1
|
Borsier E, Sanders H, Taylor GK. Brightness cues affect gap negotiation behaviours in zebra finches flying between perches. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240007. [PMID: 39100151 PMCID: PMC11296001 DOI: 10.1098/rsos.240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 08/06/2024]
Abstract
Flying animals have had to evolve robust and effective guidance strategies for dealing with habitat clutter. Birds and insects use optic flow expansion cues to sense and avoid obstacles, but orchid bees have also been shown to use brightness cues during gap negotiation. Such brightness cues might therefore be of general importance in structuring visually guided flight behaviours. To test the hypothesis that brightness cues also affect gap negotiation behaviours in birds, we presented captive zebra finches Taeniopygia guttata with a symmetric or asymmetric background brightness distribution on the other side of a tunnel. The background brightness conditions influenced both the birds' decision to enter the tunnel aperture, and their flight direction upon exit. Zebra finches were more likely to initiate flight through the tunnel if they could see a bright background through it; they were also more likely to fly to the bright side upon exiting. We found no evidence of the centring response that would be expected if optic flow cues were balanced bilaterally during gap negotiation. Instead, the birds entered the tunnel by targeting a clearance of approximately one wing length from its near edge. Brightness cues therefore affect how zebra finches structure their flight when negotiating gaps in enclosed environments.
Collapse
Affiliation(s)
- Emma Borsier
- Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | - Helen Sanders
- Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
| | | |
Collapse
|
2
|
van den Berg CP, Endler JA, Papinczak DEJ, Cheney KL. Using colour pattern edge contrast statistics to predict detection speed and success in triggerfish (Rhinecanthus aculeatus). J Exp Biol 2022; 225:285905. [PMID: 36354306 PMCID: PMC9789405 DOI: 10.1242/jeb.244677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Edge detection is important for object detection and recognition. However, we do not know whether edge statistics accurately predict the detection of prey by potential predators. This is crucial given the growing availability of image analysis software and their application across non-human visual systems. Here, we investigated whether Boundary Strength Analysis (BSA), Local Edge Intensity Analysis (LEIA) and the Gabor edge disruption ratio (GabRat) could predict the speed and success with which triggerfish (Rhinecanthus aculeatus) detected patterned circular stimuli against a noisy visual background, in both chromatic and achromatic presentations. We found various statistically significant correlations between edge statistics and detection speed depending on treatment and viewing distance; however, individual pattern statistics only explained up to 2% of the variation in detection time, and up to 6% when considering edge statistics simultaneously. We also found changes in fish response over time. While highlighting the importance of spatial acuity and relevant viewing distances in the study of visual signals, our results demonstrate the importance of considering explained variation when interpreting colour pattern statistics in behavioural experiments. We emphasize the need for statistical approaches suitable for investigating task-specific predictive relationships and ecological effects when considering animal behaviour. This is particularly important given the ever-increasing dimensionality and size of datasets in the field of visual ecology.
Collapse
Affiliation(s)
- Cedric P. van den Berg
- Visual Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia,Author for correspondence ()
| | - John A. Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Daniel E. J. Papinczak
- Visual Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karen L. Cheney
- Visual Ecology Lab, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
de Alcantara Viana JV, Lourenço Garcia de Brito V, de Melo C. Colour matching by arthropods in burned and unburned backgrounds in a Neotropical savanna. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- João Vitor de Alcantara Viana
- Programa de Pós‐Graduação em Ecologia e Conservação de Recursos Naturais, Laboratório de Ornitologia e Bioacústica Universidade Federal de Uberlândia (UFU) Uberlândia Brazil
- Programa de Pós‐Graduação em Ecologia, Laboratório de Interações Multitróficas e Biodiversidade, Instituto de Biologia Universidade Estadual de Campinas (UNICAMP) Campinas
- Laboratório de Interações Multitróficas e Biodiversidade Departamento de Biologia Animal, Instituto de Biologia Universidade Estadual de Campinas CP 6109, CEP 13083-970 Campinas São Paulo Brazil
| | | | - Celine de Melo
- Instituto de Biologia Universidade Federal de Uberlândia Uberlândia Brazil
| |
Collapse
|
4
|
Chin DD, Lentink D. Birds both avoid and control collisions by harnessing visually guided force vectoring. J R Soc Interface 2022; 19:20210947. [PMID: 35702862 PMCID: PMC9198520 DOI: 10.1098/rsif.2021.0947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
Birds frequently manoeuvre around plant clutter in complex-structured habitats. To understand how they rapidly negotiate obstacles while flying between branches, we measured how foraging Pacific parrotlets avoid horizontal strings obstructing their preferred flight path. Informed by visual cues, the birds redirect forces with their legs and wings to manoeuvre around the obstacle and make a controlled collision with the goal perch. The birds accomplish aerodynamic force vectoring by adjusting their body pitch, stroke plane angle and lift-to-drag ratios beat-by-beat, resulting in a range of about 100° relative to the horizontal plane. The key role of drag in force vectoring revises earlier ideas on how the avian stroke plane and body angle correspond to aerodynamic force direction-providing new mechanistic insight into avian manoeuvring-and how the evolution of flight may have relied on harnessing drag.
Collapse
Affiliation(s)
- Diana D. Chin
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - David Lentink
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
- Faculty of Science and Engineering, University of Groningen, Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Henningsson P. Flying through gaps: how does a bird deal with the problem and what costs are there? ROYAL SOCIETY OPEN SCIENCE 2021; 8:211072. [PMID: 34430051 PMCID: PMC8355674 DOI: 10.1098/rsos.211072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Animals flying in the wild often show remarkable abilities to negotiate obstacles and narrow openings in complex environments. Impressive as these abilities are, this must result in costs in terms of impaired flight performance. In this study, I used a budgerigar as a model for studying these costs. The bird was filmed in stereo when flying through a wide range of gap widths from well above wingspan down to a mere 1/4 of wingspan. Three-dimensional flight trajectories were acquired and speed, wingbeat frequency and accelerations/decelerations were calculated. The bird used two different wing postures to get through the gaps and could use very small safety margins (down to 6 mm on either side) but preferred to use larger when gap width allowed. When gaps were smaller than wingspan, flight speed was reduced with reducing gap width down to half for the smallest and wingbeat frequency was increased. I conclude that flying through gaps potentially comes with multiple types of cost to a bird of which the main may be: (i) reduced flight speed increases the flight duration and hence the energy consumption to get from point A to B, (ii) the underlying U-shaped speed to power relationship means further cost from reduced flight speed, and associated with it (iii) elevated wingbeat frequency includes a third direct cost.
Collapse
Affiliation(s)
- Per Henningsson
- Department of Biology, Lund University, Ecology Building, Sölvegatan 35, 223 62 Lund, Sweden
| |
Collapse
|
6
|
Sung JY, Harris OK, Hensley NM, Chemero AP, Morehouse NI. Beyond cognitive templates: re-examining template metaphors used for animal recognition and navigation. Integr Comp Biol 2021; 61:825-841. [PMID: 33970266 DOI: 10.1093/icb/icab040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The term 'cognitive template' originated from work in human-based cognitive science to describe a literal, stored, neural representation used in recognition tasks. As the study of cognition has expanded to non-human animals, the term has diffused to describe a wider range of animal cognitive tools and strategies that guide action through the recognition of and discrimination between external states. One potential reason for this non-standardized meaning and variable employment is that researchers interested in the broad range of animal recognition tasks enjoy the simplicity of the cognitive template concept and have allowed it to become shorthand for many dissimilar or unknown neural processes without deep scrutiny of how this metaphor might comport with underlying neurophysiology. We review the functional evidence for cognitive templates in fields such as perception, navigation, communication, and learning, highlighting any neural correlates identified by these studies. We find that the concept of cognitive templates has facilitated valuable exploration at the interface between animal behavior and cognition, but the quest for a literal template has failed to attain mechanistic support at the level of neurophysiology. This may be the result of a misled search for a single physical locus for the 'template' itself. We argue that recognition and discrimination processes are best treated as emergent and, as such, may not be physically localized within single structures of the brain. Rather, current evidence suggests that such tasks are accomplished through synergies between multiple distributed processes in animal nervous systems. We thus advocate for researchers to move towards a more ecological, process-oriented conception, especially when discussing the neural underpinnings of recognition-based cognitive tasks.
Collapse
Affiliation(s)
- Jenny Y Sung
- Department of Biological Sciences, University of Cincinnati
| | | | | | | | | |
Collapse
|
7
|
Tichit P, Alves-Dos-Santos I, Dacke M, Baird E. Accelerated landings in stingless bees are triggered by visual threshold cues. Biol Lett 2020; 16:20200437. [PMID: 32842893 DOI: 10.1098/rsbl.2020.0437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most flying animals rely primarily on visual cues to coordinate and control their trajectory when landing. Studies of visually guided landing typically involve animals that decrease their speed before touchdown. Here, we investigate the control strategy of the stingless bee Scaptotrigona depilis, which instead accelerates when landing on its narrow hive entrance. By presenting artificial targets that resemble the entrance at different locations on the hive, we show that these accelerated landings are triggered by visual cues. We also found that S. depilis initiated landing and extended their legs when the angular size of the target reached a given threshold. Regardless of target size, the magnitude of acceleration was the same and the bees aimed for the same relative position on the target suggesting that S. depilis use a computationally simple but elegant 'stereotyped' landing strategy that requires few visual cues.
Collapse
Affiliation(s)
- Pierre Tichit
- Department of Biology, Lund University, Lund 223 62, Sweden
| | | | - Marie Dacke
- Department of Biology, Lund University, Lund 223 62, Sweden
| | - Emily Baird
- Department of Biology, Lund University, Lund 223 62, Sweden.,Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
8
|
Karmaker D, Groening J, Wilson M, Schiffner I, Srinivasan MV. Budgerigars adopt robust, but idiosyncratic flight paths. Sci Rep 2020; 10:2535. [PMID: 32054900 PMCID: PMC7018814 DOI: 10.1038/s41598-020-59013-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/07/2020] [Indexed: 11/17/2022] Open
Abstract
We have investigated the paths taken by Budgerigars while flying in a tunnel. The flight trajectories of nine Budgerigars (Melopsittacus undulatus) were reconstructed in 3D from high speed stereo videography of their flights in an obstacle-free tunnel. Individual birds displayed highly idiosyncratic flight trajectories that were consistent from flight to flight over the course of several months. We then investigated the robustness of each bird’s trajectory by interposing a disk-shaped obstacle in its preferred flight path. We found that each bird continued to fly along its preferred trajectory up to a point very close to the obstacle before veering over the obstacle rapidly, making a minimal deviation to avoid a collision, and subsequently returning to its original path. Thus, Budgerigars show a high propensity to stick to their individual, preferred flight paths even when confronted with a clearly visible obstacle, and do not adopt a substantially different, unobstructed route. The robust preference for idiosyncratic flight paths, and the tendency to pass obstacles by flying above them, provide new insights into the strategies that underpin obstacle avoidance in birds. We believe that this is the first carefully controlled study of the behaviour of birds in response to a newly introduced obstacle in their flight path. The insights from the study could also have implications for conservation efforts to mitigate collisions of birds with man-made obstacles.
Collapse
Affiliation(s)
- Debajyoti Karmaker
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Julia Groening
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Michael Wilson
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Ingo Schiffner
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,School of Natural Sciences, Bangor University, Gwynedd, Wales, UK
| | - Mandyam V Srinivasan
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia. .,School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
9
|
Altshuler DL, Srinivasan MV. Comparison of Visually Guided Flight in Insects and Birds. Front Neurosci 2018; 12:157. [PMID: 29615852 PMCID: PMC5864886 DOI: 10.3389/fnins.2018.00157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/27/2018] [Indexed: 11/14/2022] Open
Abstract
Over the last half century, work with flies, bees, and moths have revealed a number of visual guidance strategies for controlling different aspects of flight. Some algorithms, such as the use of pattern velocity in forward flight, are employed by all insects studied so far, and are used to control multiple flight tasks such as regulation of speed, measurement of distance, and positioning through narrow passages. Although much attention has been devoted to long-range navigation and homing in birds, until recently, very little was known about how birds control flight in a moment-to-moment fashion. A bird that flies rapidly through dense foliage to land on a branch—as birds often do—engages in a veritable three-dimensional slalom, in which it has to continually dodge branches and leaves, and find, and possibly even plan a collision-free path to the goal in real time. Each mode of flight from take-off to goal could potentially involve a different visual guidance algorithm. Here, we briefly review strategies for visual guidance of flight in insects, synthesize recent work from short-range visual guidance in birds, and offer a general comparison between the two groups of organisms.
Collapse
Affiliation(s)
- Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Mandyam V Srinivasan
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.,School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
10
|
Visual guidance of forward flight in hummingbirds reveals control based on image features instead of pattern velocity. Proc Natl Acad Sci U S A 2016; 113:8849-54. [PMID: 27432982 DOI: 10.1073/pnas.1603221113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.
Collapse
|
11
|
Abstract
It is essential for birds to be agile and aware of their immediate environment, especially when flying through dense foliage. To investigate the type of visual signals and strategies used by birds while negotiating cluttered environments, we presented budgerigars with vertically oriented apertures of different widths. We find that, when flying through narrow apertures, birds execute their maneuvers in an anticipatory fashion, with wing closures, if necessary, occurring well in advance of the aperture. When passing through an aperture that is narrower than the wingspan, the birds close their wings at a specific, constant distance before the aperture, which is independent of aperture width. In these cases, the birds also fly significantly higher, possibly pre-compensating for the drop in altitude. The speed of approach is largely constant, and independent of the width of the aperture. The constancy of the approach speed suggests a simple means by which optic flow can be used to gauge the distance and width of the aperture, and guide wing closure.
Collapse
|
12
|
Direct Evidence for Vision-based Control of Flight Speed in Budgerigars. Sci Rep 2015; 5:10992. [PMID: 26046799 PMCID: PMC4457151 DOI: 10.1038/srep10992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/12/2015] [Indexed: 12/02/2022] Open
Abstract
We have investigated whether, and, if so, how birds use vision to regulate the speed of their flight. Budgerigars, Melopsittacus undulatus, were filmed in 3-D using high-speed video cameras as they flew along a 25 m tunnel in which stationary or moving vertically oriented black and white stripes were projected on the side walls. We found that the birds increased their flight speed when the stripes were moved in the birds’ flight direction, but decreased it only marginally when the stripes were moved in the opposite direction. The results provide the first direct evidence that Budgerigars use cues based on optic flow, to regulate their flight speed. However, unlike the situation in flying insects, it appears that the control of flight speed in Budgerigars is direction-specific. It does not rely solely on cues derived from optic flow, but may also be determined by energy constraints.
Collapse
|
13
|
Avarguès-Weber A, d’Amaro D, Metzler M, Dyer AG. Conceptualization of relative size by honeybees. Front Behav Neurosci 2014; 8:80. [PMID: 24672444 PMCID: PMC3953954 DOI: 10.3389/fnbeh.2014.00080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/24/2014] [Indexed: 11/13/2022] Open
Abstract
The ability to process visual information using relational rules allows for decisions independent of the specific physical attributes of individual stimuli. Until recently, the manipulation of relational concepts was considered as a prerogative of large mammalian brains. Here we show that individual free flying honeybees can learn to use size relationship rules to choose either the larger or smaller stimulus as the correct solution in a given context, and subsequently apply the learnt rule to novel colors and shapes providing that there is sufficient input to the long wavelength (green) photoreceptor channel. Our results add a novel, size-based conceptual rule to the set of relational concepts that honeybees have been shown to master and underline the value of bees as an animal model for studying the emergence of conceptualization abilities.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University LondonLondon, UK
| | - Daniele d’Amaro
- Institut für Zoologie III (Neurobiologie), Johannes Gutenberg-UniversitätMainz, Germany
| | - Marita Metzler
- Institut für Zoologie III (Neurobiologie), Johannes Gutenberg-UniversitätMainz, Germany
| | - Adrian G. Dyer
- Department of Physiology, Monash UniversityClayton, VIC, Australia
- School of Media and Communication, Royal Melbourne Institute of TechnologyMelbourne, VIC, Australia
| |
Collapse
|
14
|
Abstract
Eyes have evolved many times, and arthropods and vertebrates share transcription factors for early development. Moreover, the photochemistry of vision in all eyes employs an opsin and the isomerization of a retinoid from the 11-cis to the all-trans configuration. The opsins, however, have associated with several different G proteins, initiating hyperpolarizing and depolarizing conductance changes at the photoreceptor membrane. Beyond these obvious instances of homology, much of the evolutionary story is one of tinkering, producing a great variety of morphological forms and variation within functional themes. This outcome poses a central issue in the convergence of evolutionary and developmental biology: what are the heritable features in the later stages of development that give natural selection traction in altering phenotypic outcomes? This paper discusses some results of evolutionary tinkering where this question arises and, in some cases, where the reasons for particular outcomes and the role of adaptation may not be understood. Phenotypic features include: the exploitation of microvilli in rhabdomeric photoreceptors for detecting the plane of polarized light; different instances of retinoid in the visual pigment; examples of the many uses of accessory pigments in tuning the spectral sensitivity of photoreceptors; selection of opsins in tuning sensitivity in aquatic environments; employing either reflection or refraction in the optics of compound eyes; the multiple ways of constructing images in compound eyes; and the various ways of regenerating 11-cis retinals to maintain visual sensitivity. Evolution is an irreversible process, but tinkering may recover some lost functions, albeit by new mutational routes. There is both elegance and intellectual coherence to the natural processes that produce such variety and functional complexity. But marginalizing the teaching of evolution in public education is a continuing social and political problem that contributes to the reckless capacity of humans to alter the planet without trying to understand how nature works.
Collapse
|
15
|
Zhou Y, Ji X, Gong H, Gong Z, Liu L. Edge detection depends on achromatic channel in Drosophila melanogaster. J Exp Biol 2012; 215:3478-87. [DOI: 10.1242/jeb.070839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Edges represent important information in object recognition, and thus edge detection is crucial for animal survival. Various types of edges result from visual contrast, such as luminance contrast and color contrast. Thus far, the molecular and neural mechanisms underlying edge detection and the relationship between different edge information-processing pathways have largely been undemonstrated. In the present study, using a color-light-emitting diode (LED)-based Buridan's paradigm, we demonstrated that a blue/green demarcation is able to generate edge-orientation behavior in the adult fly. There is a blue/green intensity ratio, the so-called point of equal-luminance (POE), at which wild-type flies did not show obvious orientation behavior towards edges. This suggests that orientation behavior towards edges is dependent on luminance contrast in Drosophila. The results of mutants ninaE17 and sevLY3;rh52;rh61 demonstrated that achromatic R1-R6 photoreceptor cells, but not chromatic R7/R8 photoreceptor cells, were necessary for orientation behavior towards edges. Moreover, ectopic expression of Rh4, Rh5 or Rh6 could efficiently restore the edge-orientation defect in the ninaE17 mutant. Altogether, our results show that R1-R6 photoreceptor cells are both necessary and sufficient for orientation behavior towards edges in Drosophila.
Collapse
Affiliation(s)
- Yanqiong Zhou
- Institute of Biophysics, Chinese Academy of Sciences
| | - Xiaoxiao Ji
- Institute of Biophysics, Chinese Academy of Sciences
| | - Haiyun Gong
- Institute of Biophysics, Chinese Academy of Sciences
| | - Zhefeng Gong
- Institute of Biophysics, Chinese Academy of Sciences
| | - Li Liu
- Institute of Biophysics, Chinese Academy of Sciences
| |
Collapse
|
16
|
Intensity contrast as a crucial cue for butterfly landing. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:1105-12. [DOI: 10.1007/s00359-011-0671-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/25/2011] [Accepted: 07/30/2011] [Indexed: 11/25/2022]
|
17
|
Srinivasan MV. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol Rev 2011; 91:413-60. [PMID: 21527730 DOI: 10.1152/physrev.00005.2010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.
Collapse
Affiliation(s)
- Mandyam V Srinivasan
- Queensland Brain Institute and School of Information Technology and Electrical Engineering, University of Queensland, and ARC Center of Excellence in Vision Science, St. Lucia, Australia.
| |
Collapse
|