1
|
Remesh AT, Alagarasu K, Jadhav S, Prabhakar M, Viswanathan R. Pertussis Vaccines Scarcely Provide Protection against Bordetella parapertussis Infection in Children-A Systematic Review and Meta-Analysis. Vaccines (Basel) 2024; 12:253. [PMID: 38543887 PMCID: PMC10974608 DOI: 10.3390/vaccines12030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Pertussis, or whooping cough, is a global public health concern. Pertussis vaccines have demonstrated good protection against Bordetella pertussis infections, but their effectiveness against Bordetella parapertussis remains debated due to conflicting study outcomes. METHODS A systematic review and meta-analysis were conducted to assess the effectiveness of pertussis vaccines in protecting children against B. parapertussis infection. A comprehensive search of PubMed, Web of Science, and Scopus databases was conducted, and randomized controlled trials (RCTs) and observational studies that met inclusion criteria were included in the analysis. RESULTS The meta-analysis, involving 46,533 participants, revealed no significant protective effect of pertussis vaccination against B. parapertussis infection (risk ratio: 1.10, 95% confidence interval: 0.83 to 1.44). Subgroup analyses by vaccine type and study design revealed no significant protection. The dearth of recent data and a limited pool of eligible studies, particularly RCTs, underscore a critical gap that warrants future research in the domain. CONCLUSIONS These findings offer crucial insights into the lack of effectiveness of pertussis vaccines against B. parapertussis. Given the rising incidence of cases and outbreaks, coupled with the lack of cross-protection by the existing vaccines, there is an urgent need to develop vaccines that include specific antigens to protect against B. parapertussis.
Collapse
Affiliation(s)
| | - Kalichamy Alagarasu
- Dengue-Chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India;
| | - Santoshkumar Jadhav
- Bioinformatics & Data Management Group, ICMR-National Institute of Virology, Pune 411001, India;
| | - Meera Prabhakar
- Bacteriology Group, ICMR-National Institute of Virology, Pune 411021, India; (A.T.R.); (M.P.)
| | - Rajlakshmi Viswanathan
- Bacteriology Group, ICMR-National Institute of Virology, Pune 411021, India; (A.T.R.); (M.P.)
| |
Collapse
|
2
|
Gorgojo JP, Carrica MDC, Baroli CM, Valdez HA, Alvarez Hayes J, Rodriguez ME. Adenylate cyclase toxin of Bordetella parapertussis disrupts the epithelial barrier granting the bacterial access to the intracellular space of epithelial cells. PLoS One 2023; 18:e0291331. [PMID: 38011105 PMCID: PMC10681170 DOI: 10.1371/journal.pone.0291331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/27/2023] [Indexed: 11/29/2023] Open
Abstract
B. parapertussis is one of the etiological agents of whooping cough. Once inhaled, the bacteria bind to the respiratory epithelium and start the infection. Little is known about this first step of host colonization and the role of the human airway epithelial barrier on B. parapertussis infection. We here investigated the outcome of the interaction of B. parapertussis with a polarized monolayer of respiratory epithelial cells. Our results show that B. parapertussis preferentially attaches to the intercellular boundaries, and causes the disruption of the tight junction integrity through the action of adenylate cyclase toxin (CyaA). We further found evidence indicating that this disruption enables the bacterial access to components of the basolateral membrane of epithelial cells to which B. parapertussis efficiently attaches and gains access to the intracellular location, where it can survive and eventually spread back into the extracellular environment. Altogether, these results suggest that the adenylate cyclase toxin enables B. parapertussis to overcome the epithelial barrier and eventually establish a niche of persistence within the respiratory epithelial cells.
Collapse
Affiliation(s)
- Juan Pablo Gorgojo
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariela del Carmen Carrica
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos Manuel Baroli
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hugo Alberto Valdez
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jimena Alvarez Hayes
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Carrica MDC, Gorgojo JP, Lamberti YA, Valdez HA, Rodriguez ME. Bordetella parapertussis adenylate cyclase toxin promotes the bacterial survival to the encounter with macrophages. Microb Pathog 2023; 174:105898. [PMID: 36460144 DOI: 10.1016/j.micpath.2022.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
B. parapertussis is a whooping cough etiological agent, whose incidence in the population has increased remarkably. Virulence factors involved in the bacterial infection, however, remain poorly investigated. We here studied the role of adenylate cyclase (CyaA), the main toxin of B. parapertussis, in the outcome of the bacterial interaction with macrophages. Our results showed that B. parapertussis CyaA intoxicates human macrophages, prevents bacterial phagocytosis and precludes phago-lysosomal fusion eventually promoting the bacterial survival to the encounter with these immune cells. Accordingly, we found that B. parapertussis CyaA induces the transcriptional downregulation of host genes encoding for antimicrobial peptides, proteins involved in bacterial intracellular killing, and the pro-inflammatory cytokine TNF-α, while induces the upregulation of the anti-inflammatory cytokine IL-10. Together with previous reports suggesting a protective role of B. parapertussis CyaA against neutrophils bactericidal activity, the results of this study suggest a central role of CyaA in B. parapertussis immune evasion and persistence.
Collapse
Affiliation(s)
- Mariela Del Carmen Carrica
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Yanina Andrea Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hugo Alberto Valdez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
4
|
Rivera I, Linz B, Harvill ET. Evolution and Conservation of Bordetella Intracellular Survival in Eukaryotic Host Cells. Front Microbiol 2020; 11:557819. [PMID: 33178148 PMCID: PMC7593398 DOI: 10.3389/fmicb.2020.557819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/28/2020] [Indexed: 11/25/2022] Open
Abstract
The classical bordetellae possess several partially characterized virulence mechanisms that are studied in the context of a complete extracellular life cycle in their mammalian hosts. Yet, classical bordetellae have repeatedly been reported within dendritic cells (DCs) and alveolar macrophages in clinical samples, and in vitro experiments convincingly demonstrate that the bacteria can survive intracellularly within mammalian phagocytic cells, an ability that appears to have descended from ancestral progenitor species that lived in the environment and acquired the mechanisms to resist unicellular phagocytic predators. Many pathogens, including Mycobacterium tuberculosis, Salmonella enterica, Francisella tularensis, and Legionella pneumophila, are known to parasitize and multiply inside eukaryotic host cells. This strategy provides protection, nutrients, and the ability to disseminate systemically. While some work has been dedicated at characterizing intracellular survival of Bordetella pertussis, there is limited understanding of how this strategy has evolved within the genus Bordetella and the contributions of this ability to bacterial pathogenicity, evasion of host immunity as well as within and between-host dissemination. Here, we explore the mechanisms that control the metabolic changes accompanying intracellular survival and how these have been acquired and conserved throughout the evolutionary history of the Bordetella genus and discuss the possible implications of this strategy in the persistence and reemergence of B. pertussis in recent years.
Collapse
Affiliation(s)
- Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Gestal MC, Howard LK, Dewan K, Johnson HM, Barbier M, Bryant C, Soumana IH, Rivera I, Linz B, Blas-Machado U, Harvill ET. Enhancement of immune response against Bordetella spp. by disrupting immunomodulation. Sci Rep 2019; 9:20261. [PMID: 31889098 PMCID: PMC6937331 DOI: 10.1038/s41598-019-56652-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Well-adapted pathogens must evade clearance by the host immune system and the study of how they do this has revealed myriad complex strategies and mechanisms. Classical bordetellae are very closely related subspecies that are known to modulate adaptive immunity in a variety of ways, permitting them to either persist for life or repeatedly infect the same host. Exploring the hypothesis that exposure to immune cells would cause bordetellae to induce expression of important immunomodulatory mechanisms, we identified a putative regulator of an immunomodulatory pathway. The deletion of btrS in B. bronchiseptica did not affect colonization or initial growth in the respiratory tract of mice, its natural host, but did increase activation of the inflammasome pathway, and recruitment of inflammatory cells. The mutant lacking btrS recruited many more B and T cells into the lungs, where they rapidly formed highly organized and distinctive Bronchial Associated Lymphoid Tissue (BALT) not induced by any wild type Bordetella species, and a much more rapid and strong antibody response than observed with any of these species. Immunity induced by the mutant was measurably more robust in all respiratory organs, providing completely sterilizing immunity that protected against challenge infections for many months. Moreover, the mutant induced sterilizing immunity against infection with other classical bordetellae, including B. pertussis and B. parapertussis, something the current vaccines do not provide. These findings reveal profound immunomodulation by bordetellae and demonstrate that by disrupting it much more robust protective immunity can be generated, providing a pathway to greatly improve vaccines and preventive treatments against these important pathogens.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America.
| | - Laura K Howard
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Kalyan Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States of America
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, United States of America
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom
| | - Illiassou Hamidou Soumana
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Uriel Blas-Machado
- Department of Pathology, Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America.
| |
Collapse
|
6
|
Weigand MR, Peng Y, Batra D, Burroughs M, Davis JK, Knipe K, Loparev VN, Johnson T, Juieng P, Rowe LA, Sheth M, Tang K, Unoarumhi Y, Williams MM, Tondella ML. Conserved Patterns of Symmetric Inversion in the Genome Evolution of Bordetella Respiratory Pathogens. mSystems 2019; 4:e00702-19. [PMID: 31744907 PMCID: PMC6867878 DOI: 10.1128/msystems.00702-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Whooping cough (pertussis), primarily caused by Bordetella pertussis, has resurged in the United States, and circulating strains exhibit considerable chromosome structural fluidity in the form of rearrangement and deletion. The genus Bordetella includes additional pathogenic species infecting various animals, some even causing pertussis-like respiratory disease in humans; however, investigation of their genome evolution has been limited. We studied chromosome structure in complete genome sequences from 167 Bordetella species isolates, as well as 469 B. pertussis isolates, to gain a generalized understanding of rearrangement patterns among these related pathogens. Observed changes in gene order primarily resulted from large inversions and were only detected in species with genomes harboring multicopy insertion sequence (IS) elements, most notably B. holmesii and B. parapertussis While genomes of B. pertussis contain >240 copies of IS481, IS elements appear less numerous in other species and yield less chromosome structural diversity through rearrangement. These data were further used to predict all possible rearrangements between IS element copies present in Bordetella genomes, revealing that only a subset is observed among circulating strains. Therefore, while it appears that rearrangement occurs less frequently in other species than in B. pertussis, these clinically relevant respiratory pathogens likely experience similar mutation of gene order. The resulting chromosome structural fluidity presents both challenges and opportunity for the study of Bordetella respiratory pathogens.IMPORTANCE Bordetella pertussis is the primary agent of whooping cough (pertussis). The Bordetella genus includes additional pathogens of animals and humans, including some that cause pertussis-like respiratory illness. The chromosome of B. pertussis has previously been shown to exhibit considerable structural rearrangement, but insufficient data have prevented comparable investigation in related species. In this study, we analyze chromosome structure variation in several Bordetella species to gain a generalized understanding of rearrangement patterns in this genus. Just as in B. pertussis, we observed inversions in other species that likely result from common mutational processes. We used these data to further predict additional, unobserved inversions, suggesting that specific genome structures may be preferred in each species.
Collapse
Affiliation(s)
- Michael R Weigand
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yanhui Peng
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dhwani Batra
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mark Burroughs
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jamie K Davis
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kristen Knipe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Vladimir N Loparev
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Taccara Johnson
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Phalasy Juieng
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lori A Rowe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mili Sheth
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yvette Unoarumhi
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M Williams
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M Lucia Tondella
- Division of Bacterial Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Casabuono AC, Sisti F, Fernández J, Hozbor D, Couto AS. Bordetella bronchiseptica Glycosyltransferase Core Mutants Trigger Changes in Lipid A Structure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1679-1689. [PMID: 31190311 DOI: 10.1007/s13361-019-02233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Bordetella bronchiseptica, known to infect animals and rarely humans, expresses a lipopolysaccharide that plays an essential role in host interactions, being critical for early clearance of the bacteria. On a B. bronchiseptica 9.73 isolate, mutants defective in the expression of genes involved in the biosynthesis of the core region were previously constructed. Herein, a comparative detailed structural analysis of the expressed lipids A by MALDI-TOF mass spectrometry was performed. The Bb3394 LPS defective in a 2-amino-2-deoxy-D-galacturonic acid lateral residue of the core presented a penta-acylated diglucosamine backbone modified with two glucosamine phosphates, similar to the wild-type lipid A. In contrast, BbLP39, resulting in the interruption of the LPS core oligosaccharide synthesis, presented lipid A species consisting in a diglucosamine backbone N-substituted with C14:0(3-O-C12:0) in C-2 and C14:0(3-O-C14:0) in C-2', O-acylated with C14:0(3-O-C10:0(3-OH) in C-3' and with a pyrophosphate in C-1. Regarding Bb3398 also presenting a rough LPS, the lipid A is formed by a hexa-acylated diglucosamine backbone carrying one pyrophosphate group in C-1 and one phosphate in C-4', both substituted with ethanolamine groups. As far as we know, this is the first description of a phosphoethanolamine modification in B. bronchiseptica lipid A. Our results demonstrate that although gene deletions were not directed to the lipid A moiety, each mutant presented different modifications. MALDI-TOF mass spectrometry was an excellent tool to highlight the structural diversity of the lipid A structures biosynthesized during its transit through the periplasm to the final localization in the outer surface of the outer membrane. Graphical Abstract.
Collapse
Affiliation(s)
- Adriana C Casabuono
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica - Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428GA, Buenos Aires, Argentina
| | - Federico Sisti
- Instituto de Biotecnología y Biología Molecular CCT La Plata CONICET, Facultad de Ciencias Exactas UNLP, La Plata, Argentina
| | - Julieta Fernández
- Instituto de Biotecnología y Biología Molecular CCT La Plata CONICET, Facultad de Ciencias Exactas UNLP, La Plata, Argentina
| | - Daniela Hozbor
- Instituto de Biotecnología y Biología Molecular CCT La Plata CONICET, Facultad de Ciencias Exactas UNLP, La Plata, Argentina
| | - Alicia S Couto
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica - Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes 2160, C1428GA, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Oviedo JM, Surmann K, Gorgojo JP, Valdez H, Dhople VM, Lamberti Y, Völker U, Rodriguez ME. Shotgun proteomic analysis of Bordetella parapertussis provides insights into the physiological response to iron starvation and potential new virulence determinants absent in Bordetella pertussis. J Proteomics 2019; 206:103448. [PMID: 31325608 DOI: 10.1016/j.jprot.2019.103448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Bordetella parapertussis is one of the pathogens that cause whooping cough. Even though its incidence has been rising in the last decades, this species remained poorly investigated. This study reports the first extensive proteome analysis of this bacterium. In an attempt to gain some insight into the infective phenotype, we evaluated the response of B. parapertussis to iron starvation, a critical stress the bacteria face during infection. Among other relevant findings, we observed that the adaptation to this condition involves significant changes in the abundance of two important virulence factors of this pathogen, namely, adenylate cyclase and the O-antigen. We further used the proteomic data to search for B. parapertussis proteins that are absent or classified as pseudogenes in the genome of Bordetella pertussis to unravel differences between both whooping cough causative agents. Among them, we identified proteins involved in stress resistance and virulence determinants that might help to explain the differences in the pathogenesis of these species and the lack of cross-protection of current acellular vaccines. Altogether, these results contribute to a better understanding of B. parapertussis biology and pathogenesis. SIGNIFICANCE: Whooping cough is a reemerging disease caused by both Bordetella pertussis and Bordetella parapertussis. Current vaccines fail to induce protection against B parapertussis and the incidence of this species has been rising over the years. The proteomic analysis of this study provided relevant insights into potential virulence determinants of this poorly-studied pathogen. It further identified proteins produced by B. parapertussis not present in B. pertussis, which might help to explain both the differences on their respective infectious process and the current vaccine failure. Altogether, the results of this study contribute to the better understanding of B. parapertussis pathogenesis and the eventual design of improved preventive strategies against whooping cough.
Collapse
Affiliation(s)
- Juan Marcos Oviedo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Hugo Valdez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Vishnu M Dhople
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - María Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
9
|
Toubiana J, Azarnoush S, Bouchez V, Landier A, Guillot S, Matczak S, Bonacorsi S, Brisse S. Bordetella parapertussis Bacteremia: Clinical Expression and Bacterial Genomics. Open Forum Infect Dis 2019; 6:ofz122. [PMID: 30976607 PMCID: PMC6453521 DOI: 10.1093/ofid/ofz122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
Whooping cough's primary etiological agent is Bordetella pertussis. The closely related Bordetella parapertussis rarely causes severe disease. Here we report an unusual case of bacteremia caused by B. parapertussis, review the literature, and characterize the genomic sequence of the bacterial isolate in comparison with B. parapertussis isolates from respiratory infections.
Collapse
Affiliation(s)
- Julie Toubiana
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, Paris, France.,Department of General Pediatrics and Pediatric Infectious Diseases, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Saba Azarnoush
- Department of Hematology, Robert Debré Hospital, APHP, Paris, France
| | - Valérie Bouchez
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Annie Landier
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Sophie Guillot
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Soraya Matczak
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker-Enfants Malades Hospital, APHP, Paris, France
| | | | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, Paris, France
| |
Collapse
|
10
|
Bottero D, Zurita ME, Gaillard ME, Carriquiriborde F, Martin Aispuro P, Elizagaray M, Bartel E, Castuma C, Hozbor D. Outer-Membrane-Vesicle-Associated O Antigen, a Crucial Component for Protecting Against Bordetella parapertussis Infection. Front Immunol 2018; 9:2501. [PMID: 30459769 PMCID: PMC6232878 DOI: 10.3389/fimmu.2018.02501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/10/2018] [Indexed: 01/06/2023] Open
Abstract
Bordetella parapertussis is a respiratory-disease pathogen producing symptomatology similar to that of pertussis but of underestimated incidence and with no specific vaccine existing. We recently designed a vaccine candidate from B. parapertussis outer-membrane vesicles (OMVs) that proved to be safe and protective in a murine-infection model. Based on protection recently reported for the B. parapertussis O antigen in aqueous solution, we assessed here whether the B. parapertussis O-antigen-containing lipopolysaccharide (BppLPS-O+) embedded in the membranes, as present in B. parapertussis-derived OMVs (OMVs(Bpp-LPS-O+)), was the component responsible for that previously observed protection by OMVs. By performing a comparative study with OMVs from a human strain with undetectable O antigen (OMVs(Bpp-LPS-O-)), we demonstrated that the OMVs(Bpp-LPS-O+), but not the OMVs(Bpp-LPS-O-), protected mice against sublethal B. parapertussis infections. Indeed, the B. parapertussis loads were significantly reduced in the lungs of OMVs(Bpp-LPS-O+) -vaccinated animals, with the CFUs recovered being decreased by 4 log units below those detected in the non-immunized animals or in the animals treated with the OMVs(Bpp-LPS-O-), (p < 0.001). We detected that the OMVs(Bpp-LPS-O+) induced IgG antibodies against B. parapertussis whole-cell lysates, which immunocomponents recognized, among others, the O antigen and accordingly conferred protection against B. parapertussis infection, as observed in in-vivo-passive-transfer experiments. Of interest was that the OMVs(Bpp-LPS-O+) -generated sera had opsonophagocytic and bactericidal capabilities that were not detected with the OMVs(Bpp-LPS-O-)-induced sera, suggesting that those activities were involved in the clearance of B. parapertussis. Though stimulation of cultured spleen cells from immunized mice with formulations containing the O antigen resulted in gamma interferon (IFN-γ) and interleukin-17 production, spleen cells from OMVs(Bpp-LPS-O+) -immunized mice did not significantly contribute to the observed protection against B. parapertussis infection. The protective capability of the B. parapertussis O antigen was also detected in formulations containing both the OMVs derived from B. pertussis and purified BppLPS-O+. This combined formulation protected mice against B. pertussis along with B. parapertussis.
Collapse
Affiliation(s)
- Daniela Bottero
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Eugenia Zurita
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Emilia Gaillard
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Francisco Carriquiriborde
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo Martin Aispuro
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maia Elizagaray
- Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos, Universidad Nacional de La Plata, La Plata, Argentina
| | - Erika Bartel
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Celina Castuma
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - Daniela Hozbor
- Laboratorio VacSal, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
11
|
Bhattacharyya S, Ferrari MJ, Bjørnstad ON. Species interactions may help explain the erratic periodicity of whooping cough dynamics. Epidemics 2017; 23:64-70. [PMID: 29306640 DOI: 10.1016/j.epidem.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/01/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022] Open
Abstract
Incidence of whooping cough exhibits variable dynamics across time and space. The periodicity of this disease varies from annual to five years in different geographic regions in both developing and developed countries. Many hypotheses have been put forward to explain this variability such as nonlinearity and seasonality, stochasticity, variable recruitment of susceptible individuals via birth, immunization, and immune boosting. We propose an alternative hypothesis to describe the variability in periodicity - the intricate dynamical variability of whooping cough may arise from interactions between its dominant etiological agents of Bordetella pertussis and Bordetella parapertussis. We develop a two-species age-structured model, where two pathogens are allowed to interact by age-dependent convalescence of individuals with severe illness from infections. With moderate strength of interactions, the model exhibits multi-annual coexisting attractors that depend on the R0 of the two pathogens. We also examine how perturbation from case importation and noise in transmission may push the system from one dynamical regime to another. The coexistence of multi-annual cycles and the behavior of switching between attractors suggest that variable dynamics of whopping cough could be an emergent property of its multi-agent etiology.
Collapse
Affiliation(s)
- Samit Bhattacharyya
- Mathematics, School of Natural Sciences, Shiv Nadar University, India; Center for Infectious Disease Dynamics, Pennsylvania State University, USA.
| | - Matthew J Ferrari
- Center for Infectious Disease Dynamics, Pennsylvania State University, USA.
| | - Ottar N Bjørnstad
- Center for Infectious Disease Dynamics, Pennsylvania State University, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Alvarez Hayes J, Oviedo JM, Valdez H, Laborde JM, Maschi F, Ayala M, Shah R, Fernandez Lahore M, Rodriguez ME. A recombinant iron transport protein from Bordetella pertussis confers protection against Bordetella parapertussis. Microbiol Immunol 2017; 61:407-415. [PMID: 28857261 DOI: 10.1111/1348-0421.12532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022]
Abstract
Whooping cough, which is caused by Bordetella pertussis and B. parapertussis, is a reemerging disease. New protective antigens are needed to improve the efficacy of current vaccines against both species. Using proteomic tools, it was here found that B. parapertussis expresses a homolog of AfuA, a previously reported new vaccine candidate against B. pertussis. It was found that this homolog, named AfuABpp , is expressed during B. parapertussis infection, exposed on the surface of the bacteria and recognized by specific antibodies induced by the recombinant AfuA cloned from B. pertussis (rAfuA). Importantly, the presence of the O-antigen, a molecule that has been found to shield surface antigens on B. parapertussis, showed no influence on antibody recognition of AfuABpp on the bacterial surface. The present study further showed that antibodies induced by immunization with the recombinant protein were able to opsonize B. parapertussis and promote bacterial uptake by neutrophils. Finally, it was shown that this antigen confers protection against B. parapertussis infection in a mouse model. Altogether, these results indicate that AfuA is a good vaccine candidate for acellular vaccines protective against both causative agents of whooping cough.
Collapse
Affiliation(s)
- Jimena Alvarez Hayes
- CINDEFI (UNLP CONICET La Plata), School of Sciences, University of La Plata, La Plata, Argentina
| | - Juan Marcos Oviedo
- CINDEFI (UNLP CONICET La Plata), School of Sciences, University of La Plata, La Plata, Argentina
| | - Hugo Valdez
- CINDEFI (UNLP CONICET La Plata), School of Sciences, University of La Plata, La Plata, Argentina
| | - Juan Martín Laborde
- Laboratory of Experimental Animals. School of Veterinary Sciences, University of La Plata, La Plata, Argentina
| | - Fabricio Maschi
- Laboratory of Experimental Animals. School of Veterinary Sciences, University of La Plata, La Plata, Argentina
| | - Miguel Ayala
- Laboratory of Experimental Animals. School of Veterinary Sciences, University of La Plata, La Plata, Argentina
| | - Rohan Shah
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Marcelo Fernandez Lahore
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), School of Sciences, University of La Plata, La Plata, Argentina
| |
Collapse
|
13
|
Karalius VP, Rucinski SL, Mandrekar JN, Patel R. Bordetella parapertussis outbreak in Southeastern Minnesota and the United States, 2014. Medicine (Baltimore) 2017; 96:e6730. [PMID: 28514288 PMCID: PMC5440125 DOI: 10.1097/md.0000000000006730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Whooping cough is traditionally ascribed to Bordetella pertussis; however, Bordetella parapertussis can cause a similar clinical syndrome. This study describes an outbreak of B. parapertussis in Southeastern Minnesota and the United States (US) in 2014. This was a retrospective analysis of Mayo Clinic and Mayo Medical Laboratories patients who tested positive for B. parapertussis from 2012 to 2014. The medical records of Mayo Clinic patients who tested positive in 2014 were reviewed for demographic information, presenting symptoms, disease course, and vaccination history. In Southeast Minnesota, 81% of the 31 patients who tested positive for B. parapertussis in 2014 were found to be positive from October through December. Their mean age was 5.9 years. Five reported "exposure to pertussis." Two pairs of siblings were affected. Patients reported having had symptoms for an average of 2.6 weeks before nasopharyngeal specimen collection for B. parapertussis testing. Cough was the primary symptom reported. Forty percent reported posttussive vomiting, 40% coryza, 32% apnea/sleep disturbance, and 12% sore throat. All were current with pertussis vaccination. Based on the review of national data, an outbreak occurred nationally in the Northeast and Midwest US over the same time period. In 2014, there was an outbreak of B. parapertussis in Southeastern Minnesota and likely other parts of the US. The presenting illness was similar to that of B. pertussis. All patients were vaccinated against pertussis, suggesting that pertussis vaccination is ineffective against B. parapertussis.
Collapse
Affiliation(s)
| | - Stefanea L. Rucinski
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology
| | - Jayawant N. Mandrekar
- Division of Biomedical Statistics and Informatics, Department of Laboratory Medicine and Pathology
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology
- Division of Infectious Disease, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
14
|
Gorgojo J, Scharrig E, Gómez RM, Harvill ET, Rodríguez ME. Bordetella parapertussis Circumvents Neutrophil Extracellular Bactericidal Mechanisms. PLoS One 2017; 12:e0169936. [PMID: 28095485 PMCID: PMC5240980 DOI: 10.1371/journal.pone.0169936] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
B. parapertussis is a whooping cough etiological agent with the ability to evade the immune response induced by pertussis vaccines. We previously demonstrated that in the absence of opsonic antibodies B. parapertussis hampers phagocytosis by neutrophils and macrophages and, when phagocytosed, blocks intracellular killing by interfering with phagolysosomal fusion. But neutrophils can kill and/or immobilize extracellular bacteria through non-phagocytic mechanisms such as degranulation and neutrophil extracellular traps (NETs). In this study we demonstrated that B. parapertussis also has the ability to circumvent these two neutrophil extracellular bactericidal activities. The lack of neutrophil degranulation was found dependent on the O antigen that targets the bacteria to cell lipid rafts, eventually avoiding the fusion of nascent phagosomes with specific and azurophilic granules. IgG opsonization overcame this inhibition of neutrophil degranulation. We further observed that B. parapertussis did not induce NETs release in resting neutrophils and inhibited NETs formation in response to phorbol myristate acetate (PMA) stimulation by a mechanism dependent on adenylate cyclase toxin (CyaA)-mediated inhibition of reactive oxygen species (ROS) generation. Thus, B. parapertussis modulates neutrophil bactericidal activity through two different mechanisms, one related to the lack of proper NETs-inducer stimuli and the other one related to an active inhibitory mechanism. Together with previous results these data suggest that B. parapertussis has the ability to subvert the main neutrophil bactericidal functions, inhibiting efficient clearance in non-immune hosts.
Collapse
Affiliation(s)
- Juan Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Emilia Scharrig
- Institute of Biotechnology and Molecular Biology, CCT-La Plata, CONICET-UNLP, La Plata, Argentina
| | - Ricardo M. Gómez
- Institute of Biotechnology and Molecular Biology, CCT-La Plata, CONICET-UNLP, La Plata, Argentina
| | - Eric T. Harvill
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia Athens, Georgia, United States of America
| | - Maria Eugenia Rodríguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail:
| |
Collapse
|
15
|
Linz B, Ivanov YV, Preston A, Brinkac L, Parkhill J, Kim M, Harris SR, Goodfield LL, Fry NK, Gorringe AR, Nicholson TL, Register KB, Losada L, Harvill ET. Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics 2016; 17:767. [PMID: 27716057 PMCID: PMC5045587 DOI: 10.1186/s12864-016-3112-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 09/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background The genus Bordetella consists of nine species that include important respiratory pathogens such as the ‘classical’ species B. bronchiseptica, B. pertussis and B. parapertussis and six more distantly related and less extensively studied species. Here we analyze sequence diversity and gene content of 128 genome sequences from all nine species with focus on the evolution of virulence-associated factors. Results Both genome-wide sequence-based and gene content-based phylogenetic trees divide the genus into three species clades. The phylogenies are congruent between species suggesting genus-wide co-evolution of sequence diversity and gene content, but less correlated within species, mainly because of strain-specific presence of many different prophages. We compared the genomes with focus on virulence-associated genes and identified multiple clade-specific, species-specific and strain-specific events of gene acquisition and gene loss, including genes encoding O-antigens, protein secretion systems and bacterial toxins. Gene loss was more frequent than gene gain throughout the evolution, and loss of hundreds of genes was associated with the origin of several species, including the recently evolved human-restricted B. pertussis and B. holmesii, B. parapertussis and the avian pathogen B. avium. Conclusions Acquisition and loss of multiple genes drive the evolution and speciation in the genus Bordetella, including large scale gene loss associated with the origin of several species. Recent loss and functional inactivation of genes, including those encoding pertussis vaccine components and bacterial toxins, in individual strains emphasize ongoing evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3112-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bodo Linz
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Yury V Ivanov
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Preston
- The Millner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | - Julian Parkhill
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Maria Kim
- J. Craig Venter Institute, Rockville, MD, USA
| | - Simon R Harris
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Laura L Goodfield
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Norman K Fry
- Public Health England, Respiratory and Vaccine Preventable Bacteria Reference Unit, London, UK
| | | | - Tracy L Nicholson
- USDA, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | - Karen B Register
- USDA, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | | | - Eric T Harvill
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA 16802, USA. .,Singapore Centre on Environmental Life Sciences Engineering, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Singapore. .,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
16
|
Bordetella parapertussis PagP mediates the addition of two palmitates to the lipopolysaccharide lipid A. J Bacteriol 2014; 197:572-80. [PMID: 25422302 DOI: 10.1128/jb.02236-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella bronchiseptica PagP (PagPBB) is a lipid A palmitoyl transferase that is required for resistance to antibody-dependent complement-mediated killing in a murine model of infection. B. parapertussis contains a putative pagP homolog (encoding B. parapertussis PagP [PagPBPa]), but its role in the biosynthesis of lipid A, the membrane anchor of lipopolysaccharide (LPS), has not been investigated. Mass spectrometry analysis revealed that wild-type B. parapertussis lipid A consists of a heterogeneous mixture of lipid A structures, with penta- and hexa-acylated structures containing one and two palmitates, respectively. Through mutational analysis, we demonstrate that PagPBPa is required for the modification of lipid A with palmitate. While PagPBB transfers a single palmitate to the lipid A C-3' position, PagPBPa transfers palmitates to the lipid A C-2 and C-3' positions. The addition of two palmitate acyl chains is unique to B. parapertussis. Mutation of pagPBPa resulted in a mutant strain with increased sensitivity to antimicrobial peptide killing and decreased endotoxicity, as evidenced by reduced proinflammatory responses via Toll-like receptor 4 (TLR4) to the hypoacylated LPS. Therefore, PagP-mediated modification of lipid A regulates outer membrane function and may be a means to modify interactions between the bacterium and its human host during infection.
Collapse
|
17
|
Bordetella parapertussis survives inside human macrophages in lipid raft-enriched phagosomes. Infect Immun 2014; 82:5175-84. [PMID: 25267839 DOI: 10.1128/iai.02553-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella parapertussis is a human pathogen that causes whooping cough. The increasing incidence of B. parapertussis has been attributed to the lack of cross protection induced by pertussis vaccines. It was previously shown that B. parapertussis is able to avoid bacterial killing by polymorphonuclear leukocytes (PMN) if specific opsonic antibodies are not present at the site of interaction. Here, we evaluated the outcome of B. parapertussis innate interaction with human macrophages, a less aggressive type of cell and a known reservoir of many persistent pathogens. The results showed that in the absence of opsonins, O antigen allows B. parapertussis to inhibit phagolysosomal fusion and to remain alive inside macrophages. The O antigen targets B. parapertussis to lipid rafts that are retained in the membrane of phagosomes that do not undergo lysosomal maturation. Forty-eight hours after infection, wild-type B. parapertussis bacteria but not the O antigen-deficient mutants were found colocalizing with lipid rafts and alive in nonacidic compartments. Taken together, our data suggest that in the absence of opsonic antibodies, B. parapertussis survives inside macrophages by preventing phagolysosomal maturation in a lipid raft- and O antigen-dependent manner. Two days after infection, about 15% of macrophages were found loaded with live bacteria inside flotillin-enriched phagosomes that had access to nutrients provided by the host cell recycling pathway, suggesting the development of an intracellular infection. IgG opsonization drastically changed this interaction, inducing efficient bacterial killing. These results highlight the need for B. parapertussis opsonic antibodies to induce bacterial clearance and prevent the eventual establishment of cellular reservoirs of this pathogen.
Collapse
|
18
|
Zhang X, Weyrich LS, Lavine JS, Karanikas AT, Harvill ET. Lack of cross-protection against Bordetella holmesii after pertussis vaccination. Emerg Infect Dis 2013; 18:1771-9. [PMID: 23092514 PMCID: PMC3559177 DOI: 10.3201/eid1811.111544] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vaccines for B. pertussis do not protect against circulating strains of a closely related respiratory pathogen. Bordetella holmesii, a species closely related to B. pertussis, has been reported sporadically as a cause of whooping cough–like symptoms. To investigate whether B. pertussis–induced immunity is protective against infection with B. holmesii, we conducted an analysis using 11 human respiratory B. holmesii isolates collected during 2005–2009 from a highly B. pertussis–vaccinated population in Massachusetts. Neither whole-cell (wP) nor acellular (aP) B. pertussis vaccination conferred protection against these B. holmesii isolates in mice. Although T-cell responses induced by wP or aP cross-reacted with B. holmesii, vaccine-induced antibodies failed to efficiently bind B. holmesii. B. holmesii–specific antibodies provided in addition to wP were sufficient to rapidly reduce B. holmesii numbers in mouse lungs. Our findings suggest the established presence of B. holmesii in Massachusetts and that failure to induce cross-reactive antibodies may explain poor vaccine-induced cross-protection.
Collapse
Affiliation(s)
- Xuqing Zhang
- The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
19
|
Bordetella parapertussis survives the innate interaction with human neutrophils by impairing bactericidal trafficking inside the cell through a lipid raft-dependent mechanism mediated by the lipopolysaccharide O antigen. Infect Immun 2012; 80:4309-16. [PMID: 23027528 DOI: 10.1128/iai.00662-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Whooping cough is a reemerging disease caused by two closely related pathogens, Bordetella pertussis and Bordetella parapertussis. The incidence of B. parapertussis in whooping cough cases has been increasing since the introduction of acellular pertussis vaccines containing purified antigens that are common to both strains. Recently published results demonstrated that these vaccines do not protect against B. parapertussis due to the presence of the O antigen on the bacterial surface that impairs antibody access to shared antigens. We have investigated the effect of the lack of opsonization of B. parapertussis on the outcome of its interaction with human neutrophils (polymorphonuclear leukocytes [PMNs]). In the absence of opsonic antibodies, PMN interaction with B. parapertussis resulted in nonbactericidal trafficking upon phagocytosis. A high percentage of nonopsonized B. parapertussis was found in nonacidic lysosome marker (lysosome-associated membrane protein [LAMP])-negative phagosomes with access to the host cell-recycling pathway of external nutrients, allowing bacterial survival as determined by intracellular CFU counts. The lipopolysaccharide (LPS) O antigen was found to be involved in directing B. parapertussis to PMN lipid rafts, eventually determining the nonbactericidal fate inside the PMN. IgG opsonization of B. parapertussis drastically changed this interaction by not only inducing efficient PMN phagocytosis but also promoting PMN bacterial killing. These data provide new insights into the immune mechanisms of hosts against B. parapertussis and document the crucial importance of opsonic antibodies in immunity to this pathogen.
Collapse
|
20
|
Effectiveness of the whole-cell pertussis vaccine produced in Poland against different Bordetella parapertussis isolates in the mouse intranasal challenge model. Vaccine 2011; 29:5488-94. [DOI: 10.1016/j.vaccine.2011.05.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/12/2011] [Accepted: 05/15/2011] [Indexed: 11/23/2022]
|
21
|
Bouchez V, Brun D, Dore G, Njamkepo E, Guiso N. Bordetella parapertussis isolates not expressing pertactin circulating in France. Clin Microbiol Infect 2011; 17:675-82. [DOI: 10.1111/j.1469-0691.2010.03303.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Zhang X, Goel T, Goodfield LL, Muse SJ, Harvill ET. Decreased leukocyte accumulation and delayed Bordetella pertussis clearance in IL-6-/- mice. THE JOURNAL OF IMMUNOLOGY 2011; 186:4895-904. [PMID: 21398615 DOI: 10.4049/jimmunol.1000594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IL-6, a pleiotropic cytokine primarily produced by the innate immune system, has been implicated in the development of acquired immune responses, though its roles are largely undefined and may vary in the context of different diseases. Using a murine model of infection, we established that IL-6 influences the adaptive immune responses against the endemic human respiratory pathogen Bordetella pertussis. IL-6 was induced in the lungs of C57BL/6 mice by B. pertussis. IL-6(-/-) mice showed a protracted infectious course and were less efficiently protected by B. pertussis vaccination than wild-type mice. Abs from IL-6(-/-) mice, though lower in titer, efficiently reduced B. pertussis numbers in IL-6-sufficient mice. Pulmonary leukocyte recruitment and splenic or pulmonary T cell cytokine responses to B. pertussis, including Th1 and Th17 cytokine production, were lower in IL-6(-/-) mice than in wild-type mice. Adoptive transfer of immune wild-type CD4(+) cells ameliorated the defect of IL-6(-/-) mice in the control of B. pertussis numbers. Together, these results reveal the dysregulation of multiple aspects of adaptive immune responses in B. pertussis-infected IL-6(-/-) mice and suggest that IL-6 is involved in regulating Ab generation, pulmonary leukocyte accumulation, and T cell cytokine production in response to B. pertussis as well as the generation of effective vaccine-induced immunity against this pathogen.
Collapse
Affiliation(s)
- Xuqing Zhang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
23
|
Interleukin-1 receptor signaling is required to overcome the effects of pertussis toxin and for efficient infection- or vaccination-induced immunity against Bordetella pertussis. Infect Immun 2010; 79:527-41. [PMID: 20974829 DOI: 10.1128/iai.00590-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin-1 receptor-deficient (IL-1R(-/-)) mice are healthy despite being colonized by commensal microbes but are defective in defenses against specific pathogens, suggesting that IL-1R-mediated effects contribute to immune responses against specific pathogenic mechanisms. To better define the role of IL-1R in immunity to respiratory infections, we challenged IL-1R(-/-) mice with Bordetella pertussis and Bordetella parapertussis, the causative agents of whooping cough. Following inoculation with B. pertussis, but not B. parapertussis, IL-1R(-/-) mice showed elevated bacterial numbers and more extensive inflammatory pathology than wild-type mice. Acellular B. pertussis vaccines were not efficiently protective against B. pertussis in IL-1R(-/-) mice. B. pertussis-stimulated dendritic cells from IL-1R(-/-) mice produced higher levels of tumor necrosis factor alpha (TNF-α) and IL-6 than wild-type cells. Moreover, elevated levels of gamma interferon (IFN-γ) and TNF-α but lower levels of IL-10 were detected during B. pertussis infection in IL-1R(-/-) mice. Since B. parapertussis did not cause severe disease in IL-1R(-/-) mice, we hypothesized that the extreme requirement for IL-1R involves pertussis toxin (Ptx), which is expressed only by B. pertussis. An isogenic Ptx-deficient B. pertussis strain had only a modest phenotype in wild-type mice but was completely defective in causing lethal disease in IL-1R(-/-) mice, indicating that the particular virulence of B. pertussis in these mice requires Ptx. Ptx contributes to IL-1β induction by B. pertussis, which is involved in IL-10 induction through IL-1R signaling. IL-10 treatment reduced B. pertussis numbers in IL-1R(-/-) mice, suggesting that the lower IL-10 responses partially account for the uncontrolled inflammation and bacterial growth in these mice.
Collapse
|
24
|
Vinogradov E, King JD, Pathak AK, Harvill ET, Preston A. Antigenic Variation among Bordetella: Bordetella bronchiseptica strain MO149 expresses a novel o chain that is poorly immunogenic. J Biol Chem 2010; 285:26869-26877. [PMID: 20592026 DOI: 10.1074/jbc.m110.115121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The O chain polysaccharide (O PS) of Bordetella bronchiseptica and Bordetella parapertussis lipopolysaccharide is a homopolymer of 2,3-diacetamido-2,3-dideoxygalacturonic acid (GalNAc3NAcA) in which some of the sugars are present as uronamides. The terminal residue contains several unusual modifications. To date, two types of modification have been characterized, and a survey of numerous strains demonstrated that each contained one of these two modification types. Host antibody responses against the O PS are directed against the terminal residue modifications, and there is little cross-reactivity between the two types. This suggests that Bordetella O PS modifications represent a means of antigenic variation. Here we report the characterization of the O PS of B. bronchiseptica strain MO149. It consists of a novel two-sugar repeating unit and a novel terminal residue modification, with the structure Me-4-alpha-L-GalNAc3NAcA-(4-beta-D-GlcNAc3NAcA-4-alpha-L-GalNAc3NAcA-)(5-6)-, which we propose be defined as the B. bronchiseptica O3 PS. We show that the O3 PS is very poorly immunogenic and that the MO149 strain contains a novel wbm (O PS biosynthesis) locus. Thus, there is greater diversity among Bordetella O PSs than previously recognized, which is likely to be a result of selection pressure from host immunity. We also determine experimentally, for the first time, the absolute configuration of the diacetimido-uronic acid sugars in Bordetella O PS.
Collapse
Affiliation(s)
- Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ashutosh K Pathak
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, Pennsylvania 16802, United Kingdom
| | - Eric T Harvill
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, Pennsylvania 16802, United Kingdom
| | - Andrew Preston
- Department of Clinical Veterinary Science, University of Bristol, Langford, North Somerset BS40 5DU, United Kingdom.
| |
Collapse
|
25
|
Long GH, Karanikas AT, Harvill ET, Read AF, Hudson PJ. Acellular pertussis vaccination facilitates Bordetella parapertussis infection in a rodent model of bordetellosis. Proc Biol Sci 2010; 277:2017-25. [PMID: 20200027 DOI: 10.1098/rspb.2010.0010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite over 50 years of population-wide vaccination, whooping cough incidence is on the rise. Although Bordetella pertussis is considered the main causative agent of whooping cough in humans, Bordetella parapertussis infections are not uncommon. The widely used acellular whooping cough vaccines (aP) are comprised solely of B. pertussis antigens that hold little or no efficacy against B. parapertussis. Here, we ask how aP vaccination affects competitive interactions between Bordetella species within co-infected rodent hosts and thus the aP-driven strength and direction of in-host selection. We show that aP vaccination helped clear B. pertussis but resulted in an approximately 40-fold increase in B. parapertussis lung colony-forming units (CFUs). Such vaccine-mediated facilitation of B. parapertussis did not arise as a result of competitive release; B. parapertussis CFUs were higher in aP-relative to sham-vaccinated hosts regardless of whether infections were single or mixed. Further, we show that aP vaccination impedes host immunity against B. parapertussis-measured as reduced lung inflammatory and neutrophil responses. Thus, we conclude that aP vaccination interferes with the optimal clearance of B. parapertussis and enhances the performance of this pathogen. Our data raise the possibility that widespread aP vaccination can create hosts more susceptible to B. parapertussis infection.
Collapse
Affiliation(s)
- Gráinne H Long
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
26
|
The O antigen is a critical antigen for the development of a protective immune response to Bordetella parapertussis. Infect Immun 2009; 77:5050-8. [PMID: 19737902 DOI: 10.1128/iai.00667-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite excellent vaccine coverage in developed countries, whooping cough is a reemerging disease that can be caused by two closely related pathogens, Bordetella pertussis and B. parapertussis. The two are antigenically distinct, and current vaccines, containing only B. pertussis-derived antigens, confer efficient protection against B. pertussis but not against B. parapertussis. B. pertussis does not express the O antigen, while B. parapertussis retains it as a dominant surface antigen. Since the O antigen is a protective antigen for many pathogenic bacteria, we examined whether this factor is a potential protective antigen for B. parapertussis. In a mouse model of infection, immunization with wild-type B. parapertussis elicited a strong antibody response to the O antigen and conferred efficient protection against a subsequent B. parapertussis challenge. However, immunization with an isogenic mutant lacking the O antigen, B. parapertussis Deltawbm, induced antibodies that recognized other antigens but did not efficiently mediate opsonophagocytosis of B. parapertussis. The passive transfer of sera raised against B. parapertussis, but not B. parapertussis Deltawbm, reduced B. parapertussis loads in the lower respiratory tracts of mice. The addition of 10 microg of purified B. parapertussis lipopolysaccharide (LPS), which contains the O antigen, but not B. parapertussis Deltawbm LPS drastically improved the efficacy of the acellular vaccine Adacel against B. parapertussis. These data suggest that the O antigen is a critical protective antigen of B. parapertussis and its inclusion can substantially improve whooping cough vaccine efficacy against this pathogen.
Collapse
|