1
|
Lungu CN, Creteanu A, Mehedinti MC. Endovascular Drug Delivery. Life (Basel) 2024; 14:451. [PMID: 38672722 PMCID: PMC11051410 DOI: 10.3390/life14040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Drug-eluting stents (DES) and balloons revolutionize atherosclerosis treatment by targeting hyperplastic tissue responses through effective local drug delivery strategies. This review examines approved and emerging endovascular devices, discussing drug release mechanisms and their impacts on arterial drug distribution. It emphasizes the crucial role of drug delivery in modern cardiovascular care and highlights how device technologies influence vascular behavior based on lesion morphology. The future holds promise for lesion-specific treatments, particularly in the superficial femoral artery, with recent CE-marked devices showing encouraging results. Exciting strategies and new patents focus on local drug delivery to prevent restenosis, shaping the future of interventional outcomes. In summary, as we navigate the ever-evolving landscape of cardiovascular intervention, it becomes increasingly evident that the future lies in tailoring treatments to the specific characteristics of each lesion. By leveraging cutting-edge technologies and harnessing the potential of localized drug delivery, we stand poised to usher in a new era of precision medicine in vascular intervention.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| | - Andreea Creteanu
- Department of Pharmaceutical Technology, University of Medicine and Pharmacy Grigore T Popa, 700115 Iași, Romania
| | - Mihaela C. Mehedinti
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania;
| |
Collapse
|
2
|
Shazly T, Torres WM, Secemsky EA, Chitalia VC, Jaffer FA, Kolachalama VB. Understudied factors in drug-coated balloon design and evaluation: A biophysical perspective. Bioeng Transl Med 2023; 8:e10370. [PMID: 36684110 PMCID: PMC9842065 DOI: 10.1002/btm2.10370] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/28/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Drug-coated balloon (DCB) percutaneous interventional therapy allows for durable reopening of the narrowed lumen via physical tissue expansion and local anti-restenosis drug delivery, providing an alternative to traditional uncoated balloons or a permanent indwelling implant such as a conventional metallic drug-eluting stent. While DCB-based treatment of peripheral arterial disease (PAD) has been incorporated into clinical guidelines, DCB use has been recently curtailed due to reports that showed evidence of increased mortality risk in patients treated with paclitaxel (PTX)-coated balloons. Given the United States Food and Drug Administration's 2019 consequent warning regarding PTX-eluting DCBs and the subsequent marked reduction in clinical DCB use, there is now a critical need to better understand the compositional and mechanical factors underlying DCB efficacy and safety. Most work to date on DCB refinement has focused on designing both the enabling balloon catheter and alternate coatings composed of various drugs and excipients, followed by device evaluation in preclinical and clinical studies. We contend that improvement in DCB performance will require a better understanding of the biophysical factors operative during and following balloon deployment, and moreover that the elaboration and demonstrated control of these factors are needed to address current concerns with DCB use. This article provides a perspective on the biophysical interactions that govern DCB performance and offers new design strategies for the development of next-generation DCB devices.
Collapse
Affiliation(s)
- Tarek Shazly
- College of Engineering & ComputingUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - William M. Torres
- College of Engineering & ComputingUniversity of South CarolinaColumbiaSouth CarolinaUSA
- Exponent Inc.PhiladelphiaPennsylvaniaUSA
| | - Eric A. Secemsky
- Smith Center for Outcomes Research in CardiologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Vipul C. Chitalia
- Department of Medicine, Boston University School of MedicineBoston Veterans Affairs Healthcare SystemBostonMassachusettsUSA
| | - Farouc A. Jaffer
- Cardiovascular Research Center and Cardiology DivisionMassachusetts General HospitalBostonMassachusettsUSA
| | - Vijaya B. Kolachalama
- Department of Medicine, Boston University School of Medicine; Department of Computer Science and Faculty of Computing & Data SciencesBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
3
|
McQueen A, Escuer J, Schmidt AF, Aggarwal A, Kennedy S, McCormick C, Oldroyd K, McGinty S. An intricate interplay between stent drug dose and release rate dictates arterial restenosis. J Control Release 2022; 349:992-1008. [PMID: 35921913 DOI: 10.1016/j.jconrel.2022.07.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Since the introduction of percutaneous coronary intervention (PCI) for the treatment of obstructive coronary artery disease (CAD), patient outcomes have progressively improved. Drug eluting stents (DES) that employ anti-proliferative drugs to limit excess tissue growth following stent deployment have proved revolutionary. However, restenosis and a need for repeat revascularisation still occurs after DES use. Over the last few years, computational models have emerged that detail restenosis following the deployment of a bare metal stent (BMS), focusing primarily on contributions from mechanics and fluid dynamics. However, none of the existing models adequately account for spatiotemporal delivery of drug and the influence of this on the cellular processes that drive restenosis. In an attempt to fill this void, a novel continuum restenosis model coupled with spatiotemporal drug delivery is presented. Our results indicate that the severity and time-course of restenosis is critically dependent on the drug delivery strategy. Specifically, we uncover an intricate interplay between initial drug loading, drug release rate and restenosis, indicating that it is not sufficient to simply ramp-up the drug dose or prolong the time course of drug release to improve stent efficacy. Our model also shows that the level of stent over-expansion and stent design features, such as inter-strut spacing and strut thickness, influence restenosis development, in agreement with trends observed in experimental and clinical studies. Moreover, other critical aspects of the model which dictate restenosis, including the drug binding site density are investigated, where comparisons are made between approaches which assume this to be either constant or proportional to the number of smooth muscle cells (SMCs). Taken together, our results highlight the necessity of incorporating these aspects of drug delivery in the pursuit of optimal DES design.
Collapse
Affiliation(s)
- Alistair McQueen
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Javier Escuer
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | | | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, Division of Infrastructure and Environment, University of Glasgow, Glasgow, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Keith Oldroyd
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK; Glasgow Computational Engineering Centre, Division of Infrastructure and Environment, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
SARIFUDDIN, ALSEMIRY REIMAD, MANDAL PRASHANTAKUMAR. EFFECTS OF COATING PROPERTIES ON CONTROLLED DELIVERY FROM AN EMBEDDED DRUG-ELUTING STENT: A SIMULATION STUDY. J BIOL SYST 2021. [DOI: 10.1142/s0218339021500145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present investigation deals with the effects of biodegradable, biodurable and polymer-free coating of a stent on the release mechanism of the drug in a porous medium. The Brinkman equations for the interstitial fluid, the unsteady convection-diffusion-reaction equation for the transport of free drug in the tissue and the unsteady reaction equations for the bound as well as the internalized drug have been considered. In the coating, the transport of drug has been modeled as a diffusion process. Effects of different percentages of the embedment, convection and various coating properties of the stent on the transport of free drug, its retention and the internalization of the bound drug have been studied. Immersed Boundary Method (IBM) in the staggered grid formulation (IBM-MAC) has been used to tackle numerically the system of nonlinear governing equations. Simulated results predict the fastest release of drug from a biodegradable coating, but the averaged concentrations of all drug forms do reach a quasi-steady state in case of a biodurable coating irrespective of the degrees of embedment. Moreover, for all embedment levels of the stent, a biodegradable coating is superior to that of biodurable and polymer-free coating in the presence/absence of convection for larger times, but this superiority is lost for smaller times. Unlike biodurable coating, it is also predicted that the more the embedment level does not necessarily imply the more the effectiveness of delivery for biodegradable and polymer-free coatings of a stent.
Collapse
Affiliation(s)
- SARIFUDDIN
- Department of Mathematics, Berhampore College, P.O.-Berhampore, Dist.-Murshidabad, WB 742101, India
| | - REIMA D. ALSEMIRY
- Department of Mathematics, Faculty of Science, Taibah University, P.O. Box 89, Yanbu 41911, Saudi Arabia
- Department of Mathematical Sciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | | |
Collapse
|
5
|
Sarifuddin, Roy S, Mandal PK. Computational model of stent-based delivery from a half-embedded two-layered coating. Comput Methods Biomech Biomed Engin 2020; 23:815-831. [PMID: 32588648 DOI: 10.1080/10255842.2020.1767775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An attempt is made in the present investigation to develop a computational model for the purpose of studying the effect of interstitial flow in the porous media on the distribution of drug eluted from a half-embedded drug-eluting stent and its retention in the presence of two-layered coating of the stent. The transport of free drug inside the coatings is considered as an unsteady diffusion process while that in the tissue as an unsteady convection-diffusion-reaction process. The bound drug is governed by an unsteady reaction process only. Immersed boundary method (IBM) in the staggered grid formulation, popularly known as marker and cell (MAC) method, has been leveraged to tackle numerically the governing equations. This model highlights the benefits of consideration of two-layered coating and does predict underlying mechanism for better efficacy by tweaking the kinetics parameters. Comparisons are also made with the results available for stent-based delivery.
Collapse
Affiliation(s)
- Sarifuddin
- Department of Mathematics, Berhampore College, Berhampore, West Bengal, India
| | - Somnath Roy
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
| | | |
Collapse
|
6
|
Flow-Mediated Drug Transport from Drug-Eluting Stents is Negligible: Numerical and In-vitro Investigations. Ann Biomed Eng 2018; 47:878-890. [PMID: 30552528 DOI: 10.1007/s10439-018-02176-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
|
7
|
Saha R. A Computational Approach for Stent Elution Rate Determined Specific Drug Binding and Receptor-mediated Effects in Arterial Tissue. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2018; 3:105-118. [DOI: 10.14218/jerp.2018.00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Saha R, Mandal PK. Modelling Time-dependent Release Kinetics in Stent-based Delivery. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2018; 3:61-70. [DOI: 10.14218/jerp.2018.00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Mandal AP, Mandal PK. Distribution and retention of drug through an idealised atherosclerotic plaque eluted from a half-embedded stent. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40435-017-0372-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Mandal AP, Mandal PK. Computational Modelling of Three-phase Stent-based Delivery. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2017; 2:31-40. [DOI: 10.14218/jerp.2017.00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Computational Model of Drug-Coated Balloon Delivery in a Patient-Specific Arterial Vessel with Heterogeneous Tissue Composition. Cardiovasc Eng Technol 2016; 7:406-419. [PMID: 27443840 DOI: 10.1007/s13239-016-0273-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/06/2016] [Indexed: 01/23/2023]
Abstract
Balloon angioplasty followed by local delivery of antiproliferative drugs to target tissue is increasingly being considered for the treatment of obstructive arterial disease, and yet there is much to appreciate regarding pharmacokinetics in arteries of non-uniform disease. We developed a computational model capable of simulating drug-coated balloon delivery to arteries of heterogeneous tissue composition comprising healthy tissue, as well as regions of fibrous, fibro-fatty, calcified and necrotic core lesions. Image processing using an unsupervised clustering technique was used to reconstruct an arterial geometry from a single, patient-specific color image obtained from intravascular ultrasound-derived virtual histology. Transport of free drug was modeled using a time-dependent reaction-diffusion model and the bound, immobilized drug using the time-dependent reaction equation. The governing equations representing the transport of free as well as bound drug along with a set of initial settings and boundary conditions were solved numerically using an explicit finite difference scheme that satisfied the Courant-Friedrichs-Lewy stability criterion. Our results support previous findings related to the transport and binding of drug in arteries where tissue retention is strongly dependent on local pharmacologic properties. Additionally, modeling results indicate that non-uniform disease composition leads to heterogeneous arterial drug distribution patterns, although further validation using animal studies is required to fully appreciate pharmacokinetics in disease-laden arteries.
Collapse
|
12
|
Drug deposition in coronary arteries with overlapping drug-eluting stents. J Control Release 2016; 238:1-9. [PMID: 27432751 DOI: 10.1016/j.jconrel.2016.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/20/2023]
Abstract
Drug-eluting stents are accepted as mainstream endovascular therapy, yet concerns for their safety may be under-appreciated. While failure from restenosis has dropped to below 5%, the risk of stent thrombosis and associated mortality remain relatively high. Further optimization of drug release is required to minimize thrombosis risk while maintaining therapeutic dose. The complex three-dimensional geometry of deployed stents together with the combination of diffusive and advective drug transport render an intuitive understanding of the situation exceedingly difficult. In situations such as this, computational modeling has proven essential, helping define the limits of efficacy, determine the mode and mechanism of drug release, and identify alternatives to avoid toxicity. A particularly challenging conformation is encountered in coronary arteries with overlapping stents. To study hemodynamics and drug deposition in such vessels we combined high-resolution, multi-scale ex vivo computed tomography with a flow and mass transfer computational model. This approach ensures high geometric fidelity and precise, simultaneous calculation of blood flow velocity, shear stress and drug distribution. Our calculations show that drug uptake by the arterial tissue is dependent both on the patterns of flow disruption near the wall, as well as on the relative positioning of drug-eluting struts. Overlapping stent struts lead to localized peaks of drug concentration that may increase the risk of thrombosis. Such peaks could be avoided by anisotropic stent structure or asymmetric drug release designed to yield homogeneous drug distribution along the coronary artery and, at the least, suggest that these issues need to remain in the forefront of consideration in clinical practice.
Collapse
|
13
|
Tzafriri AR, Edelman ER. Endovascular Drug Delivery and Drug Elution Systems: First Principles. Interv Cardiol Clin 2016; 5:307-320. [PMID: 28582029 DOI: 10.1016/j.iccl.2016.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endovascular drug delivery continues to revolutionize the treatment of atherosclerosis in coronary and peripheral vasculature. The key has been to identify biologic agents that can counter the hyperplastic tissue responses to device expansion/implantation and to develop effective local delivery strategies that can maintain efficacious drug levels across the artery wall over the course of device effects. This article reviews the evolution of endovascular drug delivery technology, explains the mechanisms they use for drug release, and provides a quantitative mechanistic framework for relating drug release mode to arterial drug distribution and effect.
Collapse
Affiliation(s)
- Abraham Rami Tzafriri
- Department of Applied Sciences, CBSET, Lexington, MA, USA; IMES, MIT, 77 Massachusetts Avenue, Building E25-438, Cambridge, MA 02139, USA.
| | - Elazer Reuven Edelman
- IMES, MIT, 77 Massachusetts Avenue, Building E25-438, Cambridge, MA 02139, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
14
|
Arokiaraj MC, De Santis G, De Beule M, Palacios IF. A Novel Tram Stent Method in the Treatment of Coronary Bifurcation Lesions - Finite Element Study. PLoS One 2016; 11:e0149838. [PMID: 26937643 PMCID: PMC4777498 DOI: 10.1371/journal.pone.0149838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 02/06/2016] [Indexed: 12/27/2022] Open
Abstract
A novel stent was designed for the treatment of coronary bifurcation lesion, and it was investigated for its performance by finite element analysis. This study was performed in search of a novel method of treatment of bifurcation lesion with provisional stenting. A bifurcation model was created with the proximal vessel of 3.2 mm diameter, and the distal vessel after the side branch (2.3 mm) was 2.7 mm. A novel stent was designed with connection links that had a profile of a tram. Laser cutting and shape setting of the stent was performed, and thereafter it was crimped and deployed over a balloon. The contact pressure, stresses on the arterial wall, stresses on the stent, the maximal principal log strain of the main artery and the side-branch were studied. The study was performed in Abaqus, Simulia. The stresses on the main branch and the distal branch were minimally increased after deployment of this novel stent. The side branch was preserved, and the stresses on the side branch were lesser; and at the confluence of bifurcation on either side of the side branch origin the von-Mises stress was marginally increased. The stresses and strain at the bifurcation were significantly lesser than the stresses and strain of the currently existing techniques used in the treatment of bifurcation lesions though the study was primarily focused only on the utility of the new technology. There is a potential for a novel Tram-stent method in the treatment of coronary bifurcation lesions.
Collapse
Affiliation(s)
- Mark C. Arokiaraj
- Cardiology, Pondicherry Institute of Medical Sciences, Pondicherry, India
- * E-mail:
| | | | | | - Igor F. Palacios
- Cardiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
15
|
Hossain SS, Zhang Y, Fu X, Brunner G, Singh J, Hughes TJR, Shah D, Decuzzi P. Magnetic resonance imaging-based computational modelling of blood flow and nanomedicine deposition in patients with peripheral arterial disease. J R Soc Interface 2016; 12:rsif.2015.0001. [PMID: 25878124 DOI: 10.1098/rsif.2015.0001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peripheral arterial disease (PAD) is generally attributed to the progressive vascular accumulation of lipoproteins and circulating monocytes in the vessel walls leading to the formation of atherosclerotic plaques. This is known to be regulated by the local vascular geometry, haemodynamics and biophysical conditions. Here, an isogeometric analysis framework is proposed to analyse the blood flow and vascular deposition of circulating nanoparticles (NPs) into the superficial femoral artery (SFA) of a PAD patient. The local geometry of the blood vessel and the haemodynamic conditions are derived from magnetic resonance imaging (MRI), performed at baseline and at 24 months post intervention. A dramatic improvement in blood flow dynamics is observed post intervention. A 500% increase in peak flow rate is measured in vivo as a consequence of luminal enlargement. Furthermore, blood flow simulations reveal a 32% drop in the mean oscillatory shear index, indicating reduced disturbed flow post intervention. The same patient information (vascular geometry and blood flow) is used to predict in silico in a simulation of the vascular deposition of systemically injected nanomedicines. NPs, targeted to inflammatory vascular molecules including VCAM-1, E-selectin and ICAM-1, are predicted to preferentially accumulate near the stenosis in the baseline configuration, with VCAM-1 providing the highest accumulation (approx. 1.33 and 1.50 times higher concentration than that of ICAM-1 and E-selectin, respectively). Such selective deposition of NPs within the stenosis could be effectively used for the detection and treatment of plaques forming in the SFA. The presented MRI-based computational protocol can be used to analyse data from clinical trials to explore possible correlations between haemodynamics and disease progression in PAD patients, and potentially predict disease occurrence as well as the outcome of an intervention.
Collapse
Affiliation(s)
- Shaolie S Hossain
- Department of Translational Imaging, Houston Methodist Hospital Research Institute, Houston, TX, USA Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - Yongjie Zhang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaoyi Fu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Gerd Brunner
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital Research Institute, Houston, TX, USA Division of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jaykrishna Singh
- Department of Translational Imaging, Houston Methodist Hospital Research Institute, Houston, TX, USA Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - Thomas J R Hughes
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Dipan Shah
- Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - Paolo Decuzzi
- Department of Translational Imaging, Houston Methodist Hospital Research Institute, Houston, TX, USA Department of Nanomedicine, Houston Methodist Hospital Research Institute, Houston, TX, USA
| |
Collapse
|
16
|
O’Brien CC, Kolandaivelu K, Brown J, Lopes AC, Kunio M, Kolachalama VB, Edelman ER. Constraining OCT with Knowledge of Device Design Enables High Accuracy Hemodynamic Assessment of Endovascular Implants. PLoS One 2016; 11:e0149178. [PMID: 26906566 PMCID: PMC4764338 DOI: 10.1371/journal.pone.0149178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/27/2015] [Indexed: 11/21/2022] Open
Abstract
Background Stacking cross-sectional intravascular images permits three-dimensional rendering of endovascular implants, yet introduces between-frame uncertainties that limit characterization of device placement and the hemodynamic microenvironment. In a porcine coronary stent model, we demonstrate enhanced OCT reconstruction with preservation of between-frame features through fusion with angiography and a priori knowledge of stent design. Methods and Results Strut positions were extracted from sequential OCT frames. Reconstruction with standard interpolation generated discontinuous stent structures. By computationally constraining interpolation to known stent skeletons fitted to 3D ‘clouds’ of OCT-Angio-derived struts, implant anatomy was resolved, accurately rendering features from implant diameter and curvature (n = 1 vessels, r2 = 0.91, 0.90, respectively) to individual strut-wall configurations (average displacement error ~15 μm). This framework facilitated hemodynamic simulation (n = 1 vessel), showing the critical importance of accurate anatomic rendering in characterizing both quantitative and basic qualitative flow patterns. Discontinuities with standard approaches systematically introduced noise and bias, poorly capturing regional flow effects. In contrast, the enhanced method preserved multi-scale (local strut to regional stent) flow interactions, demonstrating the impact of regional contexts in defining the hemodynamic consequence of local deployment errors. Conclusion Fusion of planar angiography and knowledge of device design permits enhanced OCT image analysis of in situ tissue-device interactions. Given emerging interests in simulation-derived hemodynamic assessment as surrogate measures of biological risk, such fused modalities offer a new window into patient-specific implant environments.
Collapse
Affiliation(s)
- Caroline C. O’Brien
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| | - Kumaran Kolandaivelu
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Jonathan Brown
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Augusto C. Lopes
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mie Kunio
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Vijaya B. Kolachalama
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA, United States of America
| | - Elazer R. Edelman
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
17
|
Influence of proximal drug eluting stent (DES) on distal bare metal stent (BMS) in multi-stent implantation strategies in coronary arteries. Med Eng Phys 2015; 37:840-4. [PMID: 26149391 DOI: 10.1016/j.medengphy.2015.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/23/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the drug distribution in arteries treated with DES-BMS stenting strategy and to analyze the influence of proximal DES on distal segments of BMS. A straight artery model (Straight Model) and a branching artery model (Branching Model) were constructed in this study. In each model, the DES was implanted at the proximal position and the BMS was implanted distally. Hemodynamic environments, drug delivery and distribution features were simulated and analyzed in each model. The results showed that blood flow would contribute to non-uniform drug distribution in arteries. In the Straight Model the proximal DES would cause drug concentration in BMS segments. While in the Branching Model the DES in the main artery has slight influence on the BMS segments in the branch artery. In conclusion, due to the blood flow washing effect the uniformly released drug from DES would distribute focally and distally. The proximal DES would have greater influence on the distal BMS in straight artery than that in branching artery. This preliminary study would provide good reference for atherosclerosis treatment, especially for some complex cases, like coronary branching stenting.
Collapse
|
18
|
Vijayaratnam PRS, O’Brien CC, Reizes JA, Barber TJ, Edelman ER. The Impact of Blood Rheology on Drug Transport in Stented Arteries: Steady Simulations. PLoS One 2015; 10:e0128178. [PMID: 26066041 PMCID: PMC4466567 DOI: 10.1371/journal.pone.0128178] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/24/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND METHODS It is important to ensure that blood flow is modelled accurately in numerical studies of arteries featuring drug-eluting stents due to the significant proportion of drug transport from the stent into the arterial wall which is flow-mediated. Modelling blood is complicated, however, by variations in blood rheological behaviour between individuals, blood's complex near-wall behaviour, and the large number of rheological models which have been proposed. In this study, a series of steady-state computational fluid dynamics analyses were performed in which the traditional Newtonian model was compared against a range of non-Newtonian models. The impact of these rheological models was elucidated through comparisons of haemodynamic flow details and drug transport behaviour at various blood flow rates. RESULTS Recirculation lengths were found to reduce by as much as 24% with the inclusion of a non-Newtonian rheological model. Another model possessing the viscosity and density of blood plasma was also implemented to account for near-wall red blood cell losses and yielded recirculation length increases of up to 59%. However, the deviation from the average drug concentration in the tissue obtained with the Newtonian model was observed to be less than 5% in all cases except one. Despite the small sensitivity to the effects of viscosity variations, the spatial distribution of drug matter in the tissue was found to be significantly affected by rheological model selection. CONCLUSIONS/SIGNIFICANCE These results may be used to guide blood rheological model selection in future numerical studies. The clinical significance of these results is that they convey that the magnitude of drug uptake in stent-based drug delivery is relatively insensitive to individual variations in blood rheology. Furthermore, the finding that flow separation regions formed downstream of the stent struts diminish drug uptake may be of interest to device designers.
Collapse
Affiliation(s)
- Pujith R. S. Vijayaratnam
- School of Mechanical and Manufacturing Engineering, the University of New South Wales, Sydney, New South Wales, Australia
| | - Caroline C. O’Brien
- Harvard-MIT Biomedical Engineering Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John A. Reizes
- School of Mechanical and Manufacturing Engineering, the University of New South Wales, Sydney, New South Wales, Australia
| | - Tracie J. Barber
- School of Mechanical and Manufacturing Engineering, the University of New South Wales, Sydney, New South Wales, Australia
| | - Elazer R. Edelman
- Harvard-MIT Biomedical Engineering Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
19
|
Migliavacca F, Chiastra C, Chatzizisis YS, Dubini G. Virtual bench testing to study coronary bifurcation stenting. EUROINTERVENTION 2015; 11 Suppl V:V31-4. [DOI: 10.4244/eijv11sva7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Kolandaivelu K, O'Brien CC, Shazly T, Edelman ER, Kolachalama VB. Enhancing physiologic simulations using supervised learning on coarse mesh solutions. J R Soc Interface 2015; 12:20141073. [PMID: 25652458 PMCID: PMC4345474 DOI: 10.1098/rsif.2014.1073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/15/2015] [Indexed: 11/29/2022] Open
Abstract
Computational modelling of physical and biochemical processes has emerged as a means of evaluating medical devices, offering new insights that explain current performance, inform future designs and even enable personalized use. Yet resource limitations force one to compromise with reduced order computational models and idealized assumptions that yield either qualitative descriptions or approximate, quantitative solutions to problems of interest. Considering endovascular drug delivery as an exemplary scenario, we used a supervised machine learning framework to process data generated from low fidelity coarse meshes and predict high fidelity solutions on refined mesh configurations. We considered two models simulating drug delivery to the arterial wall: (i) two-dimensional drug-coated balloons and (ii) three-dimensional drug-eluting stents. Simulations were performed on computational mesh configurations of increasing density. Supervised learners based on Gaussian process modelling were constructed from combinations of coarse mesh setting solutions of drug concentrations and nearest neighbourhood distance information as inputs, and higher fidelity mesh solutions as outputs. These learners were then used as computationally inexpensive surrogates to extend predictions using low fidelity information to higher levels of mesh refinement. The cross-validated, supervised learner-based predictions improved fidelity as compared with computational simulations performed at coarse level meshes--a result consistent across all outputs and computational models considered. Supervised learning on coarse mesh solutions can augment traditional physics-based modelling of complex physiologic phenomena. By obtaining efficient solutions at a fraction of the computational cost, this framework has the potential to transform how modelling approaches can be applied in the evaluation of medical technologies and their real-time administration in an increasingly personalized fashion.
Collapse
Affiliation(s)
- Kumaran Kolandaivelu
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Caroline C O'Brien
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tarek Shazly
- College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Vijaya B Kolachalama
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Effects of endothelium, stent design and deployment on the nitric oxide transport in stented artery: a potential role in stent restenosis and thrombosis. Med Biol Eng Comput 2015; 53:427-39. [DOI: 10.1007/s11517-015-1250-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
22
|
Numerical modelling of the physical factors that affect mass transport in the vasculature at early time periods. Med Eng Phys 2014; 36:308-17. [PMID: 24462324 DOI: 10.1016/j.medengphy.2013.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/11/2013] [Accepted: 11/20/2013] [Indexed: 11/21/2022]
Abstract
Coronary artery disease results in blockages or narrowing of the artery lumen. Drug eluting stents were developed to replace bare metal stents in an effort to combat re-blocking of the lumen. A key element in determining the therapeutic success of a drug eluting stent is an in-depth understanding of the physical factors that affect mass transport of the drug into the arterial wall, over early time periods. The numerical models developed within this study focus on assessing the influence of a host of physical factors that either facilitate or impede therapeutic drug delivery into the arterial wall from the unit cell of an idealised stent. This study demonstrates that model reduction strategies to 2D and 1D can still adequately represent a 3D curved arterial wall and strut polymer coating, respectively, using an idealistic stent geometry. It was shown that the level of strut compression can have a significant impact on therapeutic drug delivery in the arterial wall.
Collapse
|
23
|
Denny WJ, Walsh MT. Numerical modelling of mass transport in an arterial wall with anisotropic transport properties. J Biomech 2014; 47:168-77. [DOI: 10.1016/j.jbiomech.2013.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/28/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
|
24
|
O'Connell BM, Cunnane EM, Denny WJ, Carroll GT, Walsh MT. Improving smooth muscle cell exposure to drugs from drug-eluting stents at early time points: a variable compression approach. Biomech Model Mechanobiol 2013; 13:771-81. [PMID: 24101254 DOI: 10.1007/s10237-013-0533-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 09/22/2013] [Indexed: 11/29/2022]
Abstract
The emergence of drug-eluting stents (DES) as a viable replacement for bare metal stenting has led to a significant decrease in the incidence of clinical restenosis. This is due to the transport of anti-restenotic drugs from within the polymer coating of a DES into the artery wall which arrests the cell cycle before restenosis can occur. The efficacy of DES is still under close scrutiny in the medical field as many issues regarding the effectiveness of DES drug transport in vivo still exist. One such issue, that has received less attention, is the limiting effect that stent strut compression has on the transport of drug species in the artery wall. Once the artery wall is compressed, the stents ability to transfer drug species into the arterial wall can be reduced. This leads to a reduction in the spatial therapeutic transfer of drug species to binding sites within the arterial wall. This paper investigates the concept of idealised variable compression as a means of demonstrating how such a stent design approach could improve the spatial delivery of drug species in the arterial wall. The study focused on assessing how the trends in concentration levels changed as a result of artery wall compression. Five idealised stent designs were created with a combination of thick struts that provide the necessary compression to restore luminal patency and thin uncompressive struts that improve the transport of drugs therein. By conducting numerical simulations of diffusive mass transport, this study found that the use of uncompressive struts results in a more uniform spatial distribution of drug species in the arterial wall.
Collapse
Affiliation(s)
- Barry M O'Connell
- Centre for Applied Biomedical Engineering (CABER), Department of Mechanical, Aeronautical and Biomedical Engineering and The Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | | | | | | | | |
Collapse
|
25
|
Keyes JT, Simon BR, Vande Geest JP. A finite element study on variations in mass transport in stented porcine coronary arteries based on location in the coronary arterial tree. J Biomech Eng 2013; 135:61008-11. [PMID: 23699720 DOI: 10.1115/1.4024137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/04/2013] [Indexed: 11/08/2022]
Abstract
Drug-eluting stents have a significant clinical advantage in late-stage restenosis due to the antiproliferative drug release. Understanding how drug transport occurs between coronary arterial locations can better help guide localized drug treatment options. Finite element models with properties from specific porcine coronary artery sections (left anterior descending (LAD), right (RCA); proximal, middle, distal regions) were created for stent deployment and drug delivery simulations. Stress, strain, pore fluid velocity, and drug concentrations were exported at different time points of simulation (0-180 days). Tests indicated that the highest stresses occurred in LAD sections. Higher-than-resting homeostatic levels of stress and strain existed at upwards of 3.0 mm away from the stented region, whereas concentration of species only reached 2.7 mm away from the stented region. Region-specific concentration showed 2.2 times higher concentrations in RCA artery sections at times corresponding to vascular remodeling (peak in the middle segment) compared to all other segments. These results suggest that wall transport can occur differently based on coronary artery location. Awareness of peak growth stimulators and where drug accumulation occurs in the vasculature can better help guide local drug delivery therapies.
Collapse
Affiliation(s)
- Joseph T Keyes
- Graduate Interdisciplinary Program in Biomedical Engineering, The University of Arizona,Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
26
|
Chiastra C, Morlacchi S, Gallo D, Morbiducci U, Cárdenes R, Larrabide I, Migliavacca F. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J R Soc Interface 2013; 10:20130193. [PMID: 23676893 DOI: 10.1098/rsif.2013.0193] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One of the relevant phenomenon associated with in-stent restenosis in coronary arteries is an altered haemodynamics in the stented region. Computational fluid dynamics (CFD) offers the possibility to investigate the haemodynamics at a level of detail not always accessible within experimental techniques. CFD can quantify and correlate the local haemodynamics structures which might lead to in-stent restenosis. The aim of this work is to study the fluid dynamics of realistic stented coronary artery models which replicate the complete clinical procedure of stent implantation. Two cases of pathologic left anterior descending coronary arteries with their bifurcations are reconstructed from computed tomography angiography and conventional coronary angiography images. Results of wall shear stress and relative residence time show that the wall regions more prone to the risk of restenosis are located next to stent struts, to the bifurcations and to the stent overlapping zone for both investigated cases. Considering a bulk flow analysis, helical flow structures are generated by the curvature of the zone upstream from the stent and by the bifurcation regions. Helical recirculating microstructures are also visible downstream from the stent struts. This study demonstrates the feasibility to virtually investigate the haemodynamics of patient-specific coronary bifurcation geometries.
Collapse
Affiliation(s)
- Claudio Chiastra
- Chemistry, Materials and Chemical Engineering Department, Politecnico di Milano, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kolachalama VB, Pacetti SD, Franses JW, Stankus JJ, Zhao HQ, Shazly T, Nikanorov A, Schwartz LB, Tzafriri AR, Edelman ER. Mechanisms of tissue uptake and retention in zotarolimus-coated balloon therapy. Circulation 2013; 127:2047-55. [PMID: 23584359 DOI: 10.1161/circulationaha.113.002051] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Drug-coated balloons are increasingly used for peripheral vascular disease, and, yet, mechanisms of tissue uptake and retention remain poorly characterized. Most systems to date have used paclitaxel, touting its propensity to associate with various excipients that can optimize its transfer and retention. We examined zotarolimus pharmacokinetics. METHODS AND RESULTS Animal studies, bench-top experiments, and computational modeling were integrated to quantify arterial distribution after zotarolimus-coated balloon use. Drug diffusivity and binding parameters for use in computational modeling were estimated from the kinetics of zotarolimus uptake into excised porcine femoral artery specimens immersed in radiolabeled drug solutions. Like paclitaxel, zotarolimus exhibited high partitioning into the arterial wall. Exposure of intimal tissue to drug revealed differential distribution patterns, with zotarolimus concentration decreasing with transmural depth as opposed to the multiple peaks displayed by paclitaxel. Drug release kinetics was measured by inflating zotarolimus-coated balloons in whole blood. In vivo drug uptake in swine arteries increased with inflation time but not with balloon size. Simulations coupling transmural diffusion and reversible binding to tissue proteins predicted arterial distribution that correlated with in vivo uptake. Diffusion governed drug distribution soon after balloon expansion, but binding determined drug retention. CONCLUSIONS A large bolus of zotarolimus releases during balloon inflation, some of which pervades the tissue, and a fraction of the remaining drug adheres to the tissue-lumen interface. As a result, the duration of delivery modulates tissue uptake where diffusion and reversible binding to tissue proteins determine drug transport and retention, respectively.
Collapse
|
28
|
Ferdous J, Kolachalama VB, Shazly T. Impact of polymer structure and composition on fully resorbable endovascular scaffold performance. Acta Biomater 2013; 9:6052-61. [PMID: 23261926 PMCID: PMC4104616 DOI: 10.1016/j.actbio.2012.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 12/02/2012] [Accepted: 12/07/2012] [Indexed: 11/24/2022]
Abstract
Fully erodible endovascular scaffolds are being increasingly considered for the treatment of obstructive arterial disease owing to their potential to mitigate long-term risks associated with permanent alternatives. While complete scaffold erosion facilitates vessel healing, generation and release of material degradation by-products from candidate materials such as poly-L-lactide (PLLA) may elicit local inflammatory responses that limit implant efficacy. We developed a computational framework to quantify how the compositional and structural parameters of PLLA-based fully erodible endovascular scaffolds affect degradation kinetics, erosion kinetics and the transient accumulation of material by-products within the arterial wall. Parametric studies reveal that, while some material properties have similar effects on these critical processes, others induce qualitatively opposing responses. For example, scaffold degradation is only mildly responsive to changes in either PLLA polydispersity or the initial degree of crystallinity, while the erosion kinetics is comparatively sensitive to crystallinity. Moreover, lactide doping can effectively tune both scaffold degradation and erosion, but a concomitant increase in local by-product accumulation raises concerns about implant safety. Optimized erodible endovascular scaffolds must precisely balance therapeutic function and biological response over the implant lifetime, where compositional and structural parameters will have differential effects on implant performance.
Collapse
Affiliation(s)
- Jahid Ferdous
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Vijaya B. Kolachalama
- Charles Stark Draper Laboratory, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tarek Shazly
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
- Department of Mechanical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
29
|
O'Brien CC, Kolachalama VB, Barber TJ, Simmons A, Edelman ER. Impact of flow pulsatility on arterial drug distribution in stent-based therapy. J Control Release 2013; 168:115-24. [PMID: 23541929 DOI: 10.1016/j.jconrel.2013.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/19/2013] [Indexed: 11/30/2022]
Abstract
Drug-eluting stents reside in a dynamic fluid environment where the extent to which drugs are distributed within the arterial wall is critically modulated by the blood flowing through the arterial lumen. Yet several factors associated with the pulsatile nature of blood flow and their impact on arterial drug deposition have not been fully investigated. We employed an integrated framework comprising bench-top and computational models to explore the factors governing the time-varying fluid dynamic environment within the vasculature and their effects on arterial drug distribution patterns. A custom-designed bench-top framework comprising a model of a single drug-eluting stent strut and a poly-vinyl alcohol-based hydrogel as a model tissue bed simulated fluid flow and drug transport under fully apposed strut settings. Bench-top experiments revealed a relative independence between drug distribution and the factors governing pulsatile flow and these findings were validated with the in silico model. Interestingly, computational models simulating suboptimal deployment settings revealed a complex interplay between arterial drug distribution, Womersley number and the extent of malapposition. In particular, for a stent strut offset from the wall, total drug deposition was sensitive to changes in the pulsatile flow environment, with this dependence increasing with greater wall displacement. Our results indicate that factors governing pulsatile luminal flow on arterial drug deposition should be carefully considered in conjunction with device deployment settings for better utilization of drug-eluting stent therapy.
Collapse
Affiliation(s)
- Caroline C O'Brien
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
| | | | | | | | | |
Collapse
|
30
|
Morlacchi S, Migliavacca F. Modeling stented coronary arteries: where we are, where to go. Ann Biomed Eng 2012; 41:1428-44. [PMID: 23090621 DOI: 10.1007/s10439-012-0681-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/16/2012] [Indexed: 01/09/2023]
Abstract
In the last two decades, numerical models have become well-recognized and widely adopted tools to investigate stenting procedures. Due to limited computational resources and modeling capabilities, early numerical studies only involved simplified cases and idealized stented arteries. Nowadays, increased computational power allows for numerical models to meet clinical needs and include more complex cases such as the implantation of multiple stents in bifurcations or curved vessels. Interesting progresses have been made in the numerical modeling of stenting procedures both from a structural and a fluid dynamics points of view. Moreover, in the drug eluting stents era, new insights on drug elution capabilities are becoming essential in the stent development. Lastly, image-based methods able to reconstruct realistic geometries from medical images have been proposed in the recent literature aiming to better describe the peculiar anatomical features of coronary vessels and increase the accuracy of the numerical models. In this light, this review provides a comprehensive analysis of the current state-of-the-art in this research area, discussing the main methodological advances and remarkable results drawn from a number of significant studies.
Collapse
Affiliation(s)
- Stefano Morlacchi
- Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy.
| | | |
Collapse
|
31
|
Cutrì E, Zunino P, Morlacchi S, Chiastra C, Migliavacca F. Drug delivery patterns for different stenting techniques in coronary bifurcations: a comparative computational study. Biomech Model Mechanobiol 2012; 12:657-69. [DOI: 10.1007/s10237-012-0432-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/14/2012] [Indexed: 11/29/2022]
|
32
|
Sgueglia GA, Chevalier B. Kissing Balloon Inflation in Percutaneous Coronary Interventions. JACC Cardiovasc Interv 2012; 5:803-11. [DOI: 10.1016/j.jcin.2012.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/08/2012] [Accepted: 06/07/2012] [Indexed: 02/07/2023]
|
33
|
Carlyle WC, McClain JB, Tzafriri AR, Bailey L, Zani BG, Markham PM, Stanley JRL, Edelman ER. Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug. J Control Release 2012; 162:561-7. [PMID: 22800575 DOI: 10.1016/j.jconrel.2012.07.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/07/2012] [Indexed: 11/16/2022]
Abstract
Current drug eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug delivery. A novel, absorbable-coating sirolimus-eluting stent (AC-SES) was evaluated for its capacity to deliver drug more evenly within the intimal area rather than concentrating drug around the stent struts and for its ability to match coating erosion with drug release. The coating consisted of absorbable poly-lactide-co-glycolic acid (PLGA) and crystalline sirolimus deposited by a dry-powder electrostatic process. The AC-SES demonstrated enhanced drug stability under simulated use conditions and consistent drug delivery balanced with coating erosion in a porcine coronary implant model. The initial drug burst was eliminated and drug release was sustained after implantation. The coating was absorbed within 90 days. Following implantation into porcine coronary arteries the AC-SES coating is distributed in the surrounding intimal tissue over the course of several weeks. Computational modeling of drug delivery characteristics demonstrates how distributed coating optimizes the load of drug immediately around each stent strut and extends drug delivery between stent struts. The result was a highly efficient arterial uptake of drug with superior performance to a clinical bare metal stent (BMS). Neointimal thickness (0.17±0.07 mm vs. 0.28±0.11 mm) and area percent stenosis (22±9% vs. 35±12%) were significantly reduced (p<0.05) by the AC-SES compared to the BMS 30 days after stent implantation in an overlap configuration in porcine coronary arteries. Inflammation was significantly reduced in the AC-SES compared to the BMS at both 30 and 90 days after implantation. Biocompatible, rapidly absorbable stent coatings enable the matching of drug release with coating erosion and provide for the controlled migration of coating material into tissue to reduce vicissitudes in drug tissue levels, optimizing efficacy and reducing potential toxicity.
Collapse
Affiliation(s)
- Wenda C Carlyle
- Micell Technologies, Inc., 801 Capitola Drive, Suite 1, Durham, NC 27713-4384 USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Martorell J, Santomá P, Molins JJ, García-Granada AA, Bea JA, Edelman ER, Balcells M. Engineered arterial models to correlate blood flow to tissue biological response. Ann N Y Acad Sci 2012; 1254:51-56. [PMID: 22548569 DOI: 10.1111/j.1749-6632.2012.06518.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reviews how biomedical engineers, in collaboration with physicians, biologists, chemists, physicists, and mathematicians, have developed models to explain how the impact of vascular interventions on blood flow predicts subsequent vascular repair. These models have become increasingly sophisticated and precise, propelling us toward optimization of cardiovascular therapeutics in general and personalizing treatments for patients with cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Martorell
- Department of Chemical Engineering, IQS, Universitat Ramon Llull, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol 2012; 59:1337-49. [PMID: 22480478 DOI: 10.1016/j.jacc.2011.10.903] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/13/2011] [Accepted: 10/27/2011] [Indexed: 10/28/2022]
Abstract
Restenosis and thrombosis are potentially fatal complications of coronary stenting with a recognized multifactorial etiology. The effect of documented risk factors, however, cannot explain the preponderance of certain lesion types, stent designs, and implantation configurations for the development of these complications. Local hemodynamic factors, low endothelial shear stress (ESS) in particular, are long known to critically affect the natural history of atherosclerosis. Increasing evidence now suggests that ESS may also contribute to the development of restenosis and thrombosis upon stenting of atherosclerotic plaques, in conjunction with well-appreciated risk factors. In this review, we present in vivo and mechanistic evidence associating ESS with the localization and progression of neointimal hyperplasia and in-stent clotting. Clinical studies have associated stent design features with the risk of restenosis. Importantly, computational simulations extend these observations by directly linking specific stent geometry and positioning characteristics with the post-stenting hemodynamic milieu and with the stent's thrombogenicity and pro-restenotic potential, thereby indicating ways to clinical translation. An enhanced understanding of the pathophysiologic role of ESS in restenosis and thrombosis might dictate hemodynamically favorable stent designs and deployment configurations to reduce the potential for late lumen loss and thrombotic obstruction. Recent methodologies for in vivo ESS profiling at a clinical level might allow for early identification of patients at high risk for the development of restenosis or thrombosis and might thereby guide individualized, risk-tailored treatment strategies to prevent devastating complications of endovascular interventions.
Collapse
Affiliation(s)
- Konstantinos C Koskinas
- 1st Cardiology Department, AHEPA University Hospital, Aristole University Medical School, Thessaloniki, Greece
| | | | | | | |
Collapse
|
36
|
Analysis of drug distribution from a simulated drug-eluting stent strut using an in vitro framework. Ann Biomed Eng 2012; 40:2687-96. [PMID: 22648579 DOI: 10.1007/s10439-012-0604-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
The mechanisms of delivery of anti-proliferative drug from a drug-eluting stent are defined by transport forces in the coating, the lumen, and the arterial wall. Dynamic asymmetries in the localized flow about stent struts have previously been shown to contribute to significant heterogeneity in the spatial distribution of drug in in silico three-compartmental models of stent based drug delivery. A novel bench-top experiment has been created to confirm this phenomena. The experiment simulates drug release from a single stent strut, and then allows visualization of drug uptake into both lumen and tissue domains using optical techniques. Results confirm the existence of inhomogeneous and asymmetric arterial drug distributions, with this distribution shown to be sensitive to the flow field surrounding the strut.
Collapse
|
37
|
Kniazeva T, Epshteyn AA, Hsiao JC, Kim ES, Kolachalama VB, Charest JL, Borenstein JT. Performance and scaling effects in a multilayer microfluidic extracorporeal lung oxygenation device. LAB ON A CHIP 2012; 12:1686-95. [PMID: 22418858 PMCID: PMC3320667 DOI: 10.1039/c2lc21156d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microfluidic fabrication technologies are emerging as viable platforms for extracorporeal lung assist devices and oxygenators for cardiac surgical support and critical care medicine, based in part on their ability to more closely mimic the architecture of the human vasculature than existing technologies. In comparison with current hollow fiber oxygenator technologies, microfluidic systems have more physiologically-representative blood flow paths, smaller cross section blood conduits and thinner gas transfer membranes. These features can enable smaller device sizes and a reduced blood volume in the oxygenator, enhanced gas transfer efficiencies, and may also reduce the tendency for clotting in the system. Several critical issues need to be addressed in order to advance this technology from its current state and implement it in an organ-scale device for clinical use. Here we report on the design, fabrication and characterization of multilayer microfluidic oxygenators, investigating scaling effects associated with fluid mechanical resistance, oxygen transfer efficiencies, and other parameters in multilayer devices. Important parameters such as the fluidic resistance of interconnects are shown to become more predominant as devices are scaled towards many layers, while other effects such as membrane distensibility become less significant. The present study also probes the relationship between blood channel depth and membrane thickness on oxygen transfer, as well as the rate of oxygen transfer on the number of layers in the device. These results contribute to our understanding of the complexity involved in designing three-dimensional microfluidic oxygenators for clinical applications.
Collapse
|
38
|
Morlacchi S, Chiastra C, Gastaldi D, Pennati G, Dubini G, Migliavacca F. Sequential Structural and Fluid Dynamic Numerical Simulations of a Stented Bifurcated Coronary Artery. J Biomech Eng 2011; 133:121010. [DOI: 10.1115/1.4005476] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite their success, stenting procedures are still associated to some clinical problems like sub-acute thrombosis and in-stent restenosis. Several clinical studies associate these phenomena to a combination of both structural and hemodynamic alterations caused by stent implantation. Recently, numerical models have been widely used in the literature to investigate stenting procedures but always from either a purely structural or fluid dynamic point of view. The aim of this work is the implementation of sequential structural and fluid dynamic numerical models to provide a better understanding of stenting procedures in coronary bifurcations. In particular, the realistic geometrical configurations obtained with structural simulations were used to create the fluid domains employed within transient fluid dynamic analyses. This sequential approach was applied to investigate the final kissing balloon (FKB) inflation during the provisional side branch technique. Mechanical stresses in the arterial wall and the stent as well as wall shear stresses along the arterial wall were examined before and after the FKB deployment. FKB provoked average mechanical stresses in the arterial wall almost 2.5 times higher with respect to those induced by inflation of the stent in the main branch only. Results also enlightened FKB benefits in terms of improved local blood flow pattern for the side branch access. As a drawback, the FKB generates a larger region of low wall shear stress. In particular, after FKB the percentage of area characterized by wall shear stresses lower than 0.5 Pa was 79.0%, while before the FKB it was 62.3%. For these reasons, a new tapered balloon dedicated to bifurcations was proposed. The inclusion of the modified balloon has reduced the mechanical stresses in the proximal arterial vessel to 40% and the low wall shear stress coverage area to 71.3%. In conclusion, these results show the relevance of the adopted sequential approach to study the wall mechanics and the hemodynamics created by stent deployment.
Collapse
Affiliation(s)
- Stefano Morlacchi
- Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, 20133 Milan, Italy; Department of Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, 20133 Milan, Italy; Department of Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Dario Gastaldi
- Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, 20133 Milan, Italy
| | - Giancarlo Pennati
- Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, 20133 Milan, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, 20133 Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
39
|
Papafaklis MI, Chatzizisis YS, Naka KK, Giannoglou GD, Michalis LK. Drug-eluting stent restenosis: effect of drug type, release kinetics, hemodynamics and coating strategy. Pharmacol Ther 2011; 134:43-53. [PMID: 22212618 DOI: 10.1016/j.pharmthera.2011.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 11/26/2022]
Abstract
Restenosis following stent implantation diminishes the procedure's efficacy influencing long-term clinical outcomes. Stent-based drug delivery emerged a decade ago as an effective means of reducing neointimal hyperplasia by providing localized pharmacotherapy during the acute phase of the stent-induced injury and the ensuing pathobiological mechanisms. However, drug-eluting stent (DES) restenosis may still occur especially when stents are used in complex anatomical and clinical scenarios. A DES consists of an intravascular metallic frame and carriers which allow controlled release of active pharmaceutical agents; all these components are critical in determining drug distribution locally and thus anti-restenotic efficacy. Furthermore, dynamic flow phenomena characterizing the vascular environment, and shear stress distribution, are greatly influenced by stent implantation and play a significant role in drug deposition and bioavailability within local vascular tissue. In this review, we discuss the performance of DES and the interaction of the different DES components with the hemodynamic milieu emphasizing on the inhibition of clinical restenosis.
Collapse
Affiliation(s)
- Michail I Papafaklis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02120, USA.
| | | | | | | | | |
Collapse
|
40
|
Shazly T, Kolachalama VB, Ferdous J, Oberhauser JP, Hossainy S, Edelman ER. Assessment of material by-product fate from bioresorbable vascular scaffolds. Ann Biomed Eng 2011; 40:955-65. [PMID: 22042625 DOI: 10.1007/s10439-011-0445-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
Fully bioresorbable vascular scaffolds (BVS) are attractive platforms for the treatment of ischemic artery disease owing to their intrinsic ability to uncage the treated vessel after the initial scaffolding phase, thereby allowing for the physiological conditioning that is essential to cellular function and vessel healing. Although scaffold erosion confers distinct advantages over permanent endovascular devices, high transient by-product concentrations within the arterial wall could induce inflammatory and immune responses. To better understand these risks, we developed in this study an integrated computational model that characterizes the bulk degradation and by-product fate for a representative BVS composed of poly(L-lactide) (PLLA). Parametric studies were conducted to evaluate the relative impact of PLLA degradation rate, arterial remodeling, and metabolic activity on the local lactic acid (LA) concentration within arterial tissue. The model predicts that both tissue remodeling and PLLA degradation kinetics jointly modulate LA fate and suggests that a synchrony of these processes could minimize transient concentrations within local tissue. Furthermore, simulations indicate that LA metabolism is a relatively poor tissue clearance mechanism compared to convective and diffusive transport processes. Mechanistic understanding of factors governing by-product fate may provide further insights on clinical outcome and facilitate development of future generation scaffolds.
Collapse
Affiliation(s)
- Tarek Shazly
- College of Engineering and Computing, Department of Mechanical Engineering and Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Kolandaivelu K, Swaminathan R, Gibson WJ, Kolachalama VB, Nguyen-Ehrenreich KL, Giddings VL, Coleman L, Wong GK, Edelman ER. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 2011; 123:1400-9. [PMID: 21422389 DOI: 10.1161/circulationaha.110.003210] [Citation(s) in RCA: 607] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Stent thrombosis is a lethal complication of endovascular intervention. Concern has been raised about the inherent risk associated with specific stent designs and drug-eluting coatings, yet clinical and animal support is equivocal. METHODS AND RESULTS We examined whether drug-eluting coatings are inherently thrombogenic and if the response to these materials was determined to a greater degree by stent design and deployment with custom-built stents. Drug/polymer coatings uniformly reduce rather than increase thrombogenicity relative to matched bare metal counterparts (0.65-fold; P=0.011). Thick-strutted (162 μm) stents were 1.5-fold more thrombogenic than otherwise identical thin-strutted (81 μm) devices in ex vivo flow loops (P<0.001), commensurate with 1.6-fold greater thrombus coverage 3 days after implantation in porcine coronary arteries (P=0.004). When bare metal stents were deployed in malapposed or overlapping configurations, thrombogenicity increased compared with apposed, length-matched controls (1.58-fold, P=0.001; and 2.32-fold, P<0.001). The thrombogenicity of polymer-coated stents with thin struts was lowest in all configurations and remained insensitive to incomplete deployment. Computational modeling-based predictions of stent-induced flow derangements correlated with spatial distribution of formed clots. CONCLUSIONS Contrary to popular perception, drug/polymer coatings do not inherently increase acute stent clotting; they reduce thrombosis. However, strut dimensions and positioning relative to the vessel wall are critical factors in modulating stent thrombogenicity. Optimal stent geometries and surfaces, as demonstrated with thin stent struts, help reduce the potential for thrombosis despite complex stent configurations and variability in deployment.
Collapse
|
42
|
Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011; 91:327-87. [PMID: 21248169 PMCID: PMC3844671 DOI: 10.1152/physrev.00047.2009] [Citation(s) in RCA: 1446] [Impact Index Per Article: 111.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial cells (ECs) are exposed to hemodynamic forces, which modulate EC functions and vascular biology/pathobiology in health and disease. The flow patterns and hemodynamic forces are not uniform in the vascular system. In straight parts of the arterial tree, blood flow is generally laminar and wall shear stress is high and directed; in branches and curvatures, blood flow is disturbed with nonuniform and irregular distribution of low wall shear stress. Sustained laminar flow with high shear stress upregulates expressions of EC genes and proteins that are protective against atherosclerosis, whereas disturbed flow with associated reciprocating, low shear stress generally upregulates the EC genes and proteins that promote atherogenesis. These findings have led to the concept that the disturbed flow pattern in branch points and curvatures causes the preferential localization of atherosclerotic lesions. Disturbed flow also results in postsurgical neointimal hyperplasia and contributes to pathophysiology of clinical conditions such as in-stent restenosis, vein bypass graft failure, and transplant vasculopathy, as well as aortic valve calcification. In the venous system, disturbed flow resulting from reflux, outflow obstruction, and/or stasis leads to venous inflammation and thrombosis, and hence the development of chronic venous diseases. Understanding of the effects of disturbed flow on ECs can provide mechanistic insights into the role of complex flow patterns in pathogenesis of vascular diseases and can help to elucidate the phenotypic and functional differences between quiescent (nonatherogenic/nonthrombogenic) and activated (atherogenic/thrombogenic) ECs. This review summarizes the current knowledge on the role of disturbed flow in EC physiology and pathophysiology, as well as its clinical implications. Such information can contribute to our understanding of the etiology of lesion development in vascular niches with disturbed flow and help to generate new approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Jeng-Jiann Chiu
- Division of Medical Engineering Research, National Health Research Institutes, Taiwan
| | | |
Collapse
|
43
|
Computational models for the in silico analysis of drug delivery from drug-eluting stents. Ther Deliv 2011; 2:1-3. [DOI: 10.4155/tde.10.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Moore JE, Timmins LH, LaDisa JF. Coronary artery bifurcation biomechanics and implications for interventional strategies. Catheter Cardiovasc Interv 2010; 76:836-43. [DOI: 10.1002/ccd.22596] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Williams AR, Koo BK, Gundert TJ, Fitzgerald PJ, LaDisa JF. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. J Appl Physiol (1985) 2010; 109:532-40. [DOI: 10.1152/japplphysiol.00086.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abnormal blood flow patterns promoting inflammation, cellular proliferation, and thrombosis may be established by local changes in vessel geometry after stent implantation in bifurcation lesions. Our objective was to quantify altered hemodynamics due to main vessel (MV) stenting and subsequent virtual side branch (SB) angioplasty in a coronary bifurcation by using computational fluid dynamics (CFD) analysis. CFD models were generated from representative vascular dimensions and intravascular ultrasound images. Time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and fractional flow reserve (FFR) were quantified. None of the luminal surface was exposed to low TAWSS (<4 dyn/cm2) in the nondiseased bifurcation model. MV stenting introduced eccentric areas of low TAWSS along the lateral wall of the MV. Virtual SB angioplasty resulted in a more concentric region of low TAWSS in the MV distal to the carina and along the lateral wall of the SB. The luminal surface exposed to low TAWSS was similar before and after virtual SB angioplasty (rest: 43% vs. 41%; hyperemia: 18% vs. 21%) and primarily due to stent-induced flow alterations. Sites of elevated OSI (>0.1) were minimal but more impacted by general vessel geometry established after MV stenting. FFR measured at a jailed SB was within the normal range despite angiographic stenosis of 54%. These findings indicate that the most commonly used percutaneous interventional strategy for a bifurcation lesion causes abnormal local hemodynamic conditions. These results may partially explain the high clinical event rates in bifurcation lesions.
Collapse
Affiliation(s)
- Andrew R. Williams
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - Bon-Kwon Koo
- Center for Cardiovascular Technology, Stanford University Medical Center, Stanford, California
- Seoul National University College of Medicine, Seoul, Korea; and
| | - Timothy J. Gundert
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - Peter J. Fitzgerald
- Center for Cardiovascular Technology, Stanford University Medical Center, Stanford, California
| | - John F. LaDisa
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin and
- Department of Pediatrics, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|