1
|
Vanneste M, Hoskens H, Goovaerts S, Matthews H, Aponte JD, Cole J, Shriver M, Marazita ML, Weinberg SM, Walsh S, Richmond S, Klein OD, Spritz RA, Peeters H, Hallgrímsson B, Claes P. Syndrome-informed phenotyping identifies a polygenic background for achondroplasia-like facial variation in the general population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570544. [PMID: 38106188 PMCID: PMC10723447 DOI: 10.1101/2023.12.07.570544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Human craniofacial shape is highly variable yet highly heritable with genetic variants interacting through multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial variation in the normal population. We compared three-dimensional facial scans from 43 individuals with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores. Multivariate GWAS of the control scores revealed a polygenic basis for normal facial variation along an achondroplasia-specific shape axis, identifying genes primarily involved in skeletal development. Jointly modeling these genes in two independent control samples showed craniofacial effects approximating the characteristic achondroplasia phenotype. These findings suggest that both complex and Mendelian genetic variation act on the same developmentally determined axes of facial variation, providing new insights into the genetic intersection of complex traits and Mendelian disorders.
Collapse
Affiliation(s)
| | - Hanne Hoskens
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Seppe Goovaerts
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Harold Matthews
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
| | - Jose D Aponte
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joanne Cole
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, UK
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, 94143, USA
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Richard A Spritz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
De novo serine synthesis regulates chondrocyte proliferation during bone development and repair. Bone Res 2022; 10:14. [PMID: 35165259 PMCID: PMC8844408 DOI: 10.1038/s41413-021-00185-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 11/04/2021] [Indexed: 01/15/2023] Open
Abstract
The majority of the mammalian skeleton is formed through endochondral ossification starting from a cartilaginous template. Cartilage cells, or chondrocytes, survive, proliferate and synthesize extracellular matrix in an avascular environment, but the metabolic requirements for these anabolic processes are not fully understood. Here, using metabolomics analysis and genetic in vivo models, we show that maintaining intracellular serine homeostasis is essential for chondrocyte function. De novo serine synthesis through phosphoglycerate dehydrogenase (PHGDH)-mediated glucose metabolism generates nucleotides that are necessary for chondrocyte proliferation and long bone growth. On the other hand, dietary serine is less crucial during endochondral bone formation, as serine-starved chondrocytes compensate by inducing PHGDH-mediated serine synthesis. Mechanistically, this metabolic flexibility requires ATF4, a transcriptional regulator of amino acid metabolism and stress responses. We demonstrate that both serine deprivation and PHGDH inactivation enhance ATF4 signaling to stimulate de novo serine synthesis and serine uptake, respectively, and thereby prevent intracellular serine depletion and chondrocyte dysfunction. A similar metabolic adaptability between serine uptake and de novo synthesis is observed in the cartilage callus during fracture repair. Together, the results of this study reveal a critical role for PHGDH-dependent serine synthesis in maintaining intracellular serine levels under physiological and serine-limited conditions, as adequate serine levels are necessary to support chondrocyte proliferation during endochondral ossification.
Collapse
|
3
|
The downstream RAF-1 signaling of fibroblast growth factor-23 participates in the osteogenetic effect caused by C-type natriuretic peptide in vitro. Adv Med Sci 2021; 66:206-214. [PMID: 33735829 DOI: 10.1016/j.advms.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/27/2020] [Accepted: 03/03/2021] [Indexed: 11/23/2022]
Abstract
PURPOSE Several studies have demonstrated that C-type natriuretic peptide (CNP) stimulates osteoblastic proliferation seemly via antagonizing the expression of fibroblast growth factor (FGF)-23 in vitro. The main aim of the present study is to probe whether the post-receptor pathways of FGF-23 participate in osteogenesis caused by CNP. METHODS Osteoblasts were cultured in the absence or presence of CNP: 0, 10, and 100 pmol/L, for 24 h, 48 h and 72 h, respectively. RESULTS The findings of the present study indicated that osteoblastic proliferation was directly promoted by exogenous CNP in a dose-dependent manner; osteoblastic FGF-23 was significantly down-regulated by CNP at 24 h post-treatment; RAF-1, extracellular signal-regulated kinases (ERK), and P38 were substantially suppressed by CNP in a dose- and time-dependent manner; and signal transducer and activator of transcription (STAT)-1 was not changed on the premise of the down-regulated FGF-23 in osteoblasts treated with CNP. CONCLUSION CNP may promote osteogenesis via inhibiting ERK and P38, rather than STAT-1, in the downstream of FGF-23/RAF-1 pathway.
Collapse
|
4
|
Yun H, Park ES, Choi S, Shin B, Yu J, Yu J, Amarasekara DS, Kim S, Lee N, Choi JS, Choi Y, Rho J. TDAG51 is a crucial regulator of maternal care and depressive-like behavior after parturition. PLoS Genet 2019; 15:e1008214. [PMID: 31251738 PMCID: PMC6599150 DOI: 10.1371/journal.pgen.1008214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Postpartum depression is a severe emotional and mental disorder that involves maternal care defects and psychiatric illness. Postpartum depression is closely associated with a combination of physical changes and physiological stress during pregnancy or after parturition in stress-sensitive women. Although postpartum depression is relatively well known to have deleterious effects on the developing fetus, the influence of genetic risk factors on the development of postpartum depression remains unclear. In this study, we discovered a novel function of T cell death-associated gene 51 (TDAG51/PHLDA1) in the regulation of maternal and depressive-like behavior. After parturition, TDAG51-deficient dams showed impaired maternal behavior in pup retrieving, nursing and nest building tests. In contrast to the normal dams, the TDAG51-deficient dams also exhibited more sensitive depressive-like behaviors after parturition. Furthermore, changes in the expression levels of various maternal and depressive-like behavior-associated genes regulating neuroendocrine factor and monoamine neurotransmitter levels were observed in TDAG51-deficient postpartum brain tissues. These findings indicate that TDAG51 plays a protective role against maternal care defects and depressive-like behavior after parturition. Thus, TDAG51 is a maternal care-associated gene that functions as a crucial regulator of maternal and depressive-like behavior after parturition. Postpartum depression is a severe emotional and mental disease that can affect women typically after parturition. However, the genetic risk factors associated with the development of postpartum depression are still largely unknown. We discovered a novel function of T cell death-associated gene 51 (TDAG51) in the regulation of maternal behavior and postpartum depression. We report that TDAG51 deficiency induces depressive-like and abnormal maternal behavior after parturition. The loss of TDAG51 in postpartum brain tissues induces changes in the expression levels of various maternal and depressive-like behavior-associated genes that regulate the levels of neuroendocrine factors and monoamine neurotransmitters. TDAG51 is a maternal care-associated gene that functions as a crucial regulator of maternal and depressive-like behavior after parturition.
Collapse
Affiliation(s)
- Hyeongseok Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Eui-Soon Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Seunga Choi
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Bongjin Shin
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Jungeun Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Jiyeon Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | | | - Sumi Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Nari Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Jong-Soon Choi
- Division of Life Science, Korea Basic Science Institute, Daejeon, Korea
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
5
|
Shih YV, Varghese S. Tissue engineered bone mimetics to study bone disorders ex vivo: Role of bioinspired materials. Biomaterials 2019; 198:107-121. [PMID: 29903640 PMCID: PMC6281816 DOI: 10.1016/j.biomaterials.2018.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Recent advances in materials development and tissue engineering has resulted in a substantial number of bioinspired materials that recapitulate cardinal features of bone extracellular matrix (ECM) such as dynamic inorganic and organic environment(s), hierarchical organization, and topographical features. Bone mimicking materials, as defined by its self-explanatory term, are developed based on the current understandings of the natural bone ECM during development, remodeling, and fracture repair. Compared to conventional plastic cultures, biomaterials that resemble some aspects of the native environment could elicit a more natural molecular and cellular response relevant to the bone tissue. Although current bioinspired materials are mainly developed to assist tissue repair or engineer bone tissues, such materials could nevertheless be applied to model various skeletal diseases in vitro. This review summarizes the use of bioinspired materials for bone tissue engineering, and their potential to model diseases of bone development and remodeling ex vivo. We largely focus on biomaterials, designed to re-create different aspects of the chemical and physical cues of native bone ECM. Employing these bone-inspired materials and tissue engineered bone surrogates to study bone diseases has tremendous potential and will provide a closer portrayal of disease progression and maintenance, both at the cellular and tissue level. We also briefly touch upon the application of patient-derived stem cells and introduce emerging technologies such as organ-on-chip in disease modeling. Faithful recapitulation of disease pathologies will not only offer novel insights into diseases, but also lead to enabling technologies for drug discovery and new approaches for cell-based therapies.
Collapse
Affiliation(s)
- Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA.
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA; Department of Materials Science and Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Tang J, Su N, Zhou S, Xie Y, Huang J, Wen X, Wang Z, Wang Q, Xu W, Du X, Chen H, Chen L. Fibroblast Growth Factor Receptor 3 Inhibits Osteoarthritis Progression in the Knee Joints of Adult Mice. Arthritis Rheumatol 2017; 68:2432-43. [PMID: 27159076 DOI: 10.1002/art.39739] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/26/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Fibroblast growth factor (FGF) signaling is involved in articular cartilage homeostasis. This study was undertaken to investigate the role and mechanisms of FGF receptor 3 (FGFR-3) in the pathogenesis of osteoarthritis (OA) caused by surgery and aging in mice. METHODS FGFR-3 was conditionally deleted or activated in articular chondrocytes in adult mice subjected to surgical destabilization of the medial meniscus (DMM). A mouse model of human achondroplasia was also used to assess the role of FGFR-3 in age-associated spontaneous OA. Knee joint cartilage was histologically evaluated and scored using the Osteoarthritis Research Society International system. The expression of genes associated with articular cartilage maintenance was quantitatively evaluated in hip cartilage explants. The effect of inhibiting Indian hedgehog (IHH) signaling in Fgfr3-deficient explants was analyzed. RESULTS Conditional Fgfr3 deletion in mice aggravated DMM-induced cartilage degeneration. Matrix metalloproteinase 13 and type X collagen levels were up-regulated, while type II collagen levels were down-regulated, in the articular cartilage of these mice. Conversely, FGFR-3 activation attenuated cartilage degeneration induced by DMM surgery and age. IHH signaling and runt-related transcription factor 2 levels in mouse articular chondrocytes were up-regulated in the absence of Fgfr3, while inhibition of IHH signaling suppressed the increases in the expression of Runx2, Mmp13, and other factors in Fgfr3-deficient mouse cartilage explants. CONCLUSION Our findings indicate that FGFR-3 delays OA progression in mouse knee joints at least in part via down-regulation of IHH signaling in articular chondrocytes.
Collapse
Affiliation(s)
- Junzhou Tang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Nan Su
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Siru Zhou
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Junlan Huang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xuan Wen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zuqiang Wang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Quan Wang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xu
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hangang Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
7
|
Sliz E, Taipale M, Welling M, Skarp S, Alaraudanjoki V, Ignatius J, Ruddock L, Nissi R, Männikkö M. TUFT1, a novel candidate gene for metatarsophalangeal osteoarthritis, plays a role in chondrogenesis on a calcium-related pathway. PLoS One 2017; 12:e0175474. [PMID: 28410428 PMCID: PMC5391938 DOI: 10.1371/journal.pone.0175474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/27/2017] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disorder and genetic factors have been shown to have a significant role in its etiology. The first metatarsophalangeal joint (MTP I) is highly susceptible to development of OA due to repetitive mechanical stress during walking. We used whole exome sequencing to study genetic defect(s) predisposing to familial early-onset bilateral MTP I OA inherited in an autosomal dominant manner. A nonsynonymous single nucleotide variant rs41310883 (c.524C>T, p.Thr175Met) in TUFT1 gene was found to co-segregate perfectly with MTP I OA. The role of TUFT1 and the relevance of the identified variant in pathogenesis of MTP I OA were further assessed using functional in vitro analyses. The variant reduced TUFT1 mRNA and tuftelin protein expression in HEK293 cells. ATDC5 cells overexpressing wild type (wt) or mutant TUFT1 were cultured in calcifying conditions and chondrogenic differentiation was found to be inhibited in both cell populations, as indicated by decreased marker gene expression when compared with the empty vector control cells. Also, the formation of cartilage nodules was diminished in both TUFT1 overexpressing ATDC5 cell populations. At the end of the culturing period the calcium content of the extracellular matrix was significantly increased in cells overexpressing mutant TUFT1 compared to cells overexpressing wt TUFT1 and control cells, while the proteoglycan content was reduced. These data imply that overexpression of TUFT1 in ATDC5 inhibits chondrogenic differentiation, and the identified variant may contribute to the pathogenesis of OA by increasing calcification and reducing amount of proteoglycans in the articular cartilage extracellular matrix thus making cartilage susceptible for degeneration and osteophyte formation.
Collapse
Affiliation(s)
- Eeva Sliz
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mari Taipale
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Maiju Welling
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sini Skarp
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Viivi Alaraudanjoki
- Research Unit of Oral Health Sciences, University of Oulu, University of Oulu, Oulu, Finland
| | - Jaakko Ignatius
- Department of Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ritva Nissi
- Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
| | - Minna Männikkö
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
8
|
Conditional Deletion of Fgfr3 in Chondrocytes leads to Osteoarthritis-like Defects in Temporomandibular Joint of Adult Mice. Sci Rep 2016; 6:24039. [PMID: 27041063 PMCID: PMC4819201 DOI: 10.1038/srep24039] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/21/2016] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) in the temporomandibular joint (TMJ) is a common degenerative disease in adult, which is characterized by progressive destruction of the articular cartilage. To investigate the role of FGFR3 in the homeostasis of TMJ cartilage during adult stage, we generated Fgfr3f/f; Col2a1-CreERT2 (Fgfr3 cKO) mice, in which Fgfr3 was deleted in chondrocytes at 2 months of age. OA-like defects were observed in Fgfr3 cKO TMJ cartilage. Immunohistochemical staining and quantitative real-time PCR analyses revealed a significant increase in expressions of COL10, MMP13 and AMAMTS5. In addition, there was a sharp increase in chondrocyte apoptosis at the Fgfr3 cKO articular surface, which was accompanied by a down-regulation of lubricin expression. Importantly, the expressions of RUNX2 and Indian hedgehog (IHH) were up-regulated in Fgfr3 cKO TMJ. Primary Fgfr3 cKO chondrocytes were treated with IHH signaling inhibitor, which significantly reduced expressions of Runx2, Col10, Mmp13 and Adamts5. Furthermore, the IHH signaling inhibitor partially alleviated OA-like defects in the TMJ of Fgfr3 cKO mice, including restoration of lubricin expression and improvement of the integrity of the articular surface. In conclusion, our study proposes that FGFR3/IHH signaling pathway plays a critical role in maintaining the homeostasis of TMJ articular cartilage during adult stage.
Collapse
|
9
|
Abstract
Genetic mutations in the fibroblast growth factor receptor 3 gene may lead to achondroplasia or syndromic forms of craniosynostosis. Despite sharing a common genetic basis, craniosynostosis has rarely been described in cases of confirmed achondroplasia. We report an infant with achondroplasia who developed progressive multiple-suture craniosynostosis to discuss the genetic link between these clinical entities and to describe the technical challenges associated with the operative management.
Collapse
|
10
|
Hu P, Huang BY, Xia X, Xuan Q, Hu B, Qin YH. Therapeutic effect of CNP on renal osteodystrophy by antagonizing the FGF-23/MAPK pathway. J Recept Signal Transduct Res 2015; 36:213-9. [DOI: 10.3109/10799893.2015.1075041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
De Leonardis F, Monti L, Gualeni B, Tenni R, Forlino A, Rossi A. Altered signaling in the G1 phase deregulates chondrocyte growth in a mouse model with proteoglycan undersulfation. J Cell Biochem 2015; 115:1779-86. [PMID: 24820054 PMCID: PMC4262066 DOI: 10.1002/jcb.24844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/09/2014] [Indexed: 12/15/2022]
Abstract
In several skeletal dysplasias defects in extracellular matrix molecules affect not only the structural and mechanical properties of cartilage, but also the complex network of signaling pathways involved in cell proliferation and differentiation. Sulfated proteoglycans, besides playing an important structural role in cartilage, are crucial in modulating the transport, diffusion, and interactions of growth factors with their specific targets, taking part in the regulation of signaling pathways involved in skeletal development and growth. In this work, we investigated by real time PCR and Western blots of the microdissected growth plate and by immunohistochemistry the molecular basis of reduced chondrocyte proliferation in the growth plate of the dtd mouse, a chondrodysplastic model with defective chondroitin sulfate proteoglycan sulfation of articular and growth plate cartilage. We detected activation of the Wnt pathway, leading to an increase in the non-phosphorylated form of nuclear β-catenin and subsequent up-regulation of cyclin D1 expression in the G1 phase of the cell cycle. β-Catenin was further stabilized by up-regulation of Smad3 expression through TGF-β pathway synergistic activation. We demonstrate that notwithstanding cyclin D1 expression increase, cell cycle progression is compromised in the G1 phase due to reduced phosphorylation of the pocket protein p130 leading to inhibition of transcription factors of the E2F family which are crucial for cell cycle progression and DNA replication. These data, together with altered Indian hedgehox signaling detected previously, explain at the molecular level the reduced chondrocyte proliferation rate of the dtd growth plate leading to reduced skeletal growth. J. Cell. Biochem. 115: 1779–1786, 2014.
Collapse
Affiliation(s)
- Fabio De Leonardis
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Aikawa T, Shibata M, Asano M, Hara Y, Tagawa M, Orima H. A comparison of thoracolumbar intervertebral disc extrusion in French Bulldogs and Dachshunds and association with congenital vertebral anomalies. Vet Surg 2014; 43:301-7. [PMID: 24433331 DOI: 10.1111/j.1532-950x.2014.12102.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 07/14/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To compare data for French Bulldogs and Dachshunds that had hemilaminectomy for thoracolumbar intervertebral disc extrusion (T-L IVDE) by 1 surgeon and to evaluate the association between IVDE and congenital vertebral anomalies. DESIGN Retrospective case series. ANIMALS French Bulldogs (n = 47) and 671 Dachshunds. METHODS Age, gender, vertebral anomaly, kyphosis/kyphoscoliosis, IVDE site, non-recovery and progressive hemorrhagic myelomalacia development from grade 5 (paraplegia without deep nociception) were compared between the 2 breeds. RESULTS French Bulldogs were significantly younger (P = .00001), more likely to be male (P = .023), and more likely to have a congenital vertebral anomaly and kyphosis/kyphoscoliosis (P < .00001) than Dachshunds. The frequencies of French Bulldogs with IVDE within typical sites (T11-L3) were significantly lower (P = .0005) and within caudal sites (L3-L7) significantly higher (P = .0001) compared with Dachshunds. None of the French Bulldogs had IVDE within the kyphotic/kyphoscoliotic segment. The frequency of lumbar IVDE (L1-L5) in French Bulldogs with kyphosis/kyphoscoliosis was significantly higher (P = .003) compared with French Bulldogs without kyphosis/kyphoscoliosis. In grade 5 dogs, the risk of developing progressive hemorrhagic myelomalacia in French Bulldogs was significantly higher (P = .03) than in Dachshunds. CONCLUSION The distribution of IVDE site in French Bulldogs within the thoracolumbar and lumbar spine was different from Dachshunds. IVDE sites were not located at the sites of vertebral anomaly. French Bulldogs appeared to have T-L IVDE at younger ages, with higher male predisposition and higher risk of developing progressive hemorrhagic myelomalacia from grade 5 compared with Dachshunds.
Collapse
Affiliation(s)
- Takeshi Aikawa
- Aikawa Veterinary Medical Center, Shinjyuku-ku, Tokyo, Japan; Nippon Veterinary and Life Science University, Kyounan-cho, Musashino-shi, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin alpha subunit 10. PLoS One 2013; 8:e75621. [PMID: 24086591 PMCID: PMC3783422 DOI: 10.1371/journal.pone.0075621] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/24/2013] [Indexed: 11/19/2022] Open
Abstract
The skeletal dysplasias are disorders of the bone and cartilage tissues. Similarly to humans, several dog breeds have been reported to suffer from different types of genetic skeletal disorders. We have studied the molecular genetic background of an autosomal recessive chondrodysplasia that affects the Norwegian Elkhound and Karelian Bear Dog breeds. The affected dogs suffer from disproportionate short stature dwarfism of varying severity. Through a genome-wide approach, we mapped the chondrodysplasia locus to a 2-Mb region on canine chromosome 17 in nine affected and nine healthy Elkhounds (praw = 7.42×10−6, pgenome-wide = 0.013). The associated locus contained a promising candidate gene, cartilage specific integrin alpha 10 (ITGA10), and mutation screening of its 30 exons revealed a nonsense mutation in exon 16 (c.2083C>T; p.Arg695*) that segregated fully with the disease in both breeds (p = 2.5×10−23). A 24% mutation carrier frequency was indicated in NEs and an 8% frequency in KBDs. The ITGA10 gene product, integrin receptor α10-subunit combines into a collagen-binding α10β1 integrin receptor, which is expressed in cartilage chondrocytes and mediates chondrocyte-matrix interactions during endochondral ossification. As a consequence of the nonsense mutation, the α10-protein was not detected in the affected cartilage tissue. The canine phenotype highlights the importance of the α10β1 integrin in bone growth, and the large animal model could be utilized to further delineate its specific functions. Finally, this study revealed a candidate gene for human chondrodysplasias and enabled the development of a genetic test for breeding purposes to eradicate the disease from the two dog breeds.
Collapse
|
14
|
Sotoca AM, Weber M, van Zoelen EJJ. Gene Expression Regulation underlying Osteo-, Adipo-, and Chondro-Genic Lineage Commitment of Human Mesenchymal Stem Cells. Bioinformatics 2013. [DOI: 10.4018/978-1-4666-3604-0.ch089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human mesenchymal stem cells have a high potential in regenerative medicine. They can be isolated from a variety of adult tissues, including bone marrow, and can be differentiated into multiple cell types of the mesodermal lineage, including adipocytes, osteocytes, and chondrocytes. Stem cell differentiation is controlled by a process of interacting lineage-specific and multipotent genes. In this chapter, the authors use full genome microarrays to explore gene expression profiles in the process of Osteo-, Adipo-, and Chondro-Genic lineage commitment of human mesenchymal stem cells.
Collapse
|
15
|
Abstract
Mutations that exaggerate signalling of the receptor tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) give rise to achondroplasia, the most common form of dwarfism in humans. Here we review the clinical features, genetic aspects and molecular pathogenesis of achondroplasia and examine several therapeutic strategies designed to target the mutant receptor or its signalling pathways, including the use of kinase inhibitors, blocking antibodies, physiologic antagonists, RNAi and chaperone inhibitors. We conclude by discussing the challenges of treating growth plate disorders in children.
Collapse
|
16
|
Jonquoy A, Mugniery E, Benoist-Lasselin C, Kaci N, Le Corre L, Barbault F, Girard AL, Le Merrer Y, Busca P, Schibler L, Munnich A, Legeai-Mallet L. A novel tyrosine kinase inhibitor restores chondrocyte differentiation and promotes bone growth in a gain-of-function Fgfr3 mouse model. Hum Mol Genet 2011; 21:841-51. [PMID: 22072392 DOI: 10.1093/hmg/ddr514] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Activating germline fibroblast growth factor receptor 3 (FGFR3) mutations cause achondroplasia (ACH), the most common form of human dwarfism and a spectrum of skeletal dysplasias. FGFR3 is a tyrosine kinase receptor and constitutive FGFR3 activation impairs endochondral ossification and triggers severe disorganization of the cartilage with shortening of long bones. To decipher the role of FGFR3 in endochondral ossification, we analyzed the impact of a novel tyrosine kinase inhibitor (TKI), A31, on both human and mouse mutant FGFR3-expressing cells and on the skeleton of Fgfr3(Y367C/+) dwarf mice. We found that A31 inhibited constitutive FGFR3 phosphorylation and restored the size of embryonic dwarf femurs using an ex vivo culture system. The increase in length of the treated mutant femurs was 2.6 times more than for the wild-type. Premature cell cycle exit and defective chondrocyte differentiation were observed in the Fgfr3(Y367C/+) growth plate. A31 restored normal expression of cell cycle regulators (proliferating cell nuclear antigen, KI67, cyclin D1 and p57) and allowed pre-hypertrophic chondrocytes to properly differentiate into hypertrophic chondocytes. Our data reveal a specific role for FGFR3 in the cell cycle and chondrocyte differentiation and support the development of TKIs for the treatment of FGFR3-related chondrodysplasias.
Collapse
Affiliation(s)
- Aurélie Jonquoy
- INSERM U781-Université Paris Descartes-Hôpital Necker-Enfants Malades, Paris 75015, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mackie EJ, Tatarczuch L, Mirams M. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol 2011; 211:109-21. [PMID: 21642379 DOI: 10.1530/joe-11-0048] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Endochondral ossification is the process that results in both the replacement of the embryonic cartilaginous skeleton during organogenesis and the growth of long bones until adult height is achieved. Chondrocytes play a central role in this process, contributing to longitudinal growth through a combination of proliferation, extracellular matrix (ECM) secretion and hypertrophy. Terminally differentiated hypertrophic chondrocytes then die, allowing the invasion of a mixture of cells that collectively replace the cartilage tissue with bone tissue. The behaviour of growth plate chondrocytes is tightly regulated at all stages of endochondral ossification by a complex network of interactions between circulating hormones (including GH and thyroid hormone), locally produced growth factors (including Indian hedgehog, WNTs, bone morphogenetic proteins and fibroblast growth factors) and the components of the ECM secreted by the chondrocytes (including collagens, proteoglycans, thrombospondins and matrilins). In turn, chondrocytes secrete factors that regulate the behaviour of the invading bone cells, including vascular endothelial growth factor and receptor activator of NFκB ligand. This review discusses how the growth plate chondrocyte contributes to endochondral ossification, with some emphasis on recent advances.
Collapse
Affiliation(s)
- E J Mackie
- School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|