amine anterograde tracer either in PM or in M1. We developed a semiautomated algorithm to reliably detect and count axonal boutons within the magnocellular and parvocellular (pRN) subdivisions of RN. In intact monkeys, PM and M1 preferentially target the medial part of the ipsilateral pRN, reflecting its somatotopic organization. Projection of PM to the ipsilateral pRN is denser than that of M1, matching previous observations for the corticotectal, corticoreticular, and corticosubthalamic projections (Fregosi et al., 2018, 2019; Borgognon et al., 2020). In all three types of motor disorders, there was a uniform and strong decrease (near loss) of the corticorubral projections from PM and M1. The RN may contribute to functional recovery after SCI, PD, and MCI, by reducing direct cortical influence. This reduction possibly privileges direct access to the final output motor system, via emphasis on the direct corticospinal projection.SIGNIFICANCE STATEMENT We measured the corticorubral projection density arising from the PM or the M1 cortices in adult macaques. The premotor cortex sent denser corticorubral projections than the primary motor cortex, as previously observed for the corticotectal, corticoreticular, and corticosubthalamic projections. The premotor cortex may thus exert more influence than primary motor cortex onto subcortical structures. We next asked whether the corticorubral motor projections undergo lesion-dependent plasticity after either cervical spinal cord injury, Parkinson's disease-like symptoms, or primary motor cortex lesion. In all three types of pathology, there was a strong decrease of the corticorubral motor projection density, suggesting that the red nucleus may contribute to functional recovery after such motor system disorders based on a reduced direct cortical influence.
Collapse
Affiliation(s)
- Simon Borgognon
- Center for the Neural Basis of Cognition, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Neurosciences and Movement Sciences, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
- Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Eric M Rouiller
- Department of Neurosciences and Movement Sciences, Section of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Renner J, Rasia-Filho AA. Morphological Features of Human Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:367-496. [PMID: 37962801 DOI: 10.1007/978-3-031-36159-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Noseda R. Cerebro-Cerebellar Networks in Migraine Symptoms and Headache. FRONTIERS IN PAIN RESEARCH 2022; 3:940923. [PMID: 35910262 PMCID: PMC9326053 DOI: 10.3389/fpain.2022.940923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing—all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Rodrigo Noseda
| |
Collapse
|
6
|
Yang L, Cheng Y, Sun Y, Xuan Y, Niu J, Guan J, Rong Y, Jia Y, Zhuang Z, Yan G, Wu R. Combined Application of Quantitative Susceptibility Mapping and Diffusion Kurtosis Imaging Techniques to Investigate the Effect of Iron Deposition on Microstructural Changes in the Brain in Parkinson's Disease. Front Aging Neurosci 2022; 14:792778. [PMID: 35370619 PMCID: PMC8965454 DOI: 10.3389/fnagi.2022.792778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Brain iron deposition and microstructural changes in brain tissue are associated with Parkinson's disease (PD). However, the correlation between these factors in Parkinson's disease has been little studied. This study aimed to use quantitative susceptibility mapping combined with diffusion kurtosis imaging to investigate the effects of iron deposition on microstructural tissue alterations in the brain. METHODS Quantitative susceptibility mapping and diffusion kurtosis imaging were performed on 24 patients with early PD, 13 patients with advanced PD, and 25 healthy controls. The mean values of magnetic susceptibility and diffusion kurtosis were calculated for the bilateral substantia nigra, red nucleus, putamen, globus pallidus, and caudate nucleus, and compared between the groups. Correlation analyses between the diffusion kurtosis of each nucleus and its magnetic susceptibility parameters in PD patients and healthy controls were performed. RESULTS The study found a significant increase in iron deposition in the substantia nigra, red nucleus, putamen and globus pallidus, bilaterally, in patients with PD. Mean kurtosis values were increased in the substantia nigra but decreased in the globus pallidus; axial kurtosis values were decreased in both the substantia nigra and red nucleus; radial kurtosis values were increased in the substantia nigra but showed an opposite trend in the globus pallidus and caudate nucleus. In the substantia nigra of patients with PD, magnetic susceptibility was positively correlated with mean and radial kurtosis values, and negatively correlated with axial kurtosis. None of these correlations were significantly different in the control group. In the putamen, magnetic susceptibility was positively correlated with mean, axial, and radial kurtosis only in patients with advanced-stage PD. CONCLUSION Our study provides new evidence for brain iron content and microstructural alterations in patients with PD. Iron deposition may be a common mechanism for microstructural alterations in the substantia nigra and putamen of patients with PD. Tracking the dynamic changes in iron content and microstructure throughout the course of PD will help us to better understand the dynamics of iron metabolism and microstructural alterations in the pathogenesis of PD and to develop new approaches to monitor and treat PD.
Collapse
Affiliation(s)
- Lin Yang
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Yan Cheng
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Yongyan Sun
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Zhuhai Hospital, Zhuhai, China
| | - Yinghua Xuan
- Department of Basic Medicine, Xiamen Medical College, Xiamen, China
| | - Jianping Niu
- Department of Neurology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Jitian Guan
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Yunjie Rong
- Department of Ultrasound, Foshan Women and Children’s Hospital Affiliated to Southern Medical University, Foshan, China
| | - Yanlong Jia
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Zerui Zhuang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gen Yan
- Department of Radiology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
7
|
Kang S, Jun S, Baek SJ, Park H, Yamamoto Y, Tanaka-Yamamoto K. Recent Advances in the Understanding of Specific Efferent Pathways Emerging From the Cerebellum. Front Neuroanat 2021; 15:759948. [PMID: 34975418 PMCID: PMC8716603 DOI: 10.3389/fnana.2021.759948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a long history in terms of research on its network structures and motor functions, yet our understanding of them has further advanced in recent years owing to technical developments, such as viral tracers, optogenetic and chemogenetic manipulation, and single cell gene expression analyses. Specifically, it is now widely accepted that the cerebellum is also involved in non-motor functions, such as cognitive and psychological functions, mainly from studies that have clarified neuronal pathways from the cerebellum to other brain regions that are relevant to these functions. The techniques to manipulate specific neuronal pathways were effectively utilized to demonstrate the involvement of the cerebellum and its pathways in specific brain functions, without altering motor activity. In particular, the cerebellar efferent pathways that have recently gained attention are not only monosynaptic connections to other brain regions, including the periaqueductal gray and ventral tegmental area, but also polysynaptic connections to other brain regions, including the non-primary motor cortex and hippocampus. Besides these efferent pathways associated with non-motor functions, recent studies using sophisticated experimental techniques further characterized the historically studied efferent pathways that are primarily associated with motor functions. Nevertheless, to our knowledge, there are no articles that comprehensively describe various cerebellar efferent pathways, although there are many interesting review articles focusing on specific functions or pathways. Here, we summarize the recent findings on neuronal networks projecting from the cerebellum to several brain regions. We also introduce various techniques that have enabled us to advance our understanding of the cerebellar efferent pathways, and further discuss possible directions for future research regarding these efferent pathways and their functions.
Collapse
Affiliation(s)
- Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Soo Ji Baek
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
8
|
Wang X, Novello M, Gao Z, Ruigrok TJH, De Zeeuw CI. Input and output organization of the mesodiencephalic junction for cerebro-cerebellar communication. J Neurosci Res 2021; 100:620-637. [PMID: 34850425 PMCID: PMC9300004 DOI: 10.1002/jnr.24993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022]
Abstract
Most studies investigating the impact of the cerebral cortex (CC) onto the cerebellum highlight the role of the pons, which provides the mossy fibers to the cerebellum. However, cerebro‐cerebellar communication may also be mediated by the nuclei of the mesodiencephalic junction (MDJ) that project to the inferior olive (IO), which in turn provides the climbing fibers to the molecular layer. Here, we uncover the precise topographic relations of the inputs and outputs of the MDJ using multiple, classical, and transneuronal tracing methods as well as analyses of mesoscale cortical injections from Allen Mouse Brain. We show that the caudal parts of the CC predominantly project to the principal olive via the rostral MDJ and that the rostral parts of the CC predominantly project to the rostral medial accessory olive via the caudal MDJ. Moreover, using triple viral tracing technology, we show that the cerebellar nuclei directly innervate the neurons in the MDJ that receive input from CC and project to the IO. By unraveling these topographic and prominent, mono‐ and disynaptic projections through the MDJ, this work establishes that cerebro‐cerebellar communication is not only mediated by the pontine mossy fiber system, but also by the climbing fiber system.
Collapse
Affiliation(s)
- Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Olivares-Moreno R, Rodriguez-Moreno P, Lopez-Virgen V, Macías M, Altamira-Camacho M, Rojas-Piloni G. Corticospinal vs Rubrospinal Revisited: An Evolutionary Perspective for Sensorimotor Integration. Front Neurosci 2021; 15:686481. [PMID: 34177458 PMCID: PMC8226017 DOI: 10.3389/fnins.2021.686481] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The knowledge about how different subsystems participate and interplay in sensorimotor control is fundamental to understand motor deficits associated with CNS injury and movement recovery. The role of corticospinal (CS) and rubrospinal (RS) projections in motor control has been extensively studied and compared, and it is clear that both systems are important for skilled movement. However, during phylogeny, the emerging cerebral cortex took a higher hierarchical role controlling rubro-cerebellar circuits. Here, we present anatomical, neurophysiological, and behavioral evidence suggesting that both systems modulate complex segmental neuronal networks in a parallel way, which is important for sensorimotor integration at spinal cord level. We also highlight that, although specializations exist, both systems could be complementary and potentially subserve motor recovery associated with CNS damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerardo Rojas-Piloni
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
10
|
Brockett AT, Roesch MR. Reactive and Proactive Adaptation of Cognitive and Motor Neural Signals during Performance of a Stop-Change Task. Brain Sci 2021; 11:617. [PMID: 34064876 PMCID: PMC8151620 DOI: 10.3390/brainsci11050617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
The ability to inhibit or suppress unwanted or inappropriate actions, is an essential component of executive function and cognitive health. The immense selective pressure placed on maintaining inhibitory control processes is exemplified by the relatively small number of instances in which these systems completely fail in the average person's daily life. Although mistakes and errors do inevitably occur, inhibitory control systems not only ensure that this number is low, but have also adapted behavioral strategies to minimize future failures. The ability of our brains to adapt our behavior and appropriately engage proper motor responses is traditionally depicted as the primary domain of frontal brain areas, despite evidence to the fact that numerous other brain areas contribute. Using the stop-signal task as a common ground for comparison, we review a large body of literature investigating inhibitory control processes across frontal, temporal, and midbrain structures, focusing on our recent work in rodents, in an effort to understand how the brain biases action selection and adapts to the experience of conflict.
Collapse
Affiliation(s)
- Adam T. Brockett
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| | - Matthew R. Roesch
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2021. [DOI: 10.30621/jbachs.904035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Díaz Martínez E, Ayala Florenciano MD, Arencibia Espinosa A, Soler Laguía M, Kilroy D, Martínez Gomariz F, Ramírez Zarzosa G. A neuroanatomical study of the feline brain using MRI and mulligan staining: functional and pathological considerations. IRANIAN JOURNAL OF VETERINARY RESEARCH 2021; 22:310-317. [PMID: 35126538 PMCID: PMC8806173 DOI: 10.22099/ijvr.2021.39886.5785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Despite multiple studies describing accurate diagnoses using advanced neuroimaging techniques, low and mid-field magnetic resonance imaging (MRI) are still the most frequent scanners in veterinary clinics. To date, these studies in cats do not show a clear distinction of nerve centres in MRI data. AIMS The objective of this study is to determine the efficacy of Mulligan histological staining as a tool in facilitating the location and identification of the main structures of the feline brain in MRI. This study aims to facilitate the interpretation of MRI obtained with these types of scanners. METHODS A total of 10 feline brains were used. One specimen was used for MRI (T2 sequence using a 1.5T scanner). The other 9 brains were sectioned and stained with the three Mulligan staining techniques (Mulligan, Le Masurier and Robert). RESULTS The uptake of stain by the grey matter in these sections allowed the determination of the location and the limits of these nervous structures within the brain. The histological location of these structures was correlated with the MRI scans, leading to the successful identification of many small, indistinct nuclei. CONCLUSION Mulligan staining is proposed as a tool that facilitates the location of nerve structures in comparison with data from the most frequently-used MRI scanners in veterinary clinics.
Collapse
Affiliation(s)
- E. Díaz Martínez
- Department of Anatomy and Compared Pathological Anatomy, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain;
| | - M. D. Ayala Florenciano
- Department of Anatomy and Compared Pathological Anatomy, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain;
| | - A. Arencibia Espinosa
- Department of Morphology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña, Arucas, 35413, Las Palmas, Spain;
| | - M. Soler Laguía
- Department of Medicine and Surgery, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain;
| | - D. Kilroy
- Division of Veterinary Science Centre, University College Dublin, School of Veterinary Medicine, University of Dublin, Belfield, Dublin 4, Ireland
| | - F. Martínez Gomariz
- Department of Anatomy and Compared Pathological Anatomy, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain;
| | - G. Ramírez Zarzosa
- Department of Anatomy and Compared Pathological Anatomy, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain; ,Correspondence: G. Ramírez Zarzosa, Department of Anatomy and Compared Pathological Anatomy, Veterinary Faculty, Campus de Espinardo, University of Murcia, 30100, Murcia, Spain. E-mail:
| |
Collapse
|
13
|
Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Struct Funct 2020; 226:69-91. [PMID: 33180142 PMCID: PMC7817566 DOI: 10.1007/s00429-020-02171-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
The red nucleus (RN) is a large subcortical structure located in the ventral midbrain. Although it originated as a primitive relay between the cerebellum and the spinal cord, during its phylogenesis the RN shows a progressive segregation between a magnocellular part, involved in the rubrospinal system, and a parvocellular part, involved in the olivocerebellar system. Despite exhibiting distinct evolutionary trajectories, these two regions are strictly tied together and play a prominent role in motor and non-motor behavior in different animal species. However, little is known about their function in the human brain. This lack of knowledge may have been conditioned both by the notable differences between human and non-human RN and by inherent difficulties in studying this structure directly in the human brain, leading to a general decrease of interest in the last decades. In the present review, we identify the crucial issues in the current knowledge and summarize the results of several decades of research about the RN, ranging from animal models to human diseases. Connecting the dots between morphology, experimental physiology and neuroimaging, we try to draw a comprehensive overview on RN functional anatomy and bridge the gap between basic and translational research.
Collapse
|
14
|
Margoni M, Poggiali D, Zywicki S, Rubin M, Lazzarotto A, Franciotta S, Anglani MG, Causin F, Rinaldi F, Perini P, Filippi M, Gallo P. Early red nucleus atrophy in relapse-onset multiple sclerosis. Hum Brain Mapp 2020; 42:154-160. [PMID: 33047810 PMCID: PMC7721227 DOI: 10.1002/hbm.25213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 12/25/2022] Open
Abstract
No study has investigated red nucleus (RN) atrophy in multiple sclerosis (MS) despite cerebellum and its connections are elective sites of MS‐related pathology. In this study, we explore RN atrophy in early MS phases and its association with cerebellar damage (focal lesions and atrophy) and physical disability. Thirty‐seven relapse‐onset MS (RMS) patients having mean age of 35.6 ± 8.5 (18–56) years and mean disease duration of 1.1 ± 1.5 (0–5) years, and 36 age‐ and sex‐matched healthy controls (HC) were studied. Cerebellar and RN lesions and volumes were analyzed on 3 T‐MRI images. RMS did not differ from HC in cerebellar lobe volumes but significantly differed in both right (107.84 ± 13.95 mm3 vs. 99.37 ± 11.53 mm3, p = .019) and left (109.71 ± 14.94 mm3 vs. 100.47 ± 15.78 mm3, p = .020) RN volumes. Cerebellar white matter lesion volume (WMLV) inversely correlated with both right and left RN volumes (r = −.333, p = .004 and r = −.298, p = .010, respectively), while no correlation was detected between RN volumes and mean cortical thickness, cerebellar gray matter lesion volume, and supratentorial WMLV (right RN: r = −.147, p = .216; left RN: r = −.153, p = .196). Right, but not left, RN volume inversely correlated with midbrain WMLV (r = −.310, p = .008), while no correlation was observed between whole brainstem WMLV and either RN volumes (right RN: r = −.164, p = .164; left RN: r = −.64, p = .588). Finally, left RN volume correlated with vermis VIIb (r = .297, p = .011) and right interposed nucleus (r = .249, p = .034) volumes. We observed RN atrophy in early RMS, likely resulting from anterograde axonal degeneration starting in cerebellar and midbrain WML. RN atrophy seems a promising marker of neurodegeneration and/or cerebellar damage in RMS.
Collapse
Affiliation(s)
- Monica Margoni
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), University Hospital of Padua, Padua, Italy.,Padova Neuroscience Centre (PNC), University of Padua, Padua, Italy
| | - Davide Poggiali
- Padova Neuroscience Centre (PNC), University of Padua, Padua, Italy.,Department of Mathematics, University of Padua, Padua, Italy
| | - Sofia Zywicki
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), University Hospital of Padua, Padua, Italy
| | - Martina Rubin
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), University Hospital of Padua, Padua, Italy
| | - Andrea Lazzarotto
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), University Hospital of Padua, Padua, Italy
| | - Silvia Franciotta
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), University Hospital of Padua, Padua, Italy
| | | | | | - Francesca Rinaldi
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), University Hospital of Padua, Padua, Italy
| | - Paola Perini
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), University Hospital of Padua, Padua, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre of the Veneto Region (CeSMuV), University Hospital of Padua, Padua, Italy.,Department of Neurosciences, Medical School, University of Padua, Padua, Italy
| |
Collapse
|
15
|
Neural Signals in Red Nucleus during Reactive and Proactive Adjustments in Behavior. J Neurosci 2020; 40:4715-4726. [PMID: 32376779 PMCID: PMC7294803 DOI: 10.1523/jneurosci.2775-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to adjust behavior is an essential component of cognitive control. Much is known about frontal and striatal processes that support cognitive control, but few studies have investigated how motor signals change during reactive and proactive adjustments in motor output. To address this, we characterized neural signals in red nucleus (RN), a brain region linked to motor control, as male and female rats performed a novel variant of the stop-signal task. We found that activity in RN represented the direction of movement and was strongly correlated with movement speed. Additionally, we found that directional movement signals were amplified on STOP trials before completion of the response and that the strength of RN signals was modulated when rats exhibited cognitive control. These results provide the first evidence that neural signals in RN integrate cognitive control signals to reshape motor outcomes reactively within trials and proactivity across them.SIGNIFICANCE STATEMENT Healthy human behavior requires the suppression or inhibition of errant or maladaptive motor responses, often called cognitive control. While much is known about how frontal brain regions facilitate cognitive control, less is known about how motor regions respond to rapid and unexpected changes in action selection. To address this, we recorded from neurons in the red nucleus, a motor region thought to be important for initiating movement in rats performing a cognitive control task. We show that red nucleus tracks motor plans and that selectivity was modulated on trials that required shifting from one motor response to another. Collectively, these findings suggest that red nucleus contributes to modulating motor behavior during cognitive control.
Collapse
|
16
|
Bingbing G, Yujing Z, Yanwei M, Chunbo D, Weiwei W, Shiyun T, Yangyingqiu L, Jin S, Qingwei S, Ailian L, Lizhi X. Diffusion Kurtosis Imaging of Microstructural Changes in Gray Matter Nucleus in Parkinson Disease. Front Neurol 2020; 11:252. [PMID: 32362865 PMCID: PMC7180218 DOI: 10.3389/fneur.2020.00252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/17/2020] [Indexed: 12/29/2022] Open
Abstract
Objective: To explore the microstructural damage of extrapyramidal system gray matter nuclei in Parkinson disease (PD) using diffusion kurtosis imaging (DKI). Materials and Methods: We enrolled 35 clinically confirmed PD patients and 23 healthy volunteers. All patients underwent MR examination with conventional MRI scan sequences and an additional DKI sequence. We subsequently reconstructed the DKI raw images and analyzed the data. A radiologist in our hospital collected the Mini-Mental State Examination (MMSE) score of all subjects. Results: In the PD group, the mean kurtosis and axial kurtosis level decreased in the red nucleus (RN) and thalamus; the radial kurtosis increased in the substantia nigra (SN) and globus pallidus (GP). Fractional anisotropy decreased in the putamen. The largest area under the ROC curve of mean diffusion in GP was 0.811. Most kurtosis parameters demonstrated a positive correlation with the MMSE score, while several diffusion parameters showed a negative correlation with the same. Conclusion: DKI can qualitatively distinguish PD from healthy controls; furthermore, DKI-derived parameters can quantitatively evaluate the modifications of microstructures in extrapyramidal system gray matter nucleus in PD.
Collapse
Affiliation(s)
- Gao Bingbing
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhou Yujing
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Miao Yanwei
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Chunbo
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wang Weiwei
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tian Shiyun
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liu Yangyingqiu
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shang Jin
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Song Qingwei
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liu Ailian
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xie Lizhi
- GE Healthcare, MR Research, Beijing, China
| |
Collapse
|
17
|
The cortico-rubral and cerebello-rubral pathways are topographically organized within the human red nucleus. Sci Rep 2019; 9:12117. [PMID: 31431648 PMCID: PMC6702172 DOI: 10.1038/s41598-019-48164-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/11/2019] [Indexed: 02/03/2023] Open
Abstract
The Red Nucleus (RN) is a large nucleus located in the ventral midbrain: it is subdivided into a small caudal magnocellular part (mRN) and a large rostral parvocellular part (pRN). These distinct structural regions are part of functionally different networks and show distinctive connectivity features: the mRN is connected to the interposed nucleus, whilst the pRN is mainly connected to dentate nucleus, cortex and inferior olivary complex. Despite functional neuroimaging studies suggest RN involvement in complex motor and higher order functions, the pRN and mRN cannot be distinguished using conventional MRI. Herein, we employ high-quality structural and diffusion MRI data of 100 individuals from the Human Connectome Project repository and constrained spherical deconvolution tractography to perform connectivity-based segmentation of the human RN. In particular, we tracked connections of RN with the inferior olivary complex, the interposed nucleus, the dentate nucleus and the cerebral cortex. We found that the RN can be subdivided according to its connectivity into two clusters: a large ventrolateral one, mainly connected with the cerebral cortex and the inferior olivary complex, and a smaller dorsomedial one, mainly connected with the interposed nucleus. This structural topography strongly reflects the connectivity patterns of pRN and mRN respectively. Structural connectivity-based segmentation could represent a useful tool for the identification of distinct subregions of the human red nucleus on 3T MRI thus allowing a better evaluation of this subcortical structure in healthy and pathological conditions.
Collapse
|
18
|
Cheong CY, Aung TH, Pang WY, Ng CJ, Yap P. Isolated complete unilateral ptosis with intact extraocular eye movements. Age Ageing 2019; 48:596-597. [PMID: 31044224 DOI: 10.1093/ageing/afz041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/17/2019] [Accepted: 04/06/2019] [Indexed: 11/13/2022] Open
Abstract
An 88-year-old woman presented with a 2-day history of inability to open her left eye with no ocular discomfort or blurred vision. She had a long-standing history of diabetes mellitus, hypertension and stroke disease. Examination revealed an isolated complete left eye ptosis with no pupillary involvement and intact extraocular movements. There were no other neurological deficits and fatigability was not elicited. Magnetic resonance imaging of the brain showed an acute infarct of the left red nucleus. Oculomotor nerve fascicles are widely separated in the midbrain before they exit at the interpeduncular fossa. A discrete lesion involving the most caudal fibres of the levator palpebrae is the most likely explanation. Although uncommon, this should be considered in patients with underlying cardiovascular risk factors.
Collapse
Affiliation(s)
- Chin Yee Cheong
- Department of Geriatric Medicine, Khoo Teck Puat Hospital, Singapore
- Geriatric Education and Research Institute, Singapore
| | - Than Htun Aung
- Department of Geriatric Medicine, Khoo Teck Puat Hospital, Singapore
| | - Wee Yang Pang
- Department of Geriatric Medicine, Khoo Teck Puat Hospital, Singapore
| | - Chong Jin Ng
- Department of Geriatric Medicine, Khoo Teck Puat Hospital, Singapore
| | - Philip Yap
- Department of Geriatric Medicine, Khoo Teck Puat Hospital, Singapore
- Geriatric Education and Research Institute, Singapore
| |
Collapse
|
19
|
Philippens IHCHM, Wubben JA, Franke SK, Hofman S, Langermans JAM. Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson's Disease. Sci Rep 2019; 9:880. [PMID: 30696912 PMCID: PMC6351580 DOI: 10.1038/s41598-018-37381-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/05/2018] [Indexed: 01/14/2023] Open
Abstract
Neurological compensatory mechanisms help our brain to adjust to neurodegeneration as in Parkinson's disease. It is suggested that the compensation of the damaged striato-thalamo-cortical circuit is focused on the intact thalamo-rubro-cerebellar pathway as seen during presymptomatic Parkinson, paradoxical movement and sensorimotor rhythm (SMR). Indeed, the size of the red nucleus, connecting the cerebellum with the cerebral cortex, is larger in Parkinson's disease patients suggesting an increased activation of this brain area. Therefore, the red nucleus was examined in MPTP-induced parkinsonian marmoset monkeys during the presymptomatic stage and after SMR activation by neurofeedback training. We found a reverse significant correlation between the early expression of parkinsonian signs and the size of the parvocellular part of the red nucleus, which is predominantly present in human and non-human primates. In quadrupedal animals it consists mainly of the magnocellular part. Furthermore, SMR activation, that mitigated parkinsonian signs, further increased the size of the red nucleus in the marmoset monkey. This plasticity of the brain helps to compensate for dysfunctional movement control and can be a promising target for compensatory treatment with neurofeedback technology, vibrotactile stimulation or DBS in order to improve the quality of life for Parkinson's disease patients.
Collapse
Affiliation(s)
- Ingrid H C H M Philippens
- Animal Science Department, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands.
| | - Jacqueline A Wubben
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | - Sigrid K Franke
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Sam Hofman
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | - Jan A M Langermans
- Animal Science Department, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| |
Collapse
|
20
|
Filipp ME, Travis BJ, Henry SS, Idzikowski EC, Magnuson SA, Loh MY, Hellenbrand DJ, Hanna AS. Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen Res 2019; 14:7-19. [PMID: 30531063 PMCID: PMC6263009 DOI: 10.4103/1673-5374.243694] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rats have been the primary model to study the process and underlying mechanisms of recovery after spinal cord injury. Two weeks after a severe spinal cord contusion, rats can regain weight-bearing abilities without therapeutic interventions, as assessed by the Basso, Beattie and Bresnahan locomotor scale. However, many human patients suffer from permanent loss of motor function following spinal cord injury. While rats are the most understood animal model, major differences in sensorimotor pathways between quadrupeds and bipeds need to be considered. Understanding the major differences between the sensorimotor pathways of rats, non-human primates, and humans is a start to improving targets for treatments of human spinal cord injury. This review will discuss the neuroplasticity of the brain and spinal cord after spinal cord injury in rats, non-human primates, and humans. A brief overview of emerging interventions to induce plasticity in humans with spinal cord injury will also be discussed.
Collapse
Affiliation(s)
- Mallory E Filipp
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Benjamin J Travis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Stefanie S Henry
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Emma C Idzikowski
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Sarah A Magnuson
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Megan Yf Loh
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | | | - Amgad S Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
21
|
Mukherjee D, Sokoloff G, Blumberg MS. Corollary discharge in precerebellar nuclei of sleeping infant rats. eLife 2018; 7:38213. [PMID: 30516134 PMCID: PMC6281370 DOI: 10.7554/elife.38213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/15/2018] [Indexed: 11/21/2022] Open
Abstract
In week-old rats, somatosensory input arises predominantly from external stimuli or from sensory feedback (reafference) associated with myoclonic twitches during active sleep. A previous study suggested that the brainstem motor structures that produce twitches also send motor copies (or corollary discharge, CD) to the cerebellum. We tested this possibility by recording from two precerebellar nuclei—the inferior olive (IO) and lateral reticular nucleus (LRN). In most IO and LRN neurons, twitch-related activity peaked sharply around twitch onset, consistent with CD. Next, we identified twitch-production areas in the midbrain that project independently to the IO and LRN. Finally, we blocked calcium-activated slow potassium (SK) channels in the IO to explain how broadly tuned brainstem motor signals can be transformed into precise CD signals. We conclude that the precerebellar nuclei convey a diversity of sleep-related neural activity to the developing cerebellum to enable processing of convergent input from CD and reafferent signals.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, United States.,Delta Center, University of Iowa, Iowa, United States
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, United States.,Delta Center, University of Iowa, Iowa, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa, United States
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, United States.,Delta Center, University of Iowa, Iowa, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa, United States.,Department of Biology, University of Iowa, Iowa, United States
| |
Collapse
|
22
|
Krisa L, Runyen M, Detloff MR. Translational Challenges of Rat Models of Upper Extremity Dysfunction After Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2018; 24:195-205. [PMID: 29997423 DOI: 10.1310/sci2403-195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are approximately 17,500 new spinal cord injury (SCI) cases each year in the United States, with the majority of cases resulting from a traumatic injury. Damage to the spinal cord causes either temporary or permanent changes in sensorimotor function. Given that the majority of human SCIs occur in the cervical spinal level, the experimental animal models of forelimb dysfunction play a large role in the ability to translate basic science research to clinical application. However, the variation in the design of clinical and basic science studies of forelimb/upper extremity (UE) function prevents the ease of translation. This review provides an overview of experimental models of forelimb dysfunction used in SCI research with special emphasis on the rat model of SCI. The anatomical location and types of experimental cervical lesions, functional assessments, and rehabilitation strategies used in the basic science laboratory are reviewed. Finally, we discuss the challenges of translating animal models of forelimb dysfunction to the clinical SCI human population.
Collapse
Affiliation(s)
- Laura Krisa
- Department of Occupational Therapy, Jefferson College of Health Professions, Jefferson (Philadelphia University + Thomas Jefferson University), Philadelphia, Pennsylvania.,Department of Physical Therapy, Jefferson College of Health Professions, Jefferson (Philadelphia University + Thomas Jefferson University), Philadelphia, Pennsylvania
| | - Madeline Runyen
- Department of Occupational Therapy, Jefferson College of Health Professions, Jefferson (Philadelphia University + Thomas Jefferson University), Philadelphia, Pennsylvania
| | - Megan Ryan Detloff
- Department of Neurobiology & Anatomy, Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Thalamic interactions of cerebellum and basal ganglia. Brain Struct Funct 2017; 223:569-587. [PMID: 29224175 DOI: 10.1007/s00429-017-1584-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/29/2017] [Indexed: 01/04/2023]
Abstract
Cerebellum and basal ganglia are reciprocally interconnected with the neocortex via oligosynaptic loops. The signal pathways of these loops predominantly converge in motor areas of the frontal cortex and are mainly segregated on subcortical level. Recent evidence, however, indicates subcortical interaction of these systems. We have reviewed literature that addresses the question whether, and to what extent, projections of main output nuclei of basal ganglia (reticular part of the substantia nigra, internal segment of the globus pallidus) and cerebellum (deep cerebellar nuclei) interact with each other in the thalamus. To this end, we compiled data from electrophysiological and anatomical studies in rats, cats, dogs, and non-human primates. Evidence suggests the existence of convergence of thalamic projections originating in basal ganglia and cerebellum, albeit sparse and restricted to certain regions. Four regions come into question to contain converging inputs: (1) lateral parts of medial dorsal nucleus (MD); (2) parts of anterior intralaminar nuclei and centromedian and parafascicular nuclei (CM/Pf); (3) ventromedial nucleus (VM); and (4) border regions of cerebellar and ganglia terminal territories in ventral anterior and ventral lateral nuclei (VA-VL). The amount of convergences was found to exhibit marked interspecies differences. To explain the rather sparse convergences of projection territories and to estimate their physiological relevance, we present two conceivable principles of anatomical organization: (1) a "core-and-shell" organization, in which a central core is exclusive to one projection system, while peripheral shell regions intermingle and occasionally converge with other projection systems and (2) convergences that are characteristic to distinct functional networks. The physiological relevance of these convergences is not yet clear. An oculomotor network proposed in this work is an interesting candidate to examine potential ganglia and cerebellar subcortical interactions.
Collapse
|
24
|
Cronin MJ, Wang N, Decker KS, Wei H, Zhu WZ, Liu C. Exploring the origins of echo-time-dependent quantitative susceptibility mapping (QSM) measurements in healthy tissue and cerebral microbleeds. Neuroimage 2017; 149:98-113. [PMID: 28126551 DOI: 10.1016/j.neuroimage.2017.01.053] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/20/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) is increasingly used to measure variation in tissue composition both in the brain and in other areas of the body in a range of disease pathologies. Although QSM measurements were originally believed to be independent of the echo time (TE) used in the gradient-recalled echo (GRE) acquisition from which they are derived; recent literature (Sood et al., 2016) has shown that these measurements can be highly TE-dependent in a number of brain regions. In this work we systematically investigate possible causes of this effect through analysis of apparent frequency and QSM measurements derived from data acquired at multiple TEs in vivo in healthy brain regions and in cerebral microbleeds (CMBs); QSM data acquired in a gadolinium-doped phantom; and in QSM data derived from idealized simulated phase data. Apparent frequency measurements in the optic radiations (OR) and central corpus callosum (CC) were compared to those predicted by a 3-pool white matter model, however the model failed to fully explain contrasting frequency profiles measured in the OR and CC. Our results show that TE-dependent QSM measurements can be caused by a failure of phase unwrapping algorithms in and around strong susceptibility sources such as CMBs; however, in healthy brain regions this behavior appears to result from intrinsic non-linear phase evolution in the MR signal. From these results we conclude that care must be taken when deriving frequency and QSM measurements in strong susceptibility sources due to the inherent limitations in phase unwrapping; and that while signal compartmentalization due to tissue microstructure and content is a plausible cause of TE-dependent frequency and QSM measurements in healthy brain regions, better sampling of the MR signal and more complex models of tissue are needed to fully exploit this relationship.
Collapse
Affiliation(s)
- Matthew J Cronin
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; Brain Imaging and Analysis Center, Duke University, Durham, NC 27710, USA
| | - Nian Wang
- Brain Imaging and Analysis Center, Duke University, Durham, NC 27710, USA
| | - Kyle S Decker
- Brain Imaging and Analysis Center, Duke University, Durham, NC 27710, USA
| | - Hongjiang Wei
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; Brain Imaging and Analysis Center, Duke University, Durham, NC 27710, USA
| | - Wen-Zhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; Brain Imaging and Analysis Center, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Chen L, Cai C, Yang T, Lin J, Cai S, Zhang J, Chen Z. Changes in brain iron concentration after exposure to high-altitude hypoxia measured by quantitative susceptibility mapping. Neuroimage 2016; 147:488-499. [PMID: 27986608 DOI: 10.1016/j.neuroimage.2016.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 01/20/2023] Open
Abstract
Hypoxia can induce physiological changes. This study aims to explore effects of high-altitude (HA) hypoxia on cerebral iron concentration. Twenty-nine healthy sea-level participants were tested shortly before and after approximately 4-week adaptation to the HA environment at fQinghai-Tibet Plateau (4200m), and were re-investigated after re-adaptation to the sea-level environment one year later. Iron concentration was quantified with quantitative susceptibility mapping (QSM), and the results were compared with transverse relaxation rate (R*2) measurements. The variations of magnetic susceptibility indicate that the iron concentration in gray matter regions, especially in basal ganglia, including caudate nucleus, putamen, globus pallidus and substantia nigra, increases significantly after HA exposure. This increase appears consistent with the conclusion from R*2 value variations. However, unlike QSM, the R*2 value fails to demonstrate the statistical difference of iron content in red nucleus. The re-investigation results show that most variations are recovered after sea-level re-adaptation for one year. Additionally, hemisphere- and gender-related differences in iron concentration changes were analyzed among cerebral regions. The results show greater possibilities in the right hemisphere and females. Further studies based on diffusion tensor imaging (DTI) suggest that the fractional anisotropy increases and the mean diffusivity decreases after HA exposure in six deep gray matter nuclei, with linear dependence on iron concentration only in putamen. In conclusion, the magnetic susceptibility value can serve as a quantitative marker of brain iron, and variations of regional susceptibility reported herein indicate that HA hypoxia can result in significant iron deposition in most deep gray matter regions. Additionally, the linear dependence of DTI metrics on iron concentration in putamen indicates a potential relationship between ferritin and water diffusion.
Collapse
Affiliation(s)
- Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Congbo Cai
- Department of Communication Engineering, Xiamen University, Xiamen 361005, China
| | - Tianhe Yang
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen 361004, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen 361004, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| | - Jiaxing Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen 361102, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| |
Collapse
|
26
|
Shaikh AG, Zee DS, Crawford JD, Jinnah HA. Cervical dystonia: a neural integrator disorder. Brain 2016; 139:2590-2599. [PMID: 27324878 DOI: 10.1093/brain/aww141] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/01/2016] [Indexed: 02/03/2023] Open
Abstract
Ocular motor neural integrators ensure that eyes are held steady in straight-ahead and eccentric positions of gaze. Abnormal function of the ocular motor neural integrator leads to centripetal drifts of the eyes with consequent gaze-evoked nystagmus. In 2002 a neural integrator, analogous to that in the ocular motor system, was proposed for the control of head movements. Recently, a counterpart of gaze-evoked eye nystagmus was identified for head movements; in which the head could not be held steady in eccentric positions on the trunk. These findings lead to a novel pathophysiological explanation in cervical dystonia, which proposed that the abnormalities of head movements stem from a malfunctioning head neural integrator, either intrinsically or as a result of impaired cerebellar, basal ganglia, or peripheral feedback. Here we briefly recapitulate the history of the neural integrator for eye movements, then further develop the idea of a neural integrator for head movements, and finally discuss its putative role in cervical dystonia. We hypothesize that changing the activity in an impaired head neural integrator, by modulating feedback, could treat dystonia.
Collapse
Affiliation(s)
- Aasef G Shaikh
- 1 Department of Neurology, Case Western Reserve University, Cleveland, OH, USA 2 Daroff-DelOsso Ocular Motility Laboratory, Neurology Service, Louis Stoke VA Medical Center, Cleveland, OH, USA
| | - David S Zee
- 3 Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - J Douglas Crawford
- 4 Centre for Vision Research and Departments of Psychology, Biology, and Kinesiology and Health Sciences, York University, Toronto, ON, Canada
| | - Hyder A Jinnah
- 5 Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
27
|
Bronzi D, Licata F, Li Volsi G. Noradrenergic modulation of glutamate-induced excitatory responses in single neurons of the red nucleus: an electrophysiological study. Neuroscience 2015; 300:360-9. [PMID: 26012489 DOI: 10.1016/j.neuroscience.2015.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 11/16/2022]
Abstract
The effect induced by noradrenaline (NA) on the spiking activity evoked by glutamate (Glu) on single neurons of the mesencephalic red nucleus (RN) of the rat was studied extracellularly. Long-lasting microiontophoretic applications of the amine induced a significant and reversible depression of the responsiveness of RN neurons to Glu. This effect was mediated by noradrenergic alpha2 receptors since it was mimicked by application of clonidine, an alpha2 adrenoceptor agonist, and blocked or at least reduced by application of yohimbine, an antagonist of NA for the same receptors. The effect appears homogeneously throughout the nucleus and is independent of the effect of NA on baseline firing rate. Application of isoproterenol, a beta adrenoceptor agonist, either enhanced or depressed neuronal responses to Glu in a high percentage (86%) of the tested neurons. Moreover, application of timolol, a beta adrenoceptor antagonist, was able to strengthen the depressive effects induced by NA application on neuronal responsiveness to Glu. Although these data suggest some involvement of beta adrenergic receptors in the modulation of neuronal responsiveness to Glu, the overall results indicate a short-term depressive action of NA, mediated by alpha2 receptors, on the responsiveness of RN neurons and suggest that stress initially leads to an attenuation of the relay function of the RN.
Collapse
Affiliation(s)
- D Bronzi
- University of Catania, Department of Biomedical and Biotechnological Sciences, Section of Physiology, Via Santa Sofia, 64, 95125 Catania, Italy
| | - F Licata
- University of Catania, Department of Biomedical and Biotechnological Sciences, Section of Physiology, Via Santa Sofia, 64, 95125 Catania, Italy
| | - G Li Volsi
- University of Catania, Department of Biomedical and Biotechnological Sciences, Section of Physiology, Via Santa Sofia, 64, 95125 Catania, Italy.
| |
Collapse
|
28
|
Neuroplasticity in normal and brain injured patients: potential relevance of ear wiggling locus of control and cortical projections. Med Hypotheses 2014; 83:838-43. [PMID: 25468045 DOI: 10.1016/j.mehy.2014.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/24/2014] [Accepted: 11/06/2014] [Indexed: 11/21/2022]
Abstract
Recovery after brain insult is variable. Research has shown that activation of higher-order cognitive processes create larger gains in recovery than repetitive tasks, most likely due to neuroplasticity. That is, neuroplasticity is promoted by task complexity. Ear wiggling is a rare skill among humans yet may activate and promote advanced recovery after a brain injury. Increased cognitive complexity of learning a new task could allow insights into plasticity in learning new motor tasks and the role of cognitive complexity in learning that task. This paper focuses on a hypothesis relating to white matter pathways dormant in most people (such as those related to ear wiggling). If these pathways can be triggered by electrical/magnetic stimulation and/or higher-order thought into becoming consciously controllable, then it is possible that activation of a dormant, complex skill may assist in re-growth or repair of brain-damaged pathways. The broader potential impact of the proposed hypothesis is that ear wiggling could be used for improving the recovery of TBI or stroke subjects via neuroplasticity processes.
Collapse
|
29
|
Gong NJ, Wong CS, Chan CC, Leung LM, Chu YC. Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging. Neurobiol Aging 2014; 35:2203-16. [DOI: 10.1016/j.neurobiolaging.2014.03.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/08/2014] [Accepted: 03/13/2014] [Indexed: 11/26/2022]
|
30
|
Lovell JM, Mylius J, Scheich H, Brosch M. Hearing in action; auditory properties of neurons in the red nucleus of alert primates. Front Neurosci 2014; 8:105. [PMID: 24860417 PMCID: PMC4026743 DOI: 10.3389/fnins.2014.00105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 04/22/2014] [Indexed: 11/23/2022] Open
Abstract
The response of neurons in the Red Nucleus pars magnocellularis (RNm) to both tone bursts and electrical stimulation were observed in three cynomolgus monkeys (Macaca fascicularis), in a series of studies primarily designed to characterize the influence of the dopaminergic ventral midbrain on auditory processing. Compared to its role in motor behavior, little is known about the sensory response properties of neurons in the red nucleus (RN); particularly those concerning the auditory modality. Sites in the RN were recognized by observing electrically evoked body movements characteristic for this deep brain structure. In this study we applied brief monopolar electrical stimulation to 118 deep brain sites at a maximum intensity of 200 μA, thus evoking minimal body movements. Auditory sensitivity of RN neurons was analyzed more thoroughly at 15 sites, with the majority exhibiting broad tuning curves and phase locking up to 1.03 kHz. Since the RN appears to receive inputs from a very early stage of the ascending auditory system, our results suggest that sounds can modify the motor control exerted by this brain nucleus. At selected locations, we also tested for the presence of functional connections between the RN and the auditory cortex by inserting additional microelectrodes into the auditory cortex and investigating how action potentials and local field potentials (LFPs) were affected by electrical stimulation of the RN.
Collapse
Affiliation(s)
- Jonathan M. Lovell
- Special Lab for Primate Neurobiology, Leibniz Institute for NeurobiologyMagdeburg, Germany
- Deutsches Zentrum für Neurodegenerative ErkrankungenMagdeburg, Germany
| | - Judith Mylius
- Special Lab for Primate Neurobiology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Henning Scheich
- Special Lab for Primate Neurobiology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael Brosch
- Special Lab for Primate Neurobiology, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
31
|
Perciavalle V, Apps R, Bracha V, Delgado-García JM, Gibson AR, Leggio M, Carrel AJ, Cerminara N, Coco M, Gruart A, Sánchez-Campusano R. Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. THE CEREBELLUM 2014; 12:738-57. [PMID: 23564049 DOI: 10.1007/s12311-013-0464-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present paper, we examine the role of the cerebellar interpositus nucleus (IN) in motor and non-motor domains. Recent findings are considered, and we share the following conclusions: IN as part of the olivo-cortico-nuclear microcircuit is involved in providing powerful timing signals important in coordinating limb movements; IN could participate in the timing and performance of ongoing conditioned responses rather than the generation and/or initiation of such responses; IN is involved in the control of reflexive and voluntary movements in a task- and effector system-dependent fashion, including hand movements and associated upper limb adjustments, for quick effective actions; IN develops internal models for dynamic interactions of the motor system with the external environment for anticipatory control of movement; and IN plays a significant role in the modulation of autonomic and emotional functions.
Collapse
Affiliation(s)
- Vincenzo Perciavalle
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ruigrok TJH, Teune TM. Collateralization of cerebellar output to functionally distinct brainstem areas. A retrograde, non-fluorescent tracing study in the rat. Front Syst Neurosci 2014; 8:23. [PMID: 24600356 PMCID: PMC3930852 DOI: 10.3389/fnsys.2014.00023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/01/2014] [Indexed: 11/21/2022] Open
Abstract
The organization of the cerebellum is characterized by a number of longitudinally organized connection patterns that consist of matching olivo-cortico-nuclear zones. These entities, referred to as modules, have been suggested to act as functional units. The various parts of the cerebellar nuclei (CN) constitute the output of these modules. We have studied to what extent divergent and convergent patterns in the output of the modules to four, functionally distinct brain areas can be recognized. Two retrograde tracers were injected in various combinations of the following nuclei: the red nucleus (RN), as a main premotor nucleus; the prerubral area, as a main supplier of afferents to the inferior olive (IO); the nucleus reticularis tegmenti pontis (NRTP), as a main source of cerebellar mossy fibers; and the IO, as the source of climbing fibers. For all six potential combinations three cases were examined. All nine cases with combinations that involved the IO did not, or hardly, resulted in double labeled neurons. In contrast, all other combinations resulted in at least 10% and up to 67% of double labeled neurons in cerebellar nuclear areas where both tracers were found. These results show that the cerebellar nuclear neurons that terminate within the studied areas represent basically two intermingled populations of projection cells. One population corresponds to the small nucleo-olivary neurons whereas the other consists of medium- to large-sized neurons which are likely to distribute their axons to several other areas. Despite some consistent differences between the output patterns of individual modules we propose that modular cerebellar output to premotor areas such as the RN provides simultaneous feedback to both the mossy fiber and the climbing fiber system and acts in concert with a designated GABAergic nucleo-olivary circuit. These features seem to form a basic characteristic of cerebellar operation.
Collapse
Affiliation(s)
- Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC RotterdamRotterdam, Netherlands
| | | |
Collapse
|
33
|
Hicks TP, Onodera S. The mammalian red nucleus and its role in motor systems, including the emergence of bipedalism and language. Prog Neurobiol 2012; 96:165-75. [DOI: 10.1016/j.pneurobio.2011.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/06/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
|
34
|
T2 hyperintense signal of the central tegmental tracts in children: disease or normal maturational process? Neuroradiology 2012; 54:863-71. [PMID: 22271318 DOI: 10.1007/s00234-012-1006-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/05/2012] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cerebral central tegmental tract hyperintense signal on T2-weighted MRI (CTTH) is known from various clinical conditions, including children treated with vigabatrin (VGB) for West syndrome (WS), with hypoxic-ischemic brain injury, and metabolic diseases. Considering this clinical diversity, we hypothesized that CTTH might primarily mirror a physiologic process. METHODS We retrospectively analysed brain MRI data of the central tegmental tracts deriving from four different groups: (1) children with WS and VGB therapy (WS+VGB+), (2) children with WS but without VGB therapy (WS+VGB-), (3) children with different neurological diseases (WS-VGB-; maximum age 15 years), and (4) controls younger than 25 months of age (this age includes the peak age of WS). RESULTS CTTH were detected in 4/17 WS+VGB+ children (24%), 4/34 WS+VGB- children (12%), 18/296 WS-VGB- children (6%), and 8/112 controls (7%). Independently from the underlying diagnosis, CTTH showed a peak age during early infancy and were not found before 4 months and after 7 years of life. The rate of CTTH among WS children ± VGB therapy was similar so that VGB therapy seems of minor etiological impact. However, comparison of WS patients younger than 25 months of age (CTTH present in 7/40) with age-matched controls (CTTH present in 8/112) revealed that CTTH tend to be more frequent among WS patients in general. CONCLUSIONS Our study suggests that CTTH represents a physiological maturation-related process. The high prevalence of CTTH among patients with WS indicates that this physiological process may be modified by additional endo- or exogeneous factors.
Collapse
|
35
|
Onodera S, Hicks TP. Carbocyanine dye usage in demarcating boundaries of the aged human red nucleus. PLoS One 2010; 5:e14430. [PMID: 21203458 PMCID: PMC3009723 DOI: 10.1371/journal.pone.0014430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 12/07/2010] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Though the adult human magnocellular Red nucleus (mNr) is essentially vestigial and its boundaries with neighbouring structures have never been well demarcated, human studies in utero have shown a well developed semilunar mNr wrapping around the caudal parvicellular Red nucleus (pNr), similar to what is seen in quadrupeds. In the present study, we have sought to better delineate the morphological determinants of the adult human Red nucleus (ahRn). METHODS AND FINDINGS Serial sections of ahRn show fine myelinated fibers arising from pNr and turning toward the central tegmental tract. DiI was deposited within a well restricted region of ahRn at the fasciculus retroflexus level and the extent of label determined. Nissl-stained serial sections allowed production of a 3-D mNr model, showing rudimentary, vestigial morphology compared with its well developed infant homologue. DiI within this vestigial mNr region at the level of the oculomotor nerve showed labeled giant/large mNr neurons, coarse fiber bundles at the ventral tegmental decussation and lateral lemniscal label. CONCLUSIONS Large amounts of DiI and a long incubation time have proven useful in aged human brain as a marker of long axons and large cell bodies of projecting neurons such as the rubrospinal projection and for clarifying nuclear boundaries of closed nuclei (e.g., the large human pNr). Our 3D model of adult human mNr appeared shrunken in shape and axially rotated compared with the infant mNr, the rotation being a common feature among mammalian mNr.
Collapse
Affiliation(s)
- Satoru Onodera
- Department of Anatomy, School of Medicine, Iwate Medical University, Morioka, Japan.
| | | |
Collapse
|
36
|
Alam M, Schwabe K, Krauss JK. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 2010; 134:11-23. [PMID: 21147837 DOI: 10.1093/brain/awq322] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, the pedunculopontine nucleus has been highlighted as a target for deep brain stimulation for the treatment of freezing of postural instability and gait disorders in Parkinson's disease and progressive supranuclear palsy. There is great controversy, however, as to the exact location of the optimal site for stimulation. In this review, we give an overview of anatomy and connectivity of the pedunculopontine nucleus area in rats, cats, non-human primates and humans. Additionally, we report on the behavioural changes after chemical or electrical manipulation of the pedunculopontine nucleus. We discuss the relation to adjacent regions of the pedunculopontine nucleus, such as the cuneiform nucleus and the subcuneiform nucleus, which together with the pedunculopontine nucleus are the main areas of the mesencephalic locomotor region and play a major role in the initiation of gait. This information is discussed with respect to the experimental designs used for research purposes directed to a better understanding of the circuitry pathway of the pedunculopontine nucleus in association with basal ganglia pathology, and with respect to deep brain stimulation of the pedunculopontine nucleus area in humans.
Collapse
Affiliation(s)
- Mesbah Alam
- Department of Neurosurgery, Medical University of Hannover, Carl-Neuberg-Str 1, 30625 Hannover, Germany
| | | | | |
Collapse
|