1
|
Zhu W, Yang C, Liu Q, Peng M, Li Q, Wang H, Chen X, Zhang B, Feng P, Chen T, Zeng D, Zhao Y. Integrated Analysis of DNA Methylome and Transcriptome Reveals Epigenetic Regulation of Cold Tolerance in Litopenaeus vannamei. Int J Mol Sci 2023; 24:11573. [PMID: 37511332 PMCID: PMC10380378 DOI: 10.3390/ijms241411573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methylation is an important epigenetic modification that has been shown to be associated with responses to non-biological stressors. However, there is currently no research on DNA methylation in response to environmental signals in shrimp. In this study, we conducted a comprehensive comparative analysis of DNA methylation profiles and differentially expressed genes between two strains of Litopenaeus vannamei with significantly different cold tolerance through whole genome bisulfite sequencing (WGBS) and transcriptome sequencing. Between Lv-C and Lv-T (constant temperature of 28 °C and low temperatures of 18 °C and 10 °C) under cytosine-guanine (CG) environments, 39,100 differentially methylated regions (DMRs) were identified, corresponding to 9302 DMR-related genes (DMRGs). The DMRs were mainly located in the gene body (exons and introns). Gene Ontology (GO) analysis showed that these DMRGs were significantly enriched in cell parts, catalytic activity, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed significant enrichment of these DMRGs in pathways such as proteasome (ko03050), oxidative phosphorylation (ko00190), mTOR signaling pathway (ko04150), fatty acid metabolism (ko01212), and fatty acid degradation (ko00071). The comprehensive results suggested that L. vannamei mainly regulates gene expression in response to low temperatures through hypermethylation or demethylation of some genes involved in thermogenesis, glycolysis, the autophagy pathway, the peroxisome, and drug metabolism pathways. These results provide important clues for studying DNA methylation patterns and identifying cold tolerance genes in shrimp.
Collapse
Affiliation(s)
- Weilin Zhu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Tiancong Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| |
Collapse
|
2
|
DNA Methylation Variation Is a Possible Mechanism in the Response of Haemaphysalis longicornis to Low-Temperature Stress. Int J Mol Sci 2022; 23:ijms232315207. [PMID: 36499526 PMCID: PMC9740864 DOI: 10.3390/ijms232315207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Ticks are notorious ectoparasites and transmit the greatest variety of pathogens than any other arthropods. Cold tolerance is a key determinant of tick abundance and distribution. While studies have shown that DNA methylation is one of the important epigenetic regulations found across many species and plays a significant role in their response to low-temperature stress, its role in the response of ticks to low-temperature stress remains unexplored. Herein, we explored the DNA methylation profile of the tick, Haemaphysalis longicornis, exposed to low-temperature stress (4 °C) using whole-genome bisulfite sequencing (WGBS). We found that approximately 0.95% and 0.94% of the genomic C sites were methylated in the control and low-temperature groups, respectively. Moreover, the methylation level under the CG context was about 3.86% and 3.85% in the control and low-temperature groups, respectively. In addition, a total of 6087 differentially methylated regions (DMRs) were identified between the low-temperature and control groups, including 3288 hypermethylated and 2799 hypomethylated DMRs. Further, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially methylated genes revealed that most of the DMGs were significantly enriched in binding and RNA transport pathways. Taken together, this research confirmed, for the first time, the whole genome DNA methylation profile of H. longicornis and provided new insights into the DNA methylation changes relating to low-temperature stress in H. longicornis, as well as provided a foundation for future studies on the epigenetic mechanism underlying the responses of ticks to abiotic stress.
Collapse
|
3
|
Vogt G. Paradigm shifts in animal epigenetics: Research on non-model species leads to new insights into dependencies, functions and inheritance of DNA methylation. Bioessays 2022; 44:e2200040. [PMID: 35618444 DOI: 10.1002/bies.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Recent investigations with non-model species and whole-genome approaches have challenged several paradigms in animal epigenetics. They revealed that epigenetic variation in populations is not the mere consequence of genetic variation, but is a semi-independent or independent source of phenotypic variation, depending on mode of reproduction. DNA methylation is not positively correlated with genome size and phylogenetic position as earlier believed, but has evolved differently between and within higher taxa. Epigenetic marks are usually not completely erased in the zygote and germ cells as generalized from mouse, but often persist and can be transgenerationally inherited, making them evolutionarily relevant. Gene body methylation and promoter methylation are similar in vertebrates and invertebrates with well methylated genomes but transposon silencing through methylation is variable. The new data also suggest that animals use epigenetic mechanisms to cope with rapid environmental changes and to adapt to new environments. The main benefiters are asexual populations, invaders, sessile taxa and long-lived species.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Zhang J, Luo S, Gu Z, Deng Y, Jiao Y. Genome-wide DNA Methylation Analysis of Mantle Edge and Mantle Central from Pearl Oyster Pinctada fucata martensii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:380-390. [PMID: 32140888 DOI: 10.1007/s10126-020-09957-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
DNA methylation is a type of epigenetic modification that alters gene expression without changing the DNA sequence and mediates some cases of phenotypic plasticity. In this study, we identified six DNA methyltransferase (DNMT) genes and two methyl-CpG binding domain protein2 (MBD2) gene from Pinctada fucata martensii. We also analyzed the genome-wide DNA methylation levels of mantle edge (ME) and mantle central (MC) from P. f. martensii via methylated immunoprecipitation sequencing (MeDIP-Seq). Results revealed that both ME and MC had 122 million reads, and had 58,702 and 55,721 peaks, respectively. The obtained methylation patterns of gene elements and repeats showed that the methylation of the protein-coding genes, particularly intron and coding exons (CDSs), was more frequent than that of other genomic elements in the pearl oyster genome. We combined the methylation data with the RNA-seq data of the ME and MC of P. f. martensii and found that promoter, CDS, and intron methylation levels were positively correlated with gene expression levels except the highest gene expression level. We also identified 313 differential methylation genes (DMGs) and annotated 212 of them. These DMGs were significantly enriched in 30 pathways, such as amino acid and protein metabolism, energy metabolism, terpenoid synthesis, and immune-related pathways. This study comprehensively analyzed the methylomes of biomineralization-related tissues and helped enhance our understanding of the regulatory mechanism underlying shell formation.
Collapse
Affiliation(s)
- Jiabin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shaojie Luo
- Fisheries College of Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zefeng Gu
- Fisheries College of Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College of Guangdong Ocean University, Zhanjiang, 524088, China
- Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China
| | - Yu Jiao
- Fisheries College of Guangdong Ocean University, Zhanjiang, 524088, China.
- Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China.
| |
Collapse
|
5
|
Huang H, Wu P, Zhang S, Shang Q, Yin H, Hou Q, Zhong J, Guo X. DNA methylomes and transcriptomes analysis reveal implication of host DNA methylation machinery in BmNPV proliferation in Bombyx mori. BMC Genomics 2019; 20:736. [PMID: 31615392 PMCID: PMC6792228 DOI: 10.1186/s12864-019-6146-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bombyx mori nucleopolyhedrosis virus (BmNPV) is a major pathogen that threatens the sustainability of the sericultural industry. DNA methylation is a widespread gene regulation mode in epigenetics, which plays an important role in host immune response. Until now, little has been known about epigenetic regulation on virus diseases in insects. This study aims to explore the role of DNA methylation in BmNPV proliferation. RESULTS Inhibiting DNA methyltransferase (DNMT) activity of silkworm can suppress BmNPV replication. The integrated analysis of transcriptomes and DNA methylomes in silkworm midguts infected with or without BmNPV showed that both the expression pattern of transcriptome and DNA methylation pattern are changed significantly upon BmNPV infection. A total of 241 differentially methylated regions (DMRs) were observed in BmNPV infected midguts, among which, 126 DMRs were hyper-methylated and 115 DMRs were hypo-methylated. Significant differences in both mRNA transcript level and DNA methylated levels were found in 26 genes. BS-PCR validated the hypermethylation of BGIBMGA014008, a structural maintenance of chromosomes protein gene in the BmNPV-infected midgut. In addition, DNMT inhibition reduced the expression of inhibitor of apoptosis family genes, iap1 from BmNPV, Bmiap2, BmSurvivin1 and BmSurvivin2. CONCLUSION Our results indicate that DNA methylation plays positive roles in BmNPV proliferation and loss of DNMT activity could induce the apoptosis of infected cells to suppress BmNPV proliferation. Our results may provide a new idea and research direction for the molecular mechanism on insect-virus interaction.
Collapse
Affiliation(s)
- Haoling Huang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Ping Wu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China. .,The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China. .,Quality inspection center for sericultural products, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, China.
| | - Shaolun Zhang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Qi Shang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Haotong Yin
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Qirui Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China.,The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.,Quality inspection center for sericultural products, Ministry of Agriculture and Rural Affairs, Zhenjiang, 212018, China
| | - Jinbo Zhong
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, 212018, China. .,The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.
| |
Collapse
|
6
|
Schulz NKE, Wagner CI, Ebeling J, Raddatz G, Diddens-de Buhr MF, Lyko F, Kurtz J. Dnmt1 has an essential function despite the absence of CpG DNA methylation in the red flour beetle Tribolium castaneum. Sci Rep 2018; 8:16462. [PMID: 30405203 PMCID: PMC6220294 DOI: 10.1038/s41598-018-34701-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022] Open
Abstract
Epigenetic mechanisms, such as CpG DNA methylation enable phenotypic plasticity and rapid adaptation to changing environments. CpG DNA methylation is established by DNA methyltransferases (DNMTs), which are well conserved across vertebrates and invertebrates. There are insects with functional DNA methylation despite lacking a complete set of Dnmts. But at least one of the enzymes, DNMT1, appears to be required to maintain an active DNA methylation system. The red flour beetle, Tribolium castaneum, lacks Dnmt3 but possesses Dnmt1 and it has been controversial whether it has a functional DNA methylation system. Using whole genome bisulfite sequencing, we did not find any defined patterns of CpG DNA methylation in embryos. Nevertheless, we found Dnmt1 expressed throughout the entire life cycle of the beetle, with mRNA transcripts significantly more abundant in eggs and ovaries. A maternal knockdown of Dnmt1 caused a developmental arrest in offspring embryos. We show that Dnmt1 plays an essential role in T. castaneum embryos and that its downregulation leads to an early developmental arrest. This function appears to be unrelated to DNA methylation, since we did not find any evidence for this modification. This strongly suggests an alternative role of this protein.
Collapse
Affiliation(s)
- Nora K E Schulz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - C Isabel Wagner
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Julia Ebeling
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
7
|
Provataris P, Meusemann K, Niehuis O, Grath S, Misof B. Signatures of DNA Methylation across Insects Suggest Reduced DNA Methylation Levels in Holometabola. Genome Biol Evol 2018; 10:1185-1197. [PMID: 29697817 PMCID: PMC5915941 DOI: 10.1093/gbe/evy066] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2018] [Indexed: 12/20/2022] Open
Abstract
It has been experimentally shown that DNA methylation is involved in the regulation of gene expression and the silencing of transposable element activity in eukaryotes. The variable levels of DNA methylation among different insect species indicate an evolutionarily flexible role of DNA methylation in insects, which due to a lack of comparative data is not yet well-substantiated. Here, we use computational methods to trace signatures of DNA methylation across insects by analyzing transcriptomic and genomic sequence data from all currently recognized insect orders. We conclude that: 1) a functional methylation system relying exclusively on DNA methyltransferase 1 is widespread across insects. 2) DNA methylation has potentially been lost or extremely reduced in species belonging to springtails (Collembola), flies and relatives (Diptera), and twisted-winged parasites (Strepsiptera). 3) Holometabolous insects display signs of reduced DNA methylation levels in protein-coding sequences compared with hemimetabolous insects. 4) Evolutionarily conserved insect genes associated with housekeeping functions tend to display signs of heavier DNA methylation in comparison to the genomic/transcriptomic background. With this comparative study, we provide the much needed basis for experimental and detailed comparative analyses required to gain a deeper understanding on the evolution and function of DNA methylation in insects.
Collapse
Affiliation(s)
- Panagiotis Provataris
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Karen Meusemann
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Freiburg (Brsg.), Germany
- Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, Australian Capital Territory, Australia
| | - Oliver Niehuis
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University Freiburg, Freiburg (Brsg.), Germany
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
- Corresponding authors: E-mails: ;
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
- Corresponding authors: E-mails: ;
| |
Collapse
|
8
|
Lo N, Simpson SJ, Sword GA. Epigenetics and developmental plasticity in orthopteroid insects. CURRENT OPINION IN INSECT SCIENCE 2018; 25:25-34. [PMID: 29602359 DOI: 10.1016/j.cois.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
Developmental plasticity is a key driver of the extraordinary ecological success of insects. Epigenetic mechanisms provide an important link between the external stimuli that initiate polyphenisms, and the stable changes in gene expression that govern alternative insect morphs. We review the epigenetics of orthopteroid insects, focussing on recent research on locusts and termites, two groups which display high levels of phenotypic plasticity, and for which genome sequences have become available in recent years. We examine research on the potential role of DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression in these insects. DNA methylation patterns in orthopteroids share a number of characteristics with those of hymenopteran insects, although methylation levels are much higher, and extend to introns and repeat elements. Future examinations of epigenetic mechanisms in these insects will benefit from comparison of tissues from aged-matched individuals from alternative morphs, and adequate biological replication.
Collapse
Affiliation(s)
- Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Stephen J Simpson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory A Sword
- Department of Entomology, Interdisciplinary Faculty of Ecology and Evolutionary Biology, Texas A&M University, TAMU 2475, College Station, TX 77843, USA
| |
Collapse
|
9
|
Kim D, Thairu MW, Hansen AK. Novel Insights into Insect-Microbe Interactions-Role of Epigenomics and Small RNAs. FRONTIERS IN PLANT SCIENCE 2016; 7:1164. [PMID: 27540386 PMCID: PMC4972996 DOI: 10.3389/fpls.2016.01164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/20/2016] [Indexed: 05/23/2023]
Abstract
It has become increasingly clear that microbes form close associations with the vast majority of animal species, especially insects. In fact, an array of diverse microbes is known to form shared metabolic pathways with their insect hosts. A growing area of research in insect-microbe interactions, notably for hemipteran insects and their mutualistic symbionts, is to elucidate the regulation of this inter-domain metabolism. This review examines two new emerging mechanisms of gene regulation and their importance in host-microbe interactions. Specifically, we highlight how the incipient areas of research on regulatory "dark matter" such as epigenomics and small RNAs, can play a pivotal role in the evolution of both insect and microbe gene regulation. We then propose specific models of how these dynamic forms of gene regulation can influence insect-symbiont-plant interactions. Future studies in this area of research will give us a systematic understanding of how these symbiotic microbes and animals reciprocally respond to and regulate their shared metabolic processes.
Collapse
|
10
|
Ernst UR, Van Hiel MB, Depuydt G, Boerjan B, De Loof A, Schoofs L. Epigenetics and locust life phase transitions. ACTA ACUST UNITED AC 2015; 218:88-99. [PMID: 25568455 DOI: 10.1242/jeb.107078] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insects are one of the most successful classes on Earth, reflected in an enormous species richness and diversity. Arguably, this success is partly due to the high degree to which polyphenism, where one genotype gives rise to more than one phenotype, is exploited by many of its species. In social insects, for instance, larval diet influences the development into distinct castes; and locust polyphenism has tricked researchers for years into believing that the drastically different solitarious and gregarious phases might be different species. Solitarious locusts behave much as common grasshoppers. However, they are notorious for forming vast, devastating swarms upon crowding. These gregarious animals are shorter lived, less fecund and transmit their phase characteristics to their offspring. The behavioural gregarisation occurs within hours, yet the full display of gregarious characters takes several generations, as does the reversal to the solitarious phase. Hormones, neuropeptides and neurotransmitters influence some of the phase traits; however, none of the suggested mechanisms can account for all the observed differences, notably imprinting effects on longevity and fecundity. This is why, more recently, epigenetics has caught the interest of the polyphenism field. Accumulating evidence points towards a role for epigenetic regulation in locust phase polyphenism. This is corroborated in the economically important locust species Locusta migratoria and Schistocerca gregaria. Here, we review the key elements involved in phase transition in locusts and possible epigenetic regulation. We discuss the relative role of DNA methylation, histone modification and small RNA molecules, and suggest future research directions.
Collapse
Affiliation(s)
- Ulrich R Ernst
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| | - Matthias B Van Hiel
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| | - Geert Depuydt
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| | - Bart Boerjan
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| | - Arnold De Loof
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| |
Collapse
|
11
|
Fablet M, Vieira C. Evolvability, epigenetics and transposable elements. Biomol Concepts 2015; 2:333-41. [PMID: 25962041 DOI: 10.1515/bmc.2011.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/11/2011] [Indexed: 12/31/2022] Open
Abstract
Evolvability can be defined as the capacity of an individual to evolve and thus to capture adaptive mutations. Transposable elements (TE) are an important source of mutations in organisms. Their capacity to transpose within a genome, sometimes at a high rate, and their copy number regulation are environment-sensitive, as are the epigenetic pathways that mediate TE regulation in a genome. In this review we revisit the way we see evolvability with regard to transposable elements and epigenetics.
Collapse
|
12
|
Mitsudome T, Mon H, Xu J, Li Z, Lee JM, Patil AA, Masuda A, Iiyama K, Morokuma D, Kusakabe T. Biochemical characterization of maintenance DNA methyltransferase DNMT-1 from silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 58:55-65. [PMID: 25623240 DOI: 10.1016/j.ibmb.2015.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
DNA methylation is an important epigenetic mechanism involved in gene expression of vertebrates and invertebrates. In general, DNA methylation profile is established by de novo DNA methyltransferases (DNMT-3A, -3B) and maintainance DNA methyltransferase (DNMT-1). DNMT-1 has a strong substrate preference for hemimethylated DNA over the unmethylated one. Because the silkworm genome lacks an apparent homologue of de novo DNMT, it is still unclear that how silkworm chromosome establishes and maintains its DNA methylation profile. As the first step to unravel this enigma, we purified recombinant BmDNMT-1 using baculovirus expression system and characterized its DNA-binding and DNA methylation activity. We found that the BmDNMT-1 preferentially methylates hemimethylated DNA despite binding to both unmethylated and hemimethylated DNA. Interestingly, BmDNMT-1 formed a complex with DNA in the presence or absence of methyl group donor, S-Adenosylmethionine (AdoMet) and the AdoMet-dependent complex formation was facilitated by Zn(2+) and Mn(2+). Our results provide clear evidence that BmDNMT-1 retained the function as maintenance DNMT but its sensitivity to metal ions is different from mammalian DNMT-1.
Collapse
Affiliation(s)
- Takumi Mitsudome
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Zhiqing Li
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Anandrao Ashok Patil
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Atsushi Masuda
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Kazuhiro Iiyama
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Daisuke Morokuma
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan.
| |
Collapse
|
13
|
Glastad KM, Hunt BG, Goodisman MA. Evolutionary insights into DNA methylation in insects. CURRENT OPINION IN INSECT SCIENCE 2014; 1:25-30. [PMID: 32846726 DOI: 10.1016/j.cois.2014.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 06/11/2023]
Abstract
Epigenetic information affects gene function and plays a critical role in development. DNA methylation is one of the most widespread epigenetic marks and has been linked to developmental plasticity in insects. Here, we review the patterns and functions of DNA methylation in insects. We specifically focus on how the application of an evolutionary framework has led to important insights into the role of DNA methylation. We discuss the importance of evolutionary variation in DNA methylation among insect taxa and show how comparative analyses have revealed conservation in targets of DNA methylation. We then show how the distribution of DNA methylation in insect genomes has been linked to evolutionary conserved patterns of histone modifications and variants. We conclude by discussing how the evolutionary conservation and variability of DNA methylation in insects can provide insight into the function of DNA methylation across eukaryotic systems.
Collapse
Affiliation(s)
- Karl M Glastad
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA
| | | |
Collapse
|
14
|
Valenzuela CY. The structure of selective dinucleotide interactions and periodicities in D melanogaster mtDNA. Biol Res 2014; 47:18. [PMID: 25027717 PMCID: PMC4101722 DOI: 10.1186/0717-6287-47-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND We found a strong selective 3-sites periodicity of deviations from randomness of the dinucleotide (DN) distribution, where both bases of DN were separated by 1, 2, K sites in prokaryotes and mtDNA. Three main aspects are studied. I) the specific 3 K-sites periodic structure of the 16 DN. II) to discard the possibility that the periodicity was produced by the highly nonrandom interactive association of contiguous bases, by studying the interaction of non-contiguous bases, the first one chosen each I sites and the second chosen J sites downstream. III) the difference between this selective periodicity of association (distance to randomness) of the four bases with the described fixed periodicities of base sequences. RESULTS I) The 16 pairs presented a consistent periodicity in the strength of association of both bases of the pairs; the most deviated pairs are those where G and C are involved and the least deviated ones are those where A and T are involved. II) we found significant non-random interactions when the first nucleotide is chosen every I sites and the second J sites downstream until I=J=76. III) we showed conclusive differences between these internucleotide association periodicities and sequence periodicities. CONCLUSIONS This relational selective periodicity is different from sequence periodicities and indicates that any base strongly interacts with the bases of the residual genome; this interaction and periodicity is highly structured and systematic for every pair of bases. This interaction should be destroyed in few generations by recurrent mutation; it is only compatible with the Synthetic Theory of Evolution and agrees with the Wright's adaptive landscape conception and evolution by shifting balanced adaptive peaks.
Collapse
|
15
|
Fneich S, Dheilly N, Adema C, Rognon A, Reichelt M, Bulla J, Grunau C, Cosseau C. 5-methyl-cytosine and 5-hydroxy-methyl-cytosine in the genome of Biomphalaria glabrata, a snail intermediate host of Schistosoma mansoni. Parasit Vectors 2013; 6:167. [PMID: 23742053 PMCID: PMC3681652 DOI: 10.1186/1756-3305-6-167] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
Background Biomphalaria glabrata is the mollusc intermediate host for Schistosoma mansoni, a digenean flatworm parasite that causes human intestinal schistosomiasis. An estimated 200 million people in 74 countries suffer from schistosomiasis, in terms of morbidity this is the most severe tropical disease after malaria. Epigenetic information informs on the status of gene activity that is heritable, for which changes are reversible and that is not based on the DNA sequence. Epigenetic mechanisms generate variability that provides a source for potentially heritable phenotypic variation and therefore could be involved in the adaptation to environmental constraint. Phenotypic variations are particularly important in host-parasite interactions in which both selective pressure and rate of evolution are high. In this context, epigenetic changes are expected to be major drivers of phenotypic plasticity and co-adaptation between host and parasite. Consequently, with characterization of the genomes of invertebrates that are parasite vectors or intermediate hosts, it is also essential to understand how the epigenetic machinery functions to better decipher the interplay between host and parasite. Methods The CpGo/e ratios were used as a proxy to investigate the occurrence of CpG methylation in B. glabrata coding regions. The presence of DNA methylation in B. glabrata was also confirmed by several experimental approaches: restriction enzymatic digestion with isoschizomers, bisulfite conversion based techniques and LC-MS/MS analysis. Results In this work, we report that DNA methylation, which is one of the carriers of epigenetic information, occurs in B. glabrata; approximately 2% of cytosine nucleotides are methylated. We describe the methylation machinery of B. glabrata. Methylation occurs predominantly at CpG sites, present at high ratios in coding regions of genes associated with housekeeping functions. We also demonstrate by bisulfite treatment that methylation occurs in multiple copies of Nimbus, a transposable element. Conclusions This study details DNA methylation for the first time, one of the carriers of epigenetic information in B. glabrata. The general characteristics of DNA methylation that we observed in the B. glabrata genome conform to what epigenetic studies have reported from other invertebrate species.
Collapse
Affiliation(s)
- Sara Fneich
- Université de Perpignan Via Domitia, Perpignan, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Feliciello I, Parazajder J, Akrap I, Ugarković D. First evidence of DNA methylation in insect Tribolium castaneum: environmental regulation of DNA methylation within heterochromatin. Epigenetics 2013; 8:534-41. [PMID: 23644818 DOI: 10.4161/epi.24507] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA methylation has been studied in many eukaryotic organisms, in particular vertebrates, and was implicated in developmental and phenotypic variations. Little is known about the role of DNA methylation in invertebrates, although insects are considered as excellent models for studying the evolution of DNA methylation. In the red flour beetle, Tribolium castaneum (Tenebrionidae, Coleoptera), no evidence of DNA methylation has been found till now. In this paper, a cytosine methylation in Tribolium castaneum embryos was detected by methylation sensitive restriction endonucleases and immuno-dot blot assay. DNA methylation in embryos is followed by a global demethylation in larvae, pupae and adults. DNA demethylation seems to proceed actively through 5-hydroxymethylcytosine, most probably by the action of TET enzyme. Bisulfite sequencing of a highly abundant satellite DNA located in pericentromeric heterochromatin revealed similar profile of cytosine methylation in adults and embryos. Cytosine methylation was not only restricted to CpG sites but was found at CpA, CpT and CpC sites. In addition, complete cytosine demethylation of heterochromatic satellite DNA was induced by heat stress. The results reveal existence of DNA methylation cycling in T. castaneum ranging from strong overall cytosine methylation in embryos to a weak DNA methylation in other developmental stages. Nevertheless, DNA methylation is preserved within heterochromatin during development, indicating its role in heterochromatin formation and maintenance. It is, however, strongly affected by heat stress, suggesting a role for DNA methylation in heterochromatin structure modulation during heat stress response.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| | | | | | | |
Collapse
|
17
|
Lechner M, Marz M, Ihling C, Sinz A, Stadler PF, Krauss V. The correlation of genome size and DNA methylation rate in metazoans. Theory Biosci 2012; 132:47-60. [PMID: 23132463 DOI: 10.1007/s12064-012-0167-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/03/2012] [Indexed: 12/12/2022]
Abstract
Total DNA methylation rates are well known to vary widely between different metazoans. The phylogenetic distribution of this variation, however, has not been investigated systematically. We combine here publicly available data on methylcytosine content with the analysis of nucleotide compositions of genomes and transcriptomes of 78 metazoan species to trace the evolution of abundance and distribution of DNA methylation. The depletion of CpG and the associated enrichment of TpG and CpA dinucleotides are used to infer the intensity and localization of germline CpG methylation and to estimate its evolutionary dynamics. We observe a positive correlation of the relative methylation of CpG motifs with genome size. We tested this trend successfully by measuring total DNA methylation with LC/MS in orthopteran insects with very different genome sizes: house crickets, migratory locusts and meadow grasshoppers. We hypothesize that the observed correlation between methylation rate and genome size is due to a dependence of both variables from long-term effective population size and is driven by the accumulation of repetitive sequences that are typically methylated during periods of small population sizes. This process may result in generally methylated, large genomes such as those of jawed vertebrates. In this case, the emergence of a novel demethylation pathway and of novel reader proteins for methylcytosine may have enabled the usage of cytosine methylation for promoter-based gene regulation. On the other hand, persistently large populations may lead to a compression of the genome and to the loss of the DNA methylation machinery, as observed, e.g., in nematodes.
Collapse
Affiliation(s)
- Marcus Lechner
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Smith CR, Mutti NS, Jasper WC, Naidu A, Smith CD, Gadau J. Patterns of DNA methylation in development, division of labor and hybridization in an ant with genetic caste determination. PLoS One 2012; 7:e42433. [PMID: 22879983 PMCID: PMC3411777 DOI: 10.1371/journal.pone.0042433] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 07/09/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND DNA methylation is a common regulator of gene expression, including acting as a regulator of developmental events and behavioral changes in adults. Using the unique system of genetic caste determination in Pogonomyrmex barbatus, we were able to document changes in DNA methylation during development, and also across both ancient and contemporary hybridization events. METHODOLOGY/PRINCIPAL FINDINGS Sodium bisulfite sequencing demonstrated in vivo methylation of symmetric CG dinucleotides in P. barbatus. We also found methylation of non-CpG sequences. This validated two bioinformatics methods for predicting gene methylation, the bias in observed to expected ratio of CpG dinucleotides and the density of CpG/TpG single nucleotide polymorphisms (SNP). Frequencies of genomic DNA methylation were determined for different developmental stages and castes using ms-AFLP assays. The genetic caste determination system (GCD) is probably the product of an ancestral hybridization event between P. barbatus and P. rugosus. Two lineages obligately co-occur within a GCD population, and queens are derived from intra-lineage matings whereas workers are produced from inter-lineage matings. Relative DNA methylation levels of queens and workers from GCD lineages (contemporary hybrids) were not significantly different until adulthood. Virgin queens had significantly higher relative levels of DNA methylation compared to workers. Worker DNA methylation did not vary among developmental stages within each lineage, but was significantly different between the currently hybridizing lineages. Finally, workers of the two genetic caste determination lineages had half as many methylated cytosines as workers from the putative parental species, which have environmental caste determination. CONCLUSIONS/SIGNIFICANCE These results suggest that DNA methylation may be a conserved regulatory mechanism moderating division of labor in both bees and ants. Current and historic hybridization appear to have altered genomic methylation levels suggesting a possible link between changes in overall DNA methylation and the origin and regulation of genetic caste determination in P. barbatus.
Collapse
Affiliation(s)
- Chris R Smith
- Department of Biology, Earlham College, Richmond, Indiana, United States of America.
| | | | | | | | | | | |
Collapse
|
19
|
Epigenetics in social insects: a new direction for understanding the evolution of castes. GENETICS RESEARCH INTERNATIONAL 2012; 2012:609810. [PMID: 22567395 PMCID: PMC3335566 DOI: 10.1155/2012/609810] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/21/2011] [Indexed: 11/23/2022]
Abstract
Epigenetic modifications to DNA, such as DNA methylation, can expand a genome's
regulatory flexibility, and thus may contribute to the evolution of phenotypic plasticity. Recent work has demonstrated the importance of DNA methylation in alternative queen
and worker “castes” in social insects, particularly honeybees. Social insects are an excellent system for addressing questions about epigenetics and evolution because: (1)
they have dramatic caste polyphenisms that appear to be tied to differential methylation,
(2) DNA methylation is widespread in various groups of social insects, and (3) there are
intriguing connections between the social environment and DNA methylation in many
species, from insects to mammals. In this article, we review research on honeybees, and,
when available, other social insects, on DNA methylation and queen and worker caste
differences. We outline a conceptual framework for the effects of methylation on caste
determination in honeybees that may help guide studies of epigenetic regulation in other
polyphenic taxa. Finally, we suggest future paths of study for social insect epigenetic
research, including the importance of comparative studies of DNA methylation on a
broader range of species, and highlight some key unanswered mechanistic questions
about how DNA methylation affects gene regulation.
Collapse
|
20
|
Evidence for widespread genomic methylation in the migratory locust, Locusta migratoria (Orthoptera: Acrididae). PLoS One 2011; 6:e28167. [PMID: 22163001 PMCID: PMC3230617 DOI: 10.1371/journal.pone.0028167] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 11/02/2011] [Indexed: 12/14/2022] Open
Abstract
The importance of DNA methylation in mammalian and plant systems is well established. In recent years there has been renewed interest in DNA methylation in insects. Accumulating evidence, both from mammals and insects, points towards an emerging role for DNA methylation in the regulation of phenotypic plasticity. The migratory locust (Locusta migratoria) is a model organism for the study of phenotypic plasticity. Despite this, there is little information available about the degree to which the genome is methylated in this species and genes encoding methylation machinery have not been previously identified. We therefore undertook an initial investigation to establish the presence of a functional DNA methylation system in L. migratoria. We found that the migratory locust possesses genes that putatively encode methylation machinery (DNA methyltransferases and a methyl-binding domain protein) and exhibits genomic methylation, some of which appears to be localised to repetitive regions of the genome. We have also identified a distinct group of genes within the L. migratoria genome that appear to have been historically methylated and show some possible functional differentiation. These results will facilitate more detailed research into the functional significance of DNA methylation in locusts.
Collapse
|
21
|
Glastad KM, Hunt BG, Yi SV, Goodisman MAD. DNA methylation in insects: on the brink of the epigenomic era. INSECT MOLECULAR BIOLOGY 2011; 20:553-65. [PMID: 21699596 DOI: 10.1111/j.1365-2583.2011.01092.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA methylation plays an important role in gene regulation in animals. However, the evolution and function of DNA methylation has only recently emerged as the subject of widespread study in insects. In this review we profile the known distribution of DNA methylation systems across insect taxa and synthesize functional inferences from studies of DNA methylation in insects and vertebrates. Unlike vertebrate genomes, which tend to be globally methylated, DNA methylation is primarily targeted to genes in insects. Nevertheless, mounting evidence suggests that a specialized role exists for genic methylation in the regulation of transcription, and possibly mRNA splicing, in both insects and mammals. Investigations in several insect taxa further reveal that DNA methylation is preferentially targeted to ubiquitously expressed genes and may play a key role in the regulation of phenotypic plasticity. We suggest that insects are particularly amenable to advancing our understanding of the biological functions of DNA methylation, because insects are evolutionarily diverse, display several lineage-specific losses of DNA methylation and possess tractable patterns of DNA methylation in moderately sized genomes.
Collapse
Affiliation(s)
- K M Glastad
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
22
|
Krauss V, Reuter G. DNA methylation in Drosophila--a critical evaluation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:177-91. [PMID: 21507351 DOI: 10.1016/b978-0-12-387685-0.00003-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drosophila belongs to the so-called "Dnmt2 only" organisms, and does not contain any of the canonical DNA methyltransferases (Dnmt1 and Dnmt3). Furthermore, no functional homologs of known 5-methylcytosine reader proteins are found. Nevertheless, there is strong evidence for DNA methylation in this organism. It has been suggested that DNA methylation in Drosophila is simply a byproduct of Dnmt2, which is a DNA methyltransferase (Dnmt) according to structure and type of catalysis but functions in vivo as a tRNA methyltransferase. However, concerning the very specific timing of cytosine methylation in Drosophila, their suggested functions in control of retrotransposon silencing and genome stability, and the obvious DNA methylation activity of Dnmt2 enzymes in the protozoans Dictyostelium discoideum and Entamoeba histolytica, we tend to disagree with this notation. Dnmt2 probably serves, and not only in Drosophila, as a methyltransferase of both specific DNA and tRNA targets.
Collapse
Affiliation(s)
- Veiko Krauss
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg, Halle/S, Germany
| | | |
Collapse
|