1
|
Szymczak-Kulus K, Czerwinski M, Kaczmarek R. Human Gb3/CD77 synthase: a glycosyltransferase at the crossroads of immunohematology, toxicology, and cancer research. Cell Mol Biol Lett 2024; 29:137. [PMID: 39511480 PMCID: PMC11546571 DOI: 10.1186/s11658-024-00658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Human Gb3/CD77 synthase (α1,4-galactosyltransferase, P1/Pk synthase, UDP-galactose: β-D-galactosyl-β1-R 4-α-D-galactosyltransferase, EC 2.4.1.228) forms Galα1 → 4Gal structures on glycosphingolipids and glycoproteins. These glycans are recognized by bacterial adhesins and toxins. Globotriaosylceramide (Gb3), the major product of Gb3/CD77 synthase, is a glycosphingolipid located predominantly in plasma membrane lipid rafts, where it serves as a main receptor for Shiga toxins released by enterohemorrhagic Escherichia coli and Shigella dysenteriae of serotype 1. On the other hand, accumulation of glycans formed by Gb3/CD77 synthase contributes to the symptoms of Anderson-Fabry disease caused by α-galactosidase A deficiency. Moreover, variation in Gb3/CD77 synthase expression and activity underlies the P1PK histo-blood group system. Glycosphingolipids synthesized by the enzyme are overproduced in colorectal, gastric, pancreatic, and ovarian cancer, and elevated Gb3 biosynthesis is associated with cancer cell chemo- and radioresistance. Furthermore, Gb3/CD77 synthase acts as a key glycosyltransferase modulating ovarian cancer cell plasticity. Here, we describe the role of human Gb3/CD77 synthase and its products in the P1PK histo-blood group system, Anderson-Fabry disease, and bacterial infections. Additionally, we provide an overview of emerging evidence that Gb3/CD77 synthase and its glycosphingolipid products are involved in cancer metastasis and chemoresistance.
Collapse
Affiliation(s)
- Katarzyna Szymczak-Kulus
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland.
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
2
|
Tomisch J, Busse V, Rosato F, Makshakova ON, Salavei P, Kittel AS, Gillon E, Lataster L, Imberty A, Meléndez AV, Römer W. A Shiga Toxin B-Subunit-Based Lectibody Boosts T Cell Cytotoxicity towards Gb3-Positive Cancer Cells. Cells 2023; 12:1896. [PMID: 37508560 PMCID: PMC10378424 DOI: 10.3390/cells12141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant glycosylation plays a crucial role in tumour progression and invasiveness. Tumour-associated carbohydrate antigens (TACAs) represent a valuable set of targets for immunotherapeutic approaches. The poor immunogenicity of glycan structures, however, requires a more effective and well-directed way of targeting TACAs on the surface of cancer cells than antibodies. The glycosphingolipid globotriaosylceramide (Gb3) is a well-established TACA present in a multitude of cancer types. Its overexpression has been linked to metastasis, invasiveness, and multidrug resistance. In the present study, we propose to use a dimeric fragment of the Shiga toxin B-subunit (StxB) to selectively target Gb3-positive cancer cells in a StxB-scFv UCHT1 lectibody. The lectibody, comprised of a lectin and the UCHT1 antibody fragment, was produced in E. coli and purified via Ni-NTA affinity chromatography. Specificity of the lectibody towards Gb3-positive cancer cell lines and specificity towards the CD3 receptor on T cells, was assessed using flow cytometry. We evaluated the efficacy of the lectibody in redirecting T cell cytotoxicity towards Gb3-overexpressing cancer cells in luciferase-based cytotoxicity in vitro assays. The StxB-scFv UCHT1 lectibody has proven specific for Gb3 and could induce the killing of up to 80% of Gb3-overexpressing cancer cells in haemorrhagic and solid tumours. The lectibody developed in this study, therefore, highlights the potential that lectibodies and lectins in general have for usage in immunotherapeutic approaches to boost the efficacy of established cancer treatments.
Collapse
Affiliation(s)
- Jana Tomisch
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Vincent Busse
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Francesca Rosato
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Olga N Makshakova
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| | - Pavel Salavei
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Core Facility Signalling Factory & Robotics, University of Freiburg, 79104 Freiburg, Germany
| | - Anna-Sophia Kittel
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Emilie Gillon
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Levin Lataster
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Imberty
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
3
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Obeng EM, Fulcher AJ, Wagstaff KM. Harnessing sortase A transpeptidation for advanced targeted therapeutics and vaccine engineering. Biotechnol Adv 2023; 64:108108. [PMID: 36740026 DOI: 10.1016/j.biotechadv.2023.108108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The engineering of potent prophylactic and therapeutic complexes has always required careful protein modification techniques with seamless capabilities. In this light, methods that favor unobstructed multivalent targeting and correct antigen presentations remain essential and very demanding. Sortase A (SrtA) transpeptidation has exhibited these attributes in various settings over the years. However, its applications for engineering avidity-inspired therapeutics and potent vaccines have yet to be significantly noticed, especially in this era where active targeting and multivalent nanomedications are in great demand. This review briefly presents the SrtA enzyme and its associated transpeptidation activity and describes interesting sortase-mediated protein engineering and chemistry approaches for achieving multivalent therapeutic and antigenic responses. The review further highlights advanced applications in targeted delivery systems, multivalent therapeutics, adoptive cellular therapy, and vaccine engineering. These innovations show the potential of sortase-mediated techniques in facilitating the development of simple plug-and-play nanomedicine technologies against recalcitrant diseases and pandemics such as cancer and viral infections.
Collapse
Affiliation(s)
- Eugene M Obeng
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Kylie M Wagstaff
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
5
|
Rosato F, Pasupuleti R, Tomisch J, Meléndez AV, Kolanovic D, Makshakova ON, Wiltschi B, Römer W. A bispecific, crosslinking lectibody activates cytotoxic T cells and induces cancer cell death. J Transl Med 2022; 20:578. [PMID: 36494671 PMCID: PMC9733292 DOI: 10.1186/s12967-022-03794-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aberrant glycosylation patterns play a crucial role in the development of cancer cells as they promote tumor growth and aggressiveness. Lectins recognize carbohydrate antigens attached to proteins and lipids on cell surfaces and represent potential tools for application in cancer diagnostics and therapy. Among the emerging cancer therapies, immunotherapy has become a promising treatment modality for various hematological and solid malignancies. Here we present an approach to redirect the immune system into fighting cancer by targeting altered glycans at the surface of malignant cells. We developed a so-called "lectibody", a bispecific construct composed of a lectin linked to an antibody fragment. This lectibody is inspired by bispecific T cell engager (BiTEs) antibodies that recruit cytotoxic T lymphocytes (CTLs) while simultaneously binding to tumor-associated antigens (TAAs) on cancer cells. The tumor-related glycosphingolipid globotriaosylceramide (Gb3) represents the target of this proof-of-concept study. It is recognized with high selectivity by the B-subunit of the pathogen-derived Shiga toxin, presenting opportunities for clinical development. METHODS The lectibody was realized by conjugating an anti-CD3 single-chain antibody fragment to the B-subunit of Shiga toxin to target Gb3+ cancer cells. The reactive non-canonical amino acid azidolysine (AzK) was inserted at predefined single positions in both proteins. The azido groups were functionalized by bioorthogonal conjugation with individual linkers that facilitated selective coupling via an alternative bioorthogonal click chemistry reaction. In vitro cell-based assays were conducted to evaluate the antitumoral activity of the lectibody. CTLs, Burkitt´s lymphoma-derived cells and colorectal adenocarcinoma cell lines were screened in flow cytometry and cytotoxicity assays for activation and lysis, respectively. RESULTS This proof-of-concept study demonstrates that the lectibody activates T cells for their cytotoxic signaling, redirecting CTLs´ cytotoxicity in a highly selective manner and resulting in nearly complete tumor cell lysis-up to 93%-of Gb3+ tumor cells in vitro. CONCLUSIONS This research highlights the potential of lectins in targeting certain tumors, with an opportunity for new cancer treatments. When considering a combinatorial strategy, lectin-based platforms of this type offer the possibility to target glycan epitopes on tumor cells and boost the efficacy of current therapies, providing an additional strategy for tumor eradication and improving patient outcomes.
Collapse
Affiliation(s)
- Francesca Rosato
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Rajeev Pasupuleti
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Jana Tomisch
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Dajana Kolanovic
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Olga N Makshakova
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Birgit Wiltschi
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria.
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Meléndez AV, Velasco Cárdenas RMH, Lagies S, Strietz J, Siukstaite L, Thomas OS, Tomisch J, Weber W, Kammerer B, Römer W, Minguet S. Novel lectin-based chimeric antigen receptors target Gb3-positive tumour cells. Cell Mol Life Sci 2022; 79:513. [PMID: 36097202 PMCID: PMC9468074 DOI: 10.1007/s00018-022-04524-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 11/05/2022]
Abstract
The link between cancer and aberrant glycosylation has recently become evident. Glycans and their altered forms, known as tumour-associated carbohydrate antigens (TACAs), are diverse, complex and difficult to target therapeutically. Lectins are naturally occurring glycan-binding proteins that offer a unique opportunity to recognise TACAs. T cells expressing chimeric antigen receptors (CARs) have proven to be a successful immunotherapy against leukaemias, but so far have shown limited success in solid tumours. We developed a panel of lectin-CARs that recognise the glycosphingolipid globotriaosylceramide (Gb3), which is overexpressed in various cancers, such as Burkitt's lymphoma, colorectal, breast and pancreatic. We have selected the following lectins: Shiga toxin's B-subunit from Shigella dysenteriae, LecA from Pseudomonas aeruginosa, and the engineered lectin Mitsuba from Mytilus galloprovincialis as antigen-binding domains and fused them to a well-known second-generation CAR. The Gb3-binding lectin-CARs have demonstrated target-specific cytotoxicity against Burkitt's lymphoma-derived cell lines as well as solid tumour cells from colorectal and triple-negative breast cancer. Our findings reveal the big potential of lectin-based CARs as therapeutical applications to target Gb3 and other TACAs expressed in haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Rubí M-H Velasco Cárdenas
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Simon Lagies
- Institute of Organic Chemistry, Albert-Ludwigs-University Freiburg, Albertstraße 21, 79102, Freiburg, Germany
| | | | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Oliver S Thomas
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Jana Tomisch
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Bernd Kammerer
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Institute of Organic Chemistry, Albert-Ludwigs-University Freiburg, Albertstraße 21, 79102, Freiburg, Germany
- Centre for Integrative Signalling Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, Freiburg, Germany.
| |
Collapse
|
7
|
Liu Z, Li X, Lu Z, Qin X, Hong H, Zhou Z, Pieters RJ, Shi J, Wu Z. Repurposing the Pentameric B-subunit of Shiga Toxin for Gb3-targeted Immunotherapy of Colorectal Cancer by Rhamnose Conjugation. J Pharm Sci 2022; 111:2719-2729. [PMID: 35905973 DOI: 10.1016/j.xphs.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Globotriaosylceramide (Gb3 or CD77) is a tumor-associated carbohydrate antigen implicated in several types of cancer that serves as a potential cancer marker for developing target-specific diagnosis and therapy. However, the development of Gb3-targeted therapeutics has been challenging due to its carbohydrate nature. In the present work, taking advantage of its natural pentamer architecture and Gb3-specific targeting of shiga toxin B subunit (StxB), we constructed a pentameric antibody recruiting chimera by site-specifically conjugating StxB with the rhamnose hapten for immunotherapy of colorectal cancer. The Sortase A-catalyzed enzymatic tethering of rhamnose moieties to the C terminus of Stx1B and Stx2B had very moderate effect on their pentamer architectures and thus the resultant conjugates maintained the potent ability to bind to Gb3 antigen both immobilized on an assay plate and expressed on colorectal cancer cells. All StxB-rhamnose constructs were capable of efficiently mediating the binding of rhamnose antibodies onto HT29 colorectal cancer cells, which was further shown to be able to induce cancer cell lysis by eliciting potent antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in vitro. Finally, the best StxB-rhamnose conjugate, i.e. 1B-3R, was confirmed to be able to inhibit the colorectal tumor growth using a HT29-derived xenograft murine model. Taken together, our data demonstrated the potential of repurposing StxB as an excellent multivalent scaffold for developing Gb3-targeted biotherapeutics and StxB-rhamnose conjugates might be promising candidates for targeted immunotherapy of Gb3-related colorectal cancer.
Collapse
Affiliation(s)
- Zhicheng Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Xia Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zhongkai Lu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Xinfang Qin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
8
|
Wang D, Madunić K, Zhang T, Mayboroda OA, Lageveen-Kammeijer GSM, Wuhrer M. High Diversity of Glycosphingolipid Glycans of Colorectal Cancer Cell Lines Reflects the Cellular Differentiation Phenotype. Mol Cell Proteomics 2022; 21:100239. [PMID: 35489554 PMCID: PMC9157004 DOI: 10.1016/j.mcpro.2022.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC)–associated changes of protein glycosylation have been widely studied. In contrast, the expression of glycosphingolipid (GSL) patterns in CRC has, hitherto, remained largely unexplored. Even though GSLs are major carriers of cell surface carbohydrates, they are understudied due to their complexity and analytical challenges. In this study, we provide an in-depth analysis of GSL glycans of 22 CRC cell lines using porous graphitized carbon nano–liquid chromatography coupled with electrospray ionization–mass spectrometry. Our data revealed that the GSL expression varies among different cell line classifications, with undifferentiated cell lines showing high expression of blood group A, B, and H antigens while for colon-like cell lines the most prominent GSL glycans contained (sialyl)-LewisA/X and LewisB/Y antigens. Moreover, the GSL expression correlated with relevant glycosyltransferases that are involved in their biosynthesis as well as with transcription factors (TFs) implicated in colon differentiation. Additionally, correlations between certain glycosyltransferases and TFs at mRNA expression level were found, such as FUT3, which correlated with CDX1, ETS2, HNF1A, HNF4A, MECOM, and MYB. These TFs are upregulated in colon-like cell lines pointing to their potential role in regulating fucosylation during colon differentiation. In conclusion, our study reveals novel layers of potential GSL glycans regulation relevant for future research in colon differentiation and CRC. Undifferentiated cell lines showed high expression of blood group A, B, and H antigens. Colon-like cell lines are high in GSLs carrying (sialyl)-LewisA/X and LewisB/Y antigens. (Sialyl)-LewisA/X and LewisB/Y antigens associated with expression of FUT3 and CDX1. I-branching was elevated in undifferentiated cells.
Collapse
Affiliation(s)
- Di Wang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Katarina Madunić
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Tao Zhang
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | - Oleg A Mayboroda
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, RC Leiden, The Netherlands.
| |
Collapse
|
9
|
Sadeghi M. Investigating the entropic nature of membrane-mediated interactions driving the aggregation of peripheral proteins. SOFT MATTER 2022; 18:3917-3927. [PMID: 35543220 DOI: 10.1039/d2sm00118g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peripheral membrane-associated proteins are known to accumulate on the surface of biomembranes as a result of membrane-mediated interactions. For a pair of rotationally-symmetric curvature-inducing proteins, membrane mechanics at the low-temperature limit predicts pure repulsion. On the other hand, temperature-dependent entropic forces arise between pairs of stiff-binding proteins suppressing membrane fluctuations. These Casimir-like interactions have thus been suggested as candidates for attractive forces leading to aggregation. With dense assemblies of peripheral proteins on the membrane, both these abstractions encounter short-range and multi-body complications. Here, we make use of a particle-based membrane model augmented with flexible peripheral proteins to quantify purely membrane-mediated interactions and investigate their underlying nature. We introduce a continuous reaction coordinate corresponding to the progression of protein aggregation. We obtain free energy and entropy landscapes for different surface concentrations along this reaction coordinate. In parallel, we investigate time-dependent estimates of membrane entropy corresponding to membrane undulations and coarse-grained director field and how they change dynamically with protein aggregation. Congruent outcomes of the two approaches point to the conclusion that for low surface concentrations, interactions with an entropic nature may drive the aggregation. But at high concentrations, enthalpic contributions due to concerted membrane deformation by protein clusters are dominant.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany.
| |
Collapse
|
10
|
Danielewicz N, Rosato F, Dai W, Römer W, Turnbull WB, Mairhofer J. Microbial carbohydrate-binding toxins – From etiology to biotechnological application. Biotechnol Adv 2022; 59:107951. [DOI: 10.1016/j.biotechadv.2022.107951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
|
11
|
Gb3/cd77 Is a Predictive Marker and Promising Therapeutic Target for Head and Neck Cancer. Biomedicines 2022; 10:biomedicines10040732. [PMID: 35453483 PMCID: PMC9029501 DOI: 10.3390/biomedicines10040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022] Open
Abstract
Head and neck squamous cell carcinoma is the sixth leading cancer in the world. This cancer is difficult to treat and is characterized by recurrences that are often fatal. This cancer is generally removed surgically, but it often regrows from the edges of the lesion from where most recurrences reappear. In this study, we have investigated if the expression of GB3 in human cell lines, tissues from patient biopsies, and a murine animal model could be used as an early and determinant marker of HNC. We found that in all the investigated systems, this marker appears in neoplastic cells from the very early stages of their malignant transformation. Our conclusions support the hypothesis that GB3 is a reliable and independent target for HNC identification and selective delivery of treatments. Furthermore, we show that the level of expression of this marker correlates with the degree of malignancy of the tumor. These studies suggest that GB3 may provide the basis for the early identification and new targeted therapies for head and neck cancer.
Collapse
|
12
|
Deville-Foillard S, Billet A, Dubuisson RM, Johannes L, Durand P, Schmidt F, Volk A. High-Relaxivity Molecular MRI Contrast Agent to Target Gb3-Expressing Cancer Cells. Bioconjug Chem 2022; 33:180-193. [PMID: 34986302 DOI: 10.1021/acs.bioconjchem.1c00531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Targeted contrast agents (CAs) can improve magnetic resonance imaging (MRI) for accurate cancer diagnosis. In this work, we used the Shiga toxin B-subunit (STxB) as a targeting agent, which binds to Gb3, a glycosphingolipid highly overexpressed on the surface of tumor cells. We developed STxB-targeted MRI probes from cyclic peptide scaffolds functionalized with six to nine monoamide DO3A[Gd(III)] chelates. The influence of structural constraints on the longitudinal relaxivity (r1) of the CAs has been studied. The cyclic peptide carrying nine monoamide DO3A[Gd(III)] exhibited a r1 per compound of 32 and 93 mM-1s-1 at 9.4 and 1.5 T, respectively. Its conjugation to the pentameric STxB protein led to a 70 kDa compound with a higher r1 of 150 and 475 mM-1 s-1 at 9.4 and 1.5 T, respectively. Specific accumulation and cellular distribution of this conjugate in Gb3-expressing cancer cells were demonstrated using immunofluorescence microscopy and quantified by an inductively coupled plasma-mass spectrometry dosage of Gd(III). Such an agent should enable the in vivo detection by MRI of tumors expressing Gb3 receptors.
Collapse
Affiliation(s)
- Stéphanie Deville-Foillard
- Institut Curie, PSL University Paris, CNRS UMR3666, INSERM U1143, Cellular and Chemical Biology, Paris 75005, France
- Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette 91198, France
| | - Anne Billet
- Institut Curie, PSL University Paris, CNRS UMR3666, INSERM U1143, Cellular and Chemical Biology, Paris 75005, France
- Université de Paris, Paris F-75005, France
| | - Rose-Marie Dubuisson
- Université Paris-Saclay, CEA, CNRS, INSERM, BioMaps, Service Hospitalier Frédéric Joliot, Orsay 91401, France
| | - Ludger Johannes
- Institut Curie, PSL University Paris, CNRS UMR3666, INSERM U1143, Cellular and Chemical Biology, Paris 75005, France
| | - Philippe Durand
- Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette 91198, France
| | - Frédéric Schmidt
- Institut Curie, PSL University Paris, CNRS UMR3666, INSERM U1143, Cellular and Chemical Biology, Paris 75005, France
| | - Andreas Volk
- Institut Curie, Université Paris-Saclay, CNRS, INSERM, CMIB, Orsay 91405, France
- Université Paris-Saclay, CEA, CNRS, INSERM, BioMaps, Institut Gustave Roussy, Villejuif 94800, France
| |
Collapse
|
13
|
Targeting Nanomaterials to Head and Neck Cancer Cells Using a Fragment of the Shiga Toxin as a Potent Natural Ligand. Cancers (Basel) 2021; 13:cancers13194920. [PMID: 34638405 PMCID: PMC8507991 DOI: 10.3390/cancers13194920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/29/2022] Open
Abstract
Head and Neck Cancer (HNC) is the seventh most common cancer worldwide with a 5-year survival from diagnosis of 50%. Currently, HNC is diagnosed by a physical examination followed by an histological biopsy, with surgery being the primary treatment. Here, we propose the use of targeted nanotechnology in support of existing diagnostic and therapeutic tools to prevent recurrences of tumors with poorly defined or surgically inaccessible margins. We have designed an innocuous ligand-protein, based on the receptor-binding domain of the Shiga toxin (ShTxB), that specifically drives nanoparticles to HNC cells bearing the globotriaosylceramide receptor on their surfaces. Microscopy images show how, upon binding to the receptor, the ShTxB-coated nanoparticles cause the clustering of the globotriaosylceramide receptors, the protrusion of filopodia, and rippling of the membrane, ultimately allowing the penetration of the ShTxB nanoparticles directly into the cell cytoplasm, thus triggering a biomimetic cellular response indistinguishable from that triggered by the full-length Shiga toxin. This functionalization strategy is a clear example of how some toxin fragments can be used as natural biosensors for the detection of some localized cancers and to target nanomedicines to HNC lesions.
Collapse
|
14
|
Shiga Toxins as Antitumor Tools. Toxins (Basel) 2021; 13:toxins13100690. [PMID: 34678982 PMCID: PMC8538568 DOI: 10.3390/toxins13100690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxins (Stxs), also known as Shiga-like toxins (SLT) or verotoxins (VT), constitute a family of structurally and functionally related cytotoxic proteins produced by the enteric pathogens Shigella dysenteriae type 1 and Stx-producing Escherichia coli (STEC). Infection with these bacteria causes bloody diarrhea and other pathological manifestations that can lead to HUS (hemolytic and uremic syndrome). At the cellular level, Stxs bind to the cellular receptor Gb3 and inhibit protein synthesis by removing an adenine from the 28S rRNA. This triggers multiple cellular signaling pathways, including the ribotoxic stress response (RSR), unfolded protein response (UPR), autophagy and apoptosis. Stxs cause several pathologies of major public health concern, but their specific targeting of host cells and efficient delivery to the cytosol could potentially be exploited for biomedical purposes. Moreover, high levels of expression have been reported for the Stxs receptor, Gb3/CD77, in Burkitt's lymphoma (BL) cells and on various types of solid tumors. These properties have led to many attempts to develop Stxs as tools for biomedical applications, such as cancer treatment or imaging, and several engineered Stxs are currently being tested. We provide here an overview of these studies.
Collapse
|
15
|
The Role of Glycosyltransferases in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22115822. [PMID: 34070747 PMCID: PMC8198577 DOI: 10.3390/ijms22115822] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Post-translational modifications (PTMs) have been extensively studied in malignancies due to its relevance in tumor pathogenesis and therapy. This review is focused on the dysregulation of glycosyltransferase expression in CRC and its impact in cell function and in several biological pathways associated with CRC pathogenesis, prognosis and therapeutic approaches. Glycan structures act as interface molecules between cells and their environment and in several cases facilitate molecule function. CRC tissue shows alterations in glycan structures decorating molecules, such as annexin-1, mucins, heat shock protein 90 (Hsp90), β1 integrin, carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), insulin-like growth factor-binding protein 3 (IGFBP3), transforming growth factor beta (TGF-β) receptors, Fas (CD95), PD-L1, decorin, sorbin and SH3 domain-containing protein 1 (SORBS1), CD147 and glycosphingolipids. All of these are described as key molecules in oncogenesis and metastasis. Therefore, glycosylation in CRC can affect cell migration, cell–cell adhesion, actin polymerization, mitosis, cell membrane repair, apoptosis, cell differentiation, stemness regulation, intestinal mucosal barrier integrity, immune system regulation, T cell polarization and gut microbiota composition; all such functions are associated with the prognosis and evolution of the disease. According to these findings, multiple strategies have been evaluated to alter oligosaccharide processing and to modify glycoconjugate structures in order to control CRC progression and prevent metastasis. Additionally, immunotherapy approaches have contemplated the use of neo-antigens, generated by altered glycosylation, as targets for tumor-specific T cells or engineered CAR (Chimeric antigen receptors) T cells.
Collapse
|
16
|
Lingwood C. Therapeutic Uses of Bacterial Subunit Toxins. Toxins (Basel) 2021; 13:toxins13060378. [PMID: 34073185 PMCID: PMC8226680 DOI: 10.3390/toxins13060378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
The B subunit pentamer verotoxin (VT aka Shiga toxin-Stx) binding to its cellular glycosphingolipid (GSL) receptor, globotriaosyl ceramide (Gb3) mediates internalization and the subsequent receptor mediated retrograde intracellular traffic of the AB5 subunit holotoxin to the endoplasmic reticulum. Subunit separation and cytosolic A subunit transit via the ER retrotranslocon as a misfolded protein mimic, then inhibits protein synthesis to kill cells, which can cause hemolytic uremic syndrome clinically. This represents one of the most studied systems of prokaryotic hijacking of eukaryotic biology. Similarly, the interaction of cholera AB5 toxin with its GSL receptor, GM1 ganglioside, is the key component of the gastrointestinal pathogenesis of cholera and follows the same retrograde transport pathway for A subunit cytosol access. Although both VT and CT are the cause of major pathology worldwide, the toxin–receptor interaction is itself being manipulated to generate new approaches to control, rather than cause, disease. This arena comprises two areas: anti neoplasia, and protein misfolding diseases. CT/CTB subunit immunomodulatory function and anti-cancer toxin immunoconjugates will not be considered here. In the verotoxin case, it is clear that Gb3 (and VT targeting) is upregulated in many human cancers and that there is a relationship between GSL expression and cancer drug resistance. While both verotoxin and cholera toxin similarly hijack the intracellular ERAD quality control system of nascent protein folding, the more widespread cell expression of GM1 makes cholera the toxin of choice as the means to more widely utilise ERAD targeting to ameliorate genetic diseases of protein misfolding. Gb3 is primarily expressed in human renal tissue. Glomerular endothelial cells are the primary VT target but Gb3 is expressed in other endothelial beds, notably brain endothelial cells which can mediate the encephalopathy primarily associated with VT2-producing E. coli infection. The Gb3 levels can be regulated by cytokines released during EHEC infection, which complicate pathogenesis. Significantly Gb3 is upregulated in the neovasculature of many tumours, irrespective of tumour Gb3 status. Gb3 is markedly increased in pancreatic, ovarian, breast, testicular, renal, astrocytic, gastric, colorectal, cervical, sarcoma and meningeal cancer relative to the normal tissue. VT has been shown to be effective in mouse xenograft models of renal, astrocytoma, ovarian, colorectal, meningioma, and breast cancer. These studies are herein reviewed. Both CT and VT (and several other bacterial toxins) access the cell cytosol via cell surface ->ER transport. Once in the ER they interface with the protein folding homeostatic quality control pathway of the cell -ERAD, (ER associated degradation), which ensures that only correctly folded nascent proteins are allowed to progress to their cellular destinations. Misfolded proteins are translocated through the ER membrane and degraded by cytosolic proteosome. VT and CT A subunits have a C terminal misfolded protein mimic sequence to hijack this transporter to enter the cytosol. This interface between exogenous toxin and genetically encoded endogenous mutant misfolded proteins, provides a new therapeutic basis for the treatment of such genetic diseases, e.g., Cystic fibrosis, Gaucher disease, Krabbe disease, Fabry disease, Tay-Sachs disease and many more. Studies showing the efficacy of this approach in animal models of such diseases are presented.
Collapse
Affiliation(s)
- Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Departments of Laboratory Medicine & Pathobiology, and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
17
|
Talabnin K, Talabnin C, Kumagai T, Sutatum N, Khiaowichit J, Dechsukhum C, Ishihara M, Azadi P, Sripa B. Ganglioside GM2: a potential biomarker for cholangiocarcinoma. J Int Med Res 2021; 48:300060520903216. [PMID: 32692591 PMCID: PMC7375732 DOI: 10.1177/0300060520903216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the expression of glycosphingolipids in serum and tissue from patients with cholangiocarcinoma compared with healthy controls. METHODS Nanospray ionization-linear ion trap mass spectrometry (NSI-MSn) was used to demonstrate the comparative structural glycomics of glycosphingolipids in serum from patients with cholangiocarcinoma (n=15), compared with healthy controls (n = 15). GM2 expression in cholangiocarcinoma tissues (n = 60) was evaluated by immunohistochemistry. RESULTS Eleven glycosphingolipids were detected by NSI-MSn: CMH (ceramide monohexose), Lac-Cer (galactose (Gal)β1-4 glucose (Glc)β1-1'-ceramide), Gb3 (Galα1-4Galβ1-4Glcβ1-1'-ceramide), Gb4/Lc4 (N-acetylgalactosamine (GalNAc)β1-3Galα1-4Galβ1-4Glcβ1-1'-ceramide/Galβ1-4 N-acetylglucosamine (GlcNAc)β1-3Galβ1-4Glcβ1-1'-ceramide), GM3 (N-acetylneuraminic acid (NeuAc)2-3Galβ1-4Glcβ1-1'-ceramide), GM2 (GalNAcβ1-4[NeuAc2-3]Galβ1-4Glcβ1-1'-ceramide), GM1 (Galβ1-3GalNAcβ1-4[NeuAc2-3]Galβ1-4Glcβ1-1'-ceramide), hFA (hydroxylated fatty acid)-CMH, hFA-Lac-Cer, hFA-Gb3, and hFA-GM3. Lac-Cer was the most abundant structure among the lactosides and globosides (normal, 24.40% ± 0.11%; tumor, 24.61% ± 2.10%), while GM3 predominated among the gangliosides (normal, 29.14% ± 1.31%; tumor, 30.53% ± 4.04%). The two glycosphingolipids that significantly differed between healthy controls and patients with cholangiocarcinoma were Gb3 and GM2. High expression of GM2 was associated with vascular invasion in tissue from patients with cholangiocarcinoma. CONCLUSIONS Altered expression of glycosphingolipids in tissue and serum from patients with cholangiocarcinoma may contribute to tumor growth and progression. The ganglioside GM2, which significantly increased in the serum of patients with cholangiocarcinoma, represents a promising target as a biomarker for cholangiocarcinoma.
Collapse
Affiliation(s)
- Krajang Talabnin
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Chutima Talabnin
- Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Tadahiro Kumagai
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Nuchanard Sutatum
- School of Translational Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Juthamas Khiaowichit
- School of Translational Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chawaboon Dechsukhum
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Banchob Sripa
- Liver Fluke and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
18
|
New opportunities and challenges of venom-based and bacteria-derived molecules for anticancer targeted therapy. Semin Cancer Biol 2020; 80:356-369. [PMID: 32846203 DOI: 10.1016/j.semcancer.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022]
Abstract
Due to advances in detection and treatment of cancer, especially the rise in the targeted therapy, the five-year relative survival rate of all cancers has increased significantly. However, according to the analysis of the survival rate of cancer patients in 2019, the survival rate of most cancers is still less than five years. Therefore, to combat complex cancer and further improve the 5-year survival rate of cancer patients, it is necessary to develop some new anticancer drugs. Because of the adaptive evolution of toxic species for millions of years, the venom sac is a "treasure bank", which has millions of biomolecules with high affinity and stability awaiting further development. Complete utilization of venom-based and bacteria-derived drugs in the market is still staggering because of incomplete understanding regarding their mode of action. In this review, we focused on the currently identified targets for anticancer effects based on venomous and bacterial biomolecules, such as ion channels, membrane non-receptor molecules, integrins, and other related target molecules. This review will serve as the key for exploring the molecular mechanisms behind the anticancer potential of venom-based and bacteria-derived drugs and will also lay the path for the development of anticancer targeted therapy.
Collapse
|
19
|
Encarnação JC, Napolitano V, Opassi G, Danielson UH, Dubin G, Popowicz GM, Munier-Lehmann H, Buijs J, Andersson K, Björkelund H. A real-time cell-binding assay reveals dynamic features of STxB-Gb3 cointernalization and STxB-mediated cargo delivery into cancer cells. FEBS Lett 2020; 594:2406-2420. [PMID: 32473599 DOI: 10.1002/1873-3468.13847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
The interaction between the Shiga toxin B-subunit (STxB) and its globotriaosylceramide receptor (Gb3) has a high potential for being exploited for targeted cancer therapy. The primary goal of this study was to evaluate the capacity of STxB to carry small molecules and proteins as cargo into cells. For this purpose, an assay was designed to provide real-time information about the StxB-Gb3 interaction as well as the dynamics and mechanism of the internalization process. The assay revealed the ability to distinguish the process of binding to the cell surface from internalization and presented the importance of receptor and STxB clustering for internalization. The overall setup demonstrated that the binding mechanism is complex, and the concept of affinity is difficult to apply. Hence, time-resolved methods, providing detailed information about the interaction of STxB with cells, are critical for the optimization of intracellular delivery.
Collapse
Affiliation(s)
- João Crispim Encarnação
- Ridgeview Instruments AB, Uppsala, Sweden.,Department of Immunology, Pathology and Genetics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Valeria Napolitano
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Giulia Opassi
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | | | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Chair of Biomolecular NMR, Department Chemie, Technische Universität München, Garching, Germany
| | - Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR3523, Paris, France
| | - Jos Buijs
- Ridgeview Instruments AB, Uppsala, Sweden.,Department of Immunology, Pathology and Genetics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl Andersson
- Ridgeview Instruments AB, Uppsala, Sweden.,Department of Immunology, Pathology and Genetics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
20
|
Bien T, Perl M, Machmüller AC, Nitsche U, Conrad A, Johannes L, Müthing J, Soltwisch J, Janssen KP, Dreisewerd K. MALDI-2 Mass Spectrometry and Immunohistochemistry Imaging of Gb3Cer, Gb4Cer, and Further Glycosphingolipids in Human Colorectal Cancer Tissue. Anal Chem 2020; 92:7096-7105. [PMID: 32314902 DOI: 10.1021/acs.analchem.0c00480] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The main cellular receptors of Shiga toxins (Stxs), the neutral glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer/CD77) and globotetraosylceramide (Gb4Cer), are significantly upregulated in about half of the human colorectal carcinomas (CRC) and in other cancers. Therefore, conjugates exploiting the Gb3Cer/Gb4Cer-binding B subunit of Stx (StxB) have attracted great interest for both diagnostic and adjuvant therapeutic interventions. Moreover, fucosylated GSLs were recognized as potential tumor-associated targets. One obstacle to a broader use of these receptor/ligand systems is that the contribution of specific GSLs to tumorigenesis, in particular, in the context of an altered lipid metabolism, is only poorly understood. A second is that also nondiseased organs (e.g., kidney) and blood vessels can express high levels of certain GSLs, not least Gb3Cer/Gb4Cer. Here, we used, in a proof-of-concept study, matrix-assisted laser desorption/ionization mass spectrometry imaging combined with laser-induced postionization (MALDI-2-MSI) to simultaneously visualize the distribution of several Gb3Cer/Gb4Cer lipoforms and those of related GSLs (e.g., Gb3Cer/Gb4Cer precursors and fucosylated GSLs) in tissue biopsies from three CRC patients. Using MALDI-2 and StxB-based immunofluorescence microscopy, Gb3Cer and Gb4Cer were mainly found in dedifferentiated tumor cell areas, tumor stroma, and tumor-infiltrating blood vessels. Notably, fucosylated GSL such as Fuc-(n)Lc4Cer generally showed a highly localized expression in dysplastic glands and indian file-like cells infiltrating adipose tissue. Our "molecular histology" approach could support stratifying patients for intratumoral GSL expression to identify an optimal therapeutic strategy. The improved chemical coverage by MALDI-2 can also help to improve our understanding of the molecular basis of tumor development and GSL metabolism.
Collapse
Affiliation(s)
- Tanja Bien
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Markus Perl
- Department of Surgery, Klinikum rechts der Isar, Technical University München, Ismaninger Str. 22, 81675 München, Germany
| | - Andrea C Machmüller
- Department of Surgery, Klinikum rechts der Isar, Technical University München, Ismaninger Str. 22, 81675 München, Germany
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, Technical University München, Ismaninger Str. 22, 81675 München, Germany
| | - Anja Conrad
- Department of Surgery, Klinikum rechts der Isar, Technical University München, Ismaninger Str. 22, 81675 München, Germany
| | - Ludger Johannes
- Cellular and Chemical Biology Department, Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris CEDEX 05, France
| | - Johannes Müthing
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Jens Soltwisch
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University München, Ismaninger Str. 22, 81675 München, Germany
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany.,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
21
|
Jasminka Rešić Karara, Kowalski M, Markotić A, Zemunik T, Čulić VČ. Distinct Cerebellar Glycosphingolipid Phenotypes in Wistar and Lewis Rats. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Lingwood C. Verotoxin Receptor-Based Pathology and Therapies. Front Cell Infect Microbiol 2020; 10:123. [PMID: 32296648 PMCID: PMC7136409 DOI: 10.3389/fcimb.2020.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Verotoxin, VT (aka Shiga toxin,Stx) is produced by enterohemorrhagic E. coli (EHEC) and is the key pathogenic factor in EHEC-induced hemolytic uremic syndrome (eHUS-hemolytic anemia/thrombocytopenia/glomerular infarct) which can follow gastrointestinal EHEC infection, particularly in children. This AB5 subunit toxin family bind target cell globotriaosyl ceramide (Gb3), a glycosphingolipid (GSL) (aka CD77, pk blood group antigen) of the globoseries of neutral GSLs, initiating lipid raft-dependent plasma membrane Gb3 clustering, membrane curvature, invagination, scission, endosomal trafficking, and retrograde traffic via the TGN to the Golgi, and ER. In the ER, A/B subunits separate and the A subunit hijacks the ER reverse translocon (dislocon-used to eliminate misfolded proteins-ER associated degradation-ERAD) for cytosolic access. This property has been used to devise toxoid-based therapy to temporarily block ERAD and rescue the mutant phenotype of several genetic protein misfolding diseases. The A subunit avoids cytosolic proteosomal degradation, to block protein synthesis via its RNA glycanase activity. In humans, Gb3 is primarily expressed in the kidney, particularly in the glomerular endothelial cells. Here, Gb3 is in lipid rafts (more ordered membrane domains which accumulate GSLs/cholesterol) whereas renal tubular Gb3 is in the non-raft membrane fraction, explaining the basic pathology of eHUS (glomerular endothelial infarct). Females are more susceptible and this correlates with higher renal Gb3 expression. HUS can be associated with encephalopathy, more commonly following verotoxin 2 exposure. Gb3 is expressed in the microvasculature of the brain. All members of the VT family bind Gb3, but with varying affinity. VT2e (pig edema toxin) binds Gb4 preferentially. Verotoxin-specific therapeutics based on chemical analogs of Gb3, though effective in vitro, have failed in vivo. While some analogs are effective in animal models, there are no good rodent models of eHUS since Gb3 is not expressed in rodent glomeruli. However, the mouse mimics the neurological symptoms more closely and provides an excellent tool to assess therapeutics. In addition to direct cytotoxicity, other factors including VT–induced cytokine release and aberrant complement cascade, are now appreciated as important in eHUS. Based on atypical HUS therapy, treatment of eHUS patients with anticomplement antibodies has proven effective in some cases. A recent switch using stem cells to try to reverse, rather than prevent VT induced pathology may prove a more effective methodology.
Collapse
Affiliation(s)
- Clifford Lingwood
- Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
23
|
Farhat F, Tarabaih M, Kattan J, Assi T. [A breast cancer case in the only Lebanese family with Fabry disease]. Bull Cancer 2019; 106:1065-1066. [PMID: 31586526 DOI: 10.1016/j.bulcan.2019.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Fadi Farhat
- Hôpital universitaire de Hammoud, département d'hématologie-oncologie, Sidon, Liban
| | - Mohamad Tarabaih
- Hôpital universitaire de Hammoud, département d'hématologie-oncologie, Sidon, Liban
| | - Joseph Kattan
- Hôtel-Dieu de France, département d'hématologie-oncologie, Beyrouth, Liban
| | - Tarek Assi
- Hôpital universitaire de Hammoud, département d'hématologie-oncologie, Sidon, Liban; Université Saint-Joseph, faculté de médicine, département d'hématologie-oncologie, Beyrouth, Liban.
| |
Collapse
|
24
|
Xu H, Peng L, Shen M, Xia Y, Li Z, He N. Shiga-like toxin I exerts specific and potent anti-tumour efficacy against gastric cancer cell proliferation when driven by tumour-preferential Frizzled-7 promoter. Cell Prolif 2019; 52:e12607. [PMID: 30955216 DOI: 10.1111/cpr.12607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES Tumour-targeted gene therapy is a promising approach for effective control of gastric cancer cell proliferation. Our study aims to develop a cancer therapy which combines tumour-targeting promoters with cytotoxins. METHODS The expression of globotriaosylceramide (Gb3), which is a Shiga-like toxin I (Stx1) receptor, was verified in gastric cancer compared with normal stomach tissues as assessed by flow cytometry and immunohistochemical analysis. We therefore constructed the recombinant pFZD7-Stx1 plasmid vectors with tumour-preferential Frizzled-7 promoter and Stx1. pFZD7-Stx1 was used to treat gastric cancer in vitro and in vivo. The gastric cancer cell proliferation and tumour growth were identified after the transfection with the pFZD7-Stx1. RESULTS Globotriaosylceramide was obviously increased in gastric cancer compared with normal stomach. The gastric cancer cell proliferation and tumour growth decreased significantly after the transfection with the pFZD7-Stx1. CONCLUSION Frizzled-7 promoter is preferentially active, and Gb3 is abundant in gastric cancer cells. Frizzled-7 promoter and Stx1 may be used to determine a novel and relatively specific and potent gastric cancer therapeutic strategy.
Collapse
Affiliation(s)
- Hongpan Xu
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lijun Peng
- Department of Clinical Laboratory, Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
| | - Mengjiao Shen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanyan Xia
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Legros N, Pohlentz G, Steil D, Kouzel IU, Liashkovich I, Mellmann A, Karch H, Müthing J. Membrane assembly of Shiga toxin glycosphingolipid receptors and toxin refractiveness of MDCK II epithelial cells. J Lipid Res 2018; 59:1383-1401. [PMID: 29866658 DOI: 10.1194/jlr.m083048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Shiga toxins (Stxs) are the major virulence factors of Stx-producing Escherichia coli (STEC), which cause hemorrhagic colitis and severe extraintestinal complications due to injury of renal endothelial cells, resulting in kidney failure. Since kidney epithelial cells are suggested additional targets for Stxs, we analyzed Madin-Darby canine kidney (MDCK) II epithelial cells for presence of Stx-binding glycosphingolipids (GSLs), determined their distribution to detergent-resistant membranes (DRMs), and ascertained the lipid composition of DRM and non-DRM preparations. Globotriaosylceramide and globotetraosylceramide, known as receptors for Stx1a, Stx2a, and Stx2e, and Forssman GSL as a specific receptor for Stx2e, were found to cooccur with SM and cholesterol in DRMs of MDCK II cells, which was shown using TLC overlay assay detection combined with mass spectrometry. The various lipoforms of GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:1/C24:0 or C16:0 FA. The cells were highly refractory toward Stx1a, Stx2a, and Stx2e, most likely due to the absence of Stx-binding GSLs in the apical plasma membrane determined by immunofluorescence confocal laser scanning microscopy. The results suggest that the cellular content of Stx receptor GSLs and their biochemical detection in DRM preparations alone are inadequate to predict cellular sensitivity toward Stxs.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Ivan U Kouzel
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, D-48149 Münster, Germany
| | - Alexander Mellmann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany .,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
26
|
Zhuo D, Li X, Guan F. Biological Roles of Aberrantly Expressed Glycosphingolipids and Related Enzymes in Human Cancer Development and Progression. Front Physiol 2018; 9:466. [PMID: 29773994 PMCID: PMC5943571 DOI: 10.3389/fphys.2018.00466] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/13/2018] [Indexed: 01/05/2023] Open
Abstract
Glycosphingolipids (GSLs), which consist of a hydrophobic ceramide backbone and a hydrophilic carbohydrate residue, are an important type of glycolipid expressed in surface membranes of all animal cells. GSLs play essential roles in maintenance of plasma membrane stability, in regulation of numerous cellular processes (including adhesion, proliferation, apoptosis, and recognition), and in modulation of signal transduction pathways. GSLs have traditionally been classified as ganglio-series, lacto-series, or globo-series on the basis of their diverse types of oligosaccharide chains. Structures and functions of specific GSLs are also determined by their oligosaccharide chains. Different cells and tissues show differential expression of GSLs, and changes in structures of GSL glycan moieties occur during development of numerous types of human cancer. Association of GSLs and/or related enzymes with initiation and progression of cancer has been documented in 100s of studies, and many such GSLs are useful markers or targets for cancer diagnosis or therapy. In this review, we summarize (i) recent studies on aberrant expression and distribution of GSLs in common human cancers (breast, lung, colorectal, melanoma, prostate, ovarian, leukemia, renal, bladder, gastric); (ii) biological functions of specific GSLs in these cancers.
Collapse
Affiliation(s)
- Dinghao Zhuo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of China, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
27
|
Shiga Toxin Glycosphingolipid Receptors in Human Caco-2 and HCT-8 Colon Epithelial Cell Lines. Toxins (Basel) 2017; 9:toxins9110338. [PMID: 29068380 PMCID: PMC5705953 DOI: 10.3390/toxins9110338] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22–C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells.
Collapse
|
28
|
Bird S, Hadjimichael E, Mehta A, Ramaswami U, Hughes D. Fabry disease and incidence of cancer. Orphanet J Rare Dis 2017; 12:150. [PMID: 28877708 PMCID: PMC5588622 DOI: 10.1186/s13023-017-0701-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/22/2017] [Indexed: 11/26/2022] Open
Abstract
Background Fabry disease is an X-linked lysosomal storage disorder caused by deficient activity of α-galactosidase A and the resulting accumulation of the glycosphingolipid globotriaosylceramide (Gb3) and its derivatives, including globotriaosylsphingosine (Lyso-Gb3). Increased cellular and plasma levels of Gb3 and Lyso-Gb3 affect multiple organs, with specific clinical consequences for the kidneys, heart and brain. There is growing evidence that alterations in glycosphingolipids may have an oncogenic role and this prompted a review of cases of cancer and benign lesions in a large single centre cohort of Fabry patients. We also explored whether there is a difference in the risk of cancer in Fabry patients compared to the general population. Results Our results suggest that Fabry patients may have a marginally reduced rate of all cancer (incidence rate ratio 0.61, 95% confidence interval 0.37 to 0.99) but possibly increased rates of melanoma, urological malignancies and meningiomas. Conclusion Greater knowledge and awareness of cancer in patients with Fabry disease may help identify at-risk individuals and elucidate cancer mechanisms in this rare inherited disease, which may potentially be relevant to the wider cancer population.
Collapse
Affiliation(s)
- Sarah Bird
- Royal Free London NHS Foundation Trust, London, UK
| | | | - Atul Mehta
- Royal Free London NHS Foundation Trust, London, UK
| | | | | |
Collapse
|
29
|
Steil D, Bonse R, Meisen I, Pohlentz G, Vallejo G, Karch H, Müthing J. A Topographical Atlas of Shiga Toxin 2e Receptor Distribution in the Tissues of Weaned Piglets. Toxins (Basel) 2016; 8:toxins8120357. [PMID: 27916888 PMCID: PMC5198551 DOI: 10.3390/toxins8120357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 01/08/2023] Open
Abstract
Shiga toxin (Stx) 2e of Stx-producing Escherichia coli (STEC) is the primary virulence factor in the development of pig edema disease shortly after weaning. Stx2e binds to the globo-series glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer), the latter acting as the preferential Stx2e receptor. We determined Stx receptor profiles of 25 different tissues of a male and a female weaned piglet using immunochemical solid phase binding assays combined with mass spectrometry. All probed tissues harbored GSL receptors, ranging from high (category I) over moderate (category II) to low content (category III). Examples of Gb4Cer expression in category I tissues are small intestinal ileum, kidney pelvis and whole blood, followed by colon, small intestinal duodenum and jejunum belonging to category II, and kidney cortex, cerebrum and cerebellum as members of category III organs holding true for both genders. Dominant Gb3Cer and Gb4Cer lipoforms were those with ceramides carrying constant sphingosine (d18:1) and a variable C16:0, C22:0 or C24:1/C24:0 fatty acid. From the mapping data, we created a topographical atlas for Stx2e receptors in piglet tissues and organs, which might be helpful to further investigations on the molecular and cellular mechanisms that underlie infections of Stx2e-producing STEC in pigs and their zoonotic potential for humans.
Collapse
Affiliation(s)
- Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | - Robert Bonse
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | - Iris Meisen
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | | | - German Vallejo
- Veterinary practice Dr. med. vet. K. Nolte and Dr. med. vet. G. Vallejo, D-48329 Havixbeck, Germany.
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
30
|
Legros N, Dusny S, Humpf HU, Pohlentz G, Karch H, Müthing J. Shiga toxin glycosphingolipid receptors and their lipid membrane ensemble in primary human blood-brain barrier endothelial cells. Glycobiology 2016; 27:99-109. [PMID: 27558838 DOI: 10.1093/glycob/cww090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 12/22/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury to microvascular endothelial cells in the brain significantly contributes to the pathogenesis of the hemolytic-uremic syndrome caused by enterohemorrhagic Escherichia coli (EHEC). Stxs are AB5 toxins and the B-pentamers of the two major Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer) expressed by human endothelial cells. Here we report on comprehensive structural analysis of the different lipoforms of Gb3Cer (Galα4Galβ4Glcβ1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1Cer, the less effective Stx receptor) of primary human brain microvascular endothelial cells and their association with lipid rafts. Detergent-resistant membranes (DRMs), obtained by sucrose density gradient ultracentrifugation, were used as lipid raft-analogous microdomains of the liquid-ordered phase and nonDRM fractions were employed as equivalents for the liquid-disordered phase of cell membranes. Structures of the prevalent lipoforms of Gb3Cer and Gb4Cer were those with Cer (d18:1, C16:0), Cer (d18:1, C22:0) and Cer (d18:1, C24:1/C24:0) determined by electrospray ionization mass spectrometry that was combined with thin-layer chromatography immunodetection using anti-Gb3Cer and anti-Gb4Cer antibodies as well as Stx1a and Stx2a subtypes. Association of Stx receptor GSLs was determined by co-localization with lipid raft-specific membrane protein flotillin-2 and canonical lipid raft marker sphingomyelin with Cer (d18:1, C16:0) and Cer (d18:1, C24:1/C24:0) in the liquid-ordered phase, whereas lyso-phosphatidylcholine was detectable exclusively in the liquid-disordered phase. Defining the precise microdomain structures of primary endothelial cells may help to unravel the initial mechanisms by which Stxs interact with their target cells and will help to develop novel preventive and therapeutic measures for EHEC-mediated diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Stefanie Dusny
- Institute for Food Chemistry, University of Münster, Corrensstr. 45, D-48149 Münster, Germany
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, University of Münster, Corrensstr. 45, D-48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, D-48149 Münster, Germany .,Interdisciplinary Center for Clinical Research (IZKF), University of Münster, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| |
Collapse
|
31
|
Shiga Toxins as Multi-Functional Proteins: Induction of Host Cellular Stress Responses, Role in Pathogenesis and Therapeutic Applications. Toxins (Basel) 2016; 8:toxins8030077. [PMID: 26999205 PMCID: PMC4810222 DOI: 10.3390/toxins8030077] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins.
Collapse
|
32
|
Geyer PE, Maak M, Nitsche U, Perl M, Novotny A, Slotta-Huspenina J, Dransart E, Holtorf A, Johannes L, Janssen KP. Gastric Adenocarcinomas Express the Glycosphingolipid Gb3/CD77: Targeting of Gastric Cancer Cells with Shiga Toxin B-Subunit. Mol Cancer Ther 2016; 15:1008-17. [PMID: 26826119 DOI: 10.1158/1535-7163.mct-15-0633] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/15/2016] [Indexed: 11/16/2022]
Abstract
The B-subunit of the bacterial Shiga toxin (STxB), which is nontoxic and has low immunogenicity, can be used for tumor targeting of breast, colon, and pancreatic cancer. Here, we tested whether human gastric cancers, which are among the most aggressive tumor entities, express the cellular receptor of Shiga toxin, the glycosphingolipid globotriaosylceramide (Gb3/CD77). The majority of cases showed an extensive staining for Gb3 (36/50 cases, 72%), as evidenced on tissue sections of surgically resected specimen. Gb3 expression was detected independent of type (diffuse/intestinal), and was negatively correlated to increasing tumor-node-metastasis stages (P = 0.0385), as well as with markers for senescence. Gb3 expression in nondiseased gastric mucosa was restricted to chief and parietal cells at the bottom of the gastric glands, and was not elevated in endoscopic samples of gastritis (n = 10). Gb3 expression in established cell lines of gastric carcinoma was heterogeneous, with 6 of 10 lines being positive, evidenced by flow cytometry. STxB was taken up rapidly by live Gb3-positive gastric cancer cells, following the intracellular retrograde transport route, avoiding lysosomes and rapidly reaching the Golgi apparatus and the endoplasmic reticulum. Treatment of the Gb3-expressing gastric carcinoma cell line St3051 with STxB coupled to SN38, the active metabolite of the topoisomerase type I inhibitor irinotecan, resulted in >100-fold increased cytotoxicity, as compared with irinotecan alone. No cytotoxicity was observed on gastric cancer cell lines lacking Gb3 expression, demonstrating receptor specificity of the STxB-SN38 compound. Thus, STxB is a highly specific transport vehicle for cytotoxic agents in gastric carcinoma. Mol Cancer Ther; 15(5); 1008-17. ©2016 AACR.
Collapse
Affiliation(s)
- Philipp Emanuel Geyer
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Matthias Maak
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Markus Perl
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Novotny
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology and Pathological Anatomy, Technische Universität München, Munich, Germany
| | - Estelle Dransart
- Endocytic Trafficking and Intracellular Delivery team, Institut Curie, Paris, France. CNRS UMR3666, Paris, France. INSERM U1143, Paris, France
| | - Anne Holtorf
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ludger Johannes
- Endocytic Trafficking and Intracellular Delivery team, Institut Curie, Paris, France. CNRS UMR3666, Paris, France. INSERM U1143, Paris, France
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
33
|
Zhan C, Li C, Wei X, Lu W, Lu W. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Adv Drug Deliv Rev 2015; 90:101-18. [PMID: 25959429 DOI: 10.1016/j.addr.2015.04.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/13/2023]
Abstract
Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed.
Collapse
Affiliation(s)
- Changyou Zhan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University & Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, PR China
| | - Xiaoli Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
34
|
Novel actions of 2-deoxy-D-glucose: protection against Shiga toxins and changes in cellular lipids. Biochem J 2015; 470:23-37. [PMID: 26251444 DOI: 10.1042/bj20141562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/04/2015] [Indexed: 12/11/2022]
Abstract
2-Deoxy-D-glucose (2DG) is a structural analogue of glucose with well-established applications as an inhibitor of glycolysis and N-glycosylation. Importantly, 2DG has been shown to improve the efficacy of several cancer chemotherapeutic agents in vivo and thus it is in clinical studies in combination with chemotherapy and radiotherapy. However, although 2DG has been demonstrated to modulate many cellular functions, including autophagy, apoptosis and cell cycle control, little is known about the effects of 2DG on intracellular transport, which is of great importance when predicting the effects of 2DG on therapeutic agents. In addition to proteins, lipids play important roles in cellular signalling and in controlling cellular trafficking. We have, in the present study, investigated the effects of 2DG on cellular lipid composition and by use of protein toxins we have studied 2DG-mediated changes in intracellular trafficking. By quantifying more than 200 individual lipid species from 17 different lipid classes, we have found that 2DG treatment changes the levels and/or species composition of several lipids, such as phosphatidylinositol (PI), diacylglycerol (DAG), cholesteryl ester (CE), ceramide (Cer) and lysophospho-lipids. Moreover, 2DG becomes incorporated into the carbohydrate moiety of glycosphingolipids (GSLs). In addition, we have discovered that 2DG protects cells against Shiga toxins (Stxs) and inhibits release of the cytotoxic StxA1 moiety in the endoplasmic reticulum (ER). The data indicate that the 2DG-induced protection against Stx is independent of inhibition of glycolysis or N-glycosylation, but rather mediated via the depletion of Ca(2+) from cellular reservoirs by 2DG. In conclusion, our results reveal novel actions of 2DG on cellular lipids and Stx toxicity.
Collapse
|
35
|
Ercoli L, Farneti S, Ranucci D, Scuota S, Branciari R. Role of Verocytotoxigenic Escherichia Coli in the Swine Production Chain. Ital J Food Saf 2015; 4:5156. [PMID: 27800398 PMCID: PMC5076656 DOI: 10.4081/ijfs.2015.5156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 12/02/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe clinical diseases in humans, such as haemorrhagic colitis (HC) and haemolytic-uremic syndrome (HUS). Although ruminants, primarily cattle, have been suggested as typical reservoirs of STEC, many food products of other origins, including pork products, have been confirmed as vehicles for STEC transmission. Only in rare cases, pork consumption is associated with severe clinical symptoms caused by high pathogenic STEC strains. However, in these outbreaks, it is unknown whether the contamination of food products occurs during swine processing or via cross-contamination from foodstuffs of different sources. In swine, STEC plays an important role in the pathogenesis of oedema disease. In particular a Shiga toxin subtype, named stx2e, it is considered as a key factor involved in the damage of swine endothelial cells. On the contrary, stx2e-producing Escherichia coli has rarely been isolated in humans, and usually only from asymptomatic carriers or from patients with mild symptoms, such as uncomplicated diarrhoea. In fact, the presence of gene stx2e, encoding for stx2e, has rarely been reported in STEC strains that cause HUS. Moreover, stx2e-producing STEC isolated from humans and pigs were found to differ in serogroup, their virulence profile and interaction with intestinal epithelial cells. Because of the limited epidemiologic data of STEC in swine and the increasing role of non-O157 STEC in human illnesses, the relationship between swine STEC and human disease needs to be further investigated.
Collapse
Affiliation(s)
- Laura Ercoli
- Institute for Experimental Veterinary Medicine of Umbria and Marche, Perugia
| | - Silvana Farneti
- Institute for Experimental Veterinary Medicine of Umbria and Marche, Perugia
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Italy
| | - Stefania Scuota
- Institute for Experimental Veterinary Medicine of Umbria and Marche, Perugia
| | | |
Collapse
|
36
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
37
|
Basu D, Tumer NE. Do the A subunits contribute to the differences in the toxicity of Shiga toxin 1 and Shiga toxin 2? Toxins (Basel) 2015; 7:1467-85. [PMID: 25938272 PMCID: PMC4448158 DOI: 10.3390/toxins7051467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
Shiga toxin producing Escherichia coli O157:H7 (STEC) is one of the leading causes of food-poisoning around the world. Some STEC strains produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2) or variants of either toxin, which are critical for the development of hemorrhagic colitis (HC) or hemolytic uremic syndrome (HUS). Currently, there are no therapeutic treatments for HC or HUS. E. coli O157:H7 strains carrying Stx2 are more virulent and are more frequently associated with HUS, which is the most common cause of renal failure in children in the US. The basis for the increased potency of Stx2 is not fully understood. Shiga toxins belong to the AB5 family of protein toxins with an A subunit, which depurinates a universally conserved adenine residue in the α-sarcin/ricin loop (SRL) of the 28S rRNA and five copies of the B subunit responsible for binding to cellular receptors. Recent studies showed differences in the structure, receptor binding, dependence on ribosomal proteins and pathogenicity of Stx1 and Stx2 and supported a role for the B subunit in differential toxicity. However, the current data do not rule out a potential role for the A1 subunits in the differential toxicity of Stx1 and Stx2. This review highlights the recent progress in understanding the differences in the A1 subunits of Stx1 and Stx2 and their role in defining toxicity.
Collapse
Affiliation(s)
- Debaleena Basu
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901-8520, USA.
| |
Collapse
|
38
|
Stimmer L, Dehay S, Nemati F, Massonnet G, Richon S, Decaudin D, Klijanienko J, Johannes L. Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds. BMC Cancer 2014; 14:916. [PMID: 25476116 PMCID: PMC4289340 DOI: 10.1186/1471-2407-14-916] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/27/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The B-subunit of Shiga toxin (STxB) specifically binds to the glycosphingolipid Gb3 that is highly expressed on a number of human tumors and has been shown to target tumor cells in mouse models and ex vivo on primary colon carcinoma specimen. METHODS Using a novel ex vivo STxB labeling (ESL) method we studied Gb3 expression in cytological specimens of primary human breast tumors from 107 patients, and in synchronous lymph node metastases from 20 patients. Fluorescent STxB was incubated with fine-needle aspiration (FNA) specimens, and Gb3 expression was evaluated by fluorescence microscopy. Furthermore, 11 patient-derived human breast cancer xenografts (HBCx) were evaluated for expression of Gb3 by ESL and FACS. In addition, the biodistribution of fluorescent STxB conjugate was studied after intravenous injection in a Gb3 positive HBCx model. RESULTS Gb3 expression was detected in 62 of 107 patients (57.9%), mainly in epithelial tumor cells. Gb3 positivity correlated with estrogen receptor expression (p≤0.01), whereas absence of Gb3 expression in primary tumors was correlated with the presence of lymph node metastases (p≤0.03). 65% of lymph node metastases were Gb3 positive and in 40% of tested patients, we observed a statistically significant increase of metastatic Gb3 expression (p≤0.04). Using concordant ESL and flow cytometry analysis, 6 out of 11 HBCx samples were scored positive. Intravenous injections of fluorescent STxB into HBC xenografted mice showed preferential STxB accumulation in epithelial cells and cells with endothelial morphology of the tumor. CONCLUSION The enhanced expression of Gb3 in primary breast carcinomas and its lymph node metastases indicate that the development of STxB-based therapeutic strategies is of interest in this pathology. Gb3 expressing HBCx can be used as a model for preclinical studies with STxB conjugates. Finally, the ESL technique on FNA represents a rapid and cost effective method for the stratification of patients in future clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ludger Johannes
- Endocytic Trafficking and Therapeutic Delivery Group, UMR3666 CNRS - U1143 INSERM, Institut Curie-Centre de Recherche, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| |
Collapse
|
39
|
Jacob F, Hitchins MP, Fedier A, Brennan K, Nixdorf S, Hacker NF, Ward R, Heinzelmann-Schwarz VA. Expression of GBGT1 is epigenetically regulated by DNA methylation in ovarian cancer cells. BMC Mol Biol 2014; 15:24. [PMID: 25294702 PMCID: PMC4193910 DOI: 10.1186/1471-2199-15-24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/24/2014] [Indexed: 01/25/2023] Open
Abstract
Background The GBGT1 gene encodes the globoside alpha-1,3-N-acetylgalactosaminyltransferase 1. This enzyme catalyzes the last step in the multi-step biosynthesis of the Forssman (Fs) antigen, a pentaglycosyl ceramide of the globo series glycosphingolipids. While differential GBGT1 mRNA expression has been observed in a variety of human tissues being highest in placenta and ovary, the expression of GBGT1 and the genes encoding the glycosyltransferases and glycosidases involved in the biosynthesis of Fs as well as the possible involvement of DNA methylation in transcriptional regulation of GBGT1 expression have not yet been investigated. Results RT-qPCR profiling showed high GBGT1 expression in normal ovary surface epithelial (HOSE) cell lines and low GBGT1 expression in all (e.g. A2780, SKOV3) except one (OVCAR3) investigated ovarian cancer cell lines, a finding that was confirmed by Western blot analysis. Hierarchical cluster analysis showed that GBGT1 was even the most variably expressed gene of Fs biosynthesis-relevant glycogenes and among the investigated cell lines, whereas NAGA which encodes the alpha-N-acetylgalactosaminidase hydrolyzing Fs was not differentially expressed. Bisulfite- and COBRA-analysis of the CpG island methylation status in the GBGT1 promoter region demonstrated high or intermediate levels of GBGT1 DNA methylation in all ovarian cancer cell lines (except for OVCAR3) but marginal levels of DNA methylation in the two HOSE cell lines. The extent of DNA methylation inversely correlated with GBGT1 mRNA and protein expression. Bioinformatic analysis of GBGT1 in The Cancer Genome Atlas ovarian cancer dataset demonstrated that this inverse correlation was also found in primary ovarian cancer tissue samples confirming our cell line-based findings. Restoration of GBGT1 mRNA and protein expression in low GBGT1-expressing A2780 cells was achieved by 5-aza-2’-deoxycytidine treatment and these treated cells exhibited increased helix pomatia agglutinin-staining, reflecting the elevated presence of Fs disaccharide on these cells. Conclusions GBGT1 expression is epigenetically silenced through promoter hypermethylation in ovarian cancer. Our findings not only suggest an involvement of DNA methylation in the synthesis of Fs antigen but may also explain earlier studies showing differential GBGT1 expression in various human tissue samples and disease stages.
Collapse
Affiliation(s)
- Francis Jacob
- Gynecological Research Group, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, CH-4013 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Don AS, Lim XY, Couttas TA. Re-configuration of sphingolipid metabolism by oncogenic transformation. Biomolecules 2014; 4:315-53. [PMID: 24970218 PMCID: PMC4030989 DOI: 10.3390/biom4010315] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P), is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS), have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM) more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism.
Collapse
Affiliation(s)
- Anthony S Don
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Xin Y Lim
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Timothy A Couttas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
41
|
Giussani P, Tringali C, Riboni L, Viani P, Venerando B. Sphingolipids: key regulators of apoptosis and pivotal players in cancer drug resistance. Int J Mol Sci 2014; 15:4356-92. [PMID: 24625663 PMCID: PMC3975402 DOI: 10.3390/ijms15034356] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/17/2022] Open
Abstract
Drug resistance elicited by cancer cells still constitutes a huge problem that frequently impairs the efficacy of both conventional and novel molecular therapies. Chemotherapy usually acts to induce apoptosis in cancer cells; therefore, the investigation of apoptosis control and of the mechanisms used by cancer cells to evade apoptosis could be translated in an improvement of therapies. Among many tools acquired by cancer cells to this end, the de-regulated synthesis and metabolism of sphingolipids have been well documented. Sphingolipids are known to play many structural and signalling roles in cells, as they are involved in the control of growth, survival, adhesion, and motility. In particular, in order to increase survival, cancer cells: (a) counteract the accumulation of ceramide that is endowed with pro-apoptotic potential and is induced by many drugs; (b) increase the synthesis of sphingosine-1-phosphate and glucosylceramide that are pro-survivals signals; (c) modify the synthesis and the metabolism of complex glycosphingolipids, particularly increasing the levels of modified species of gangliosides such as 9-O acetylated GD3 (αNeu5Ac(2-8)αNeu5Ac(2-3)βGal(1-4)βGlc(1-1)Cer) or N-glycolyl GM3 (αNeu5Ac (2-3)βGal(1-4)βGlc(1-1)Cer) and de-N-acetyl GM3 (NeuNH(2)βGal(1-4)βGlc(1-1)Cer) endowed with anti-apoptotic roles and of globoside Gb3 related to a higher expression of the multidrug resistance gene MDR1. In light of this evidence, the employment of chemical or genetic approaches specifically targeting sphingolipid dysregulations appears a promising tool for the improvement of current chemotherapy efficacy.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Bruno Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| |
Collapse
|
42
|
Kouzel IU, Pirkl A, Pohlentz G, Soltwisch J, Dreisewerd K, Karch H, Müthing J. Progress in Detection and Structural Characterization of Glycosphingolipids in Crude Lipid Extracts by Enzymatic Phospholipid Disintegration Combined with Thin-Layer Chromatography Immunodetection and IR-MALDI Mass Spectrometry. Anal Chem 2014; 86:1215-22. [DOI: 10.1021/ac4035696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ivan U. Kouzel
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Alexander Pirkl
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Gottfried Pohlentz
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Jens Soltwisch
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| |
Collapse
|
43
|
Novak A, Binnington B, Ngan B, Chadwick K, Fleshner N, Lingwood CA. Cholesterol masks membrane glycosphingolipid tumor-associated antigens to reduce their immunodetection in human cancer biopsies. Glycobiology 2013; 23:1230-9. [PMID: 23906628 DOI: 10.1093/glycob/cwt059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glycosphingolipids (GSLs) are neoplastic and normal/cancer stem cell markers and GSL/cholesterol-containing membrane rafts are increased in cancer cell plasma membranes. We define a novel means by which cancer cells can restrict tumor-associated GSL immunoreactivity. The GSL-cholesterol complex reorients GSL carbohydrate to a membrane parallel, rather than perpendicular conformation, largely unavailable for antibody recognition. Methyl-β-cyclodextrin cholesterol extraction of all primary human tumor frozen sections tested (ovarian, testicular, neuroblastoma, prostate, breast, colon, pheochromocytoma and ganglioneuroma), unmasked previously "invisible" membrane GSLs for immunodetection. In ovarian carcinoma, globotriaosyl ceramide (Gb3), the GSL receptor for the antineoplastic Escherichia coli-derived verotoxin, was increased throughout the tumor. In colon carcinoma, Gb3 detection was vastly increased within the neovasculature and perivascular stroma. In tumors considered Gb3 negative (neuroblastoma, Leydig testicular tumor and pheochromocytoma), neovascular Gb3 was unmasked. Tumor-associated GSL stage-specific embryonic antigen (SSEA)-1, SSEA-3, SSEA-4 and globoH were unmasked according to tumor: SSEA-1 in prostate/colon; SSEA-3 in prostate; SSEA-4 in pheochromocytoma/some colon tumors; globoH in prostate/some colon tumors. In colon, anti-SSEA-1 was tumor cell specific. Within the GSL-cholesterol complex, filipin-cholesterol binding was also reduced. These results may relate to the ill-defined benefit of statins on cancer prognosis, for example, prostate carcinoma. We found novel anti-tumor GSL antibodies circulating in 3/5 statin-treated, but not untreated, prostate cancer patients. Lowering tumor membrane cholesterol may permit immune recognition of otherwise unavailable tumor-associated GSL carbohydrate, for more effective immunosurveillance and active/passive immunotherapy. Our results show standard immunodetection of tumor GSLs significantly under assesses tumor membrane GSL content, impinging on the current use of such antigens as cancer vaccines.
Collapse
Affiliation(s)
- Anton Novak
- Division of Molecular Structure and Function, Research Institute
| | | | | | | | | | | |
Collapse
|
44
|
Kouzel IU, Pohlentz G, Storck W, Radamm L, Hoffmann P, Bielaszewska M, Bauwens A, Cichon C, Schmidt MA, Mormann M, Karch H, Müthing J. Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells. J Lipid Res 2013; 54:692-710. [PMID: 23248329 PMCID: PMC3617944 DOI: 10.1194/jlr.m031781] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/14/2012] [Indexed: 11/20/2022] Open
Abstract
Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin.
Collapse
Affiliation(s)
- Ivan U. Kouzel
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Wiebke Storck
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Lena Radamm
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Petra Hoffmann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Andreas Bauwens
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Christoph Cichon
- Institute of Infectiology, University of Münster, D-48149 Münster, Germany
| | | | - Michael Mormann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
45
|
Shiga toxin 1, as DNA repair inhibitor, synergistically potentiates the activity of the anticancer drug, mafosfamide, on raji cells. Toxins (Basel) 2013; 5:431-44. [PMID: 23430607 PMCID: PMC3640543 DOI: 10.3390/toxins5020431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin 1 (Stx1), produced by pathogenic Escherichia coli, targets a restricted subset of human cells, which possess the receptor globotriaosylceramide (Gb3Cer/CD77), causing hemolytic uremic syndrome. In spite of the high toxicity, Stx1 has been proposed in the treatment of Gb3Cer/CD77-expressing lymphoma. Here, we demonstrate in a Burkitt lymphoma cell model expressing this receptor, namely Raji cells, that Stx1, at quasi-non-toxic concentrations (0.05–0.1 pM), inhibits the repair of mafosfamide-induced DNA alkylating lesions, synergistically potentiating the cytotoxic activity of the anticancer drug. Conversely, human promyelocytic leukemia cells HL-60, which do not express Gb3Cer/CD77, were spared by the toxin as previously demonstrated for CD34+ human progenitor cells, and hence, in this cancer model, no additive nor synergistic effects were observed with the combined Stx1/mafosfamide treatment. Our findings suggest that Stx1 could be used to improve the mafosfamide-mediated purging of Gb3Cer/CD77+ tumor cells before autologous bone marrow transplantation.
Collapse
|
46
|
Meisen I, Rosenbrück R, Galla HJ, Hüwel S, Kouzel IU, Mormann M, Karch H, Müthing J. Expression of Shiga toxin 2e glycosphingolipid receptors of primary porcine brain endothelial cells and toxin-mediated breakdown of the blood-brain barrier. Glycobiology 2013; 23:745-59. [PMID: 23431059 DOI: 10.1093/glycob/cwt013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin (Stx) 2e, released by certain Stx-producing Escherichia coli, is presently the best characterized virulence factor responsible for pig edema disease, which is characterized by hemorrhagic lesions, neurological disorders and often fatal outcomes. Although Stx2e-mediated brain vascular injury is the key event in development of neurologic signs, the glycosphingolipid (GSL) receptors of Stx2e and toxin-mediated impairment of pig brain endothelial cells have not been investigated so far. Here, we report on the detailed structural characterization of Stx2e receptors globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), which make up the major neutral GSLs in primary porcine brain capillary endothelial cells (PBCECs). Various Gb3Cer and Gb4Cer lipoforms harboring sphingenine (d18:1) or sphinganine (d18:0) and mostly a long-chain fatty acid (C20-C24) were detected. A notable batch-to-batch heterogeneity of primary endothelial cells was observed regarding the extent of ceramide hydroxylation of Gb3Cer or Gb4Cer species. Gb3Cer, Gb4Cer and sphingomyelin preferentially distribute to detergent-resistant membrane fractions and can be considered lipid raft markers in PBCECs. Moreover, we employed an in vitro model of the blood-brain barrier (BBB), which exhibited strong cytotoxic effects of Stx2e on the endothelial monolayer and a rapid collapse of the BBB. These data strongly suggest the involvement of Stx2e in cerebral vascular damage with resultant neurological disturbance characteristic of edema disease.
Collapse
Affiliation(s)
- Iris Meisen
- Institute for Hygiene, Robert-Koch-Str. 41, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 2013; 70:425-57. [PMID: 22766973 PMCID: PMC11113656 DOI: 10.1007/s00018-012-1060-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 12/23/2022]
Abstract
The two major Shiga toxin (Stx) types, Stx1 and Stx2, produced by enterohemorrhagic Escherichia coli (EHEC) in particular injure renal and cerebral microvascular endothelial cells after transfer from the human intestine into the circulation. Stxs are AB(5) toxins composed of an enzymatically active A subunit and the pentameric B subunit, which preferentially binds to the glycosphingolipid globotriaosylceramide (Gb3Cer/CD77). This review summarizes the current knowledge on Stx-caused cellular injury and the structural diversity of Stx receptors as well as the initial molecular interaction of Stxs with the human endothelium of different vascular beds. The varying lipoforms of Stx receptors and their spatial organization in lipid rafts suggest a central role in different modes of receptor-mediated endocytosis and intracellular destiny of the toxins. The design and development of tailored Stx neutralizers targeting the oligosaccharide-toxin recognition event has become a very real prospect to ameliorate or prevent life-threatening renal and neurological complications.
Collapse
Affiliation(s)
- Andreas Bauwens
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Josefine Betz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Iris Meisen
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Münster, Robert-Koch-Str. 45, 48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
48
|
Abstract
Inhibiting the growth of tumor vasculature represents one of the relevant strategies against tumor progression. Between all the different pro-angiogenic molecular targets, plasma membrane glycosphingolipids have been under-investigated. In this present study, we explore the anti-angiogenic therapeutic advantage of a tumor immunotherapy targeting the globotriaosylceramide Gb3. In this purpose, a monoclonal antibody against Gb3, named 3E2 was developed and characterized. We first demonstrate that Gb3 is over-expressed in proliferative endothelial cells relative to quiescent cells. Then, we demonstrate that 3E2 inhibits endothelial cell proliferation in vitro by slowing endothelial cell proliferation and by increasing mitosis duration. Antibody 3E2 is further effective in inhibiting ex vivo angiogenesis in aorta ring assays. Moreover, 3E2 treatment inhibits NXS2 neuroblastoma development and liver metastases spreading in A/J mice. Immunohistology examination of the NXS2 metastases shows that only endothelial cells, but not cancer cells express Gb3. Finally, 3E2 treatment diminishes tumor vessels density, proving a specific therapeutic action of our monoclonal antibody to tumor vasculature. Our study demonstrates that Gb3 is a viable alternative target for immunotherapy and angiogenesis inhibition.
Collapse
|
49
|
Park SY, Kwak CY, Shayman JA, Kim JH. Globoside promotes activation of ERK by interaction with the epidermal growth factor receptor. Biochim Biophys Acta Gen Subj 2012; 1820:1141-8. [PMID: 22542783 DOI: 10.1016/j.bbagen.2012.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 03/22/2012] [Accepted: 04/11/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Globoside (Gb4), a globo-series glycosphingolipid (GSL), has been characterized as a stage-specific embryonic antigen (SSEA), and is highly expressed during embryogenesis as well as in cancer tissues. However, the functional role and molecular mechanism of Gb4 are so far unknown. METHODS GSLs were preferentially inhibited by treatment with D-threo-1-ethylenedioxyphenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4), a nanomolar inhibitor of GSL synthesis, in two carcinoma cell lines, HCT116 and MCF7. The effect of EtDO-P4 was examined by MTT assay, FACS, wound assay, western blotting, and RTK array analysis. The functional role of Gb4 was determined by the exogenous addition of various GSLs, and an assay utilizing GSL-coated latex beads. RESULTS Both cell lines contained higher levels of neutral GSLs than of sialic acid-containing GSLs. Gb4 was one of the major neutral GSLs. The depletion of total GSLs caused significant reduction of cell proliferation, but had less effect on cell apoptosis or motility. EtDO-P4 treatment also suppressed activation of the epidermal growth factor receptor (EGFR)-induced ERK pathway and various receptor tyrosine kinases (RTKs). The reduced activation of ERK was restored by the exogenous addition of Gb4, but not by the addition of gangliosides (GM1, GM2, GM3, and GD1a). The GSL-coated bead assay indicated that Gb4 forms a complex with EGFR, but not with other RTKs. Taken together, Gb4 promotes activation of EGFR-induced ERK signaling through direct interaction with EGFR. GENERAL SIGNIFICANCE A globo-series GSL, Gb4, promotes EGFR-induced MAPK signaling, resulting in cancer cell proliferation. These findings suggest a possible application of Gb4 in cancer diagnostics and drug targeting.
Collapse
Affiliation(s)
- Seung-Yeol Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | | | | | | |
Collapse
|
50
|
Durrant LG, Noble P, Spendlove I. Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy. Clin Exp Immunol 2012; 167:206-15. [PMID: 22235996 DOI: 10.1111/j.1365-2249.2011.04516.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Research into aberrant glycosylation and over-expression of glycolipids on the surface of the majority of cancers, coupled with a knowledge of glycolipids as functional molecules involved in a number of cellular physiological pathways, has provided a novel area of targets for cancer immunotherapy. This has resulted in the development of a number of vaccines and monoclonal antibodies that are showing promising results in recent clinical trials.
Collapse
Affiliation(s)
- L G Durrant
- Academic Department of Clinical Oncology, Molecular Medical Sciences, City Hospital, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|