1
|
Agatha O, Mutwil-Anderwald D, Tan JY, Mutwil M. Plant sesquiterpene lactones. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230350. [PMID: 39343024 PMCID: PMC11449222 DOI: 10.1098/rstb.2023.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024] Open
Abstract
Sesquiterpene lactones (STLs) are a prominent group of plant secondary metabolites predominantly found in the Asteraceae family and have multiple ecological roles and medicinal applications. This review describes the evolutionary and ecological significance of STLs, highlighting their roles in plant defence mechanisms against herbivory and as phytotoxins, alongside their function as environmental signalling molecules. We also cover the substantial role of STLs in medicine and their mode of action in health and disease. We discuss the biosynthetic pathways and the various modifications that make STLs one of the most diverse groups of metabolites. Finally, we discuss methods for identifying and predicting STL biosynthesis pathways. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Olivia Agatha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Daniela Mutwil-Anderwald
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Jhing Yein Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| |
Collapse
|
2
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
3
|
Wu L, Xing L, Wu R, Fan X, Ni M, Xiao X, Zhou Z, Li L, Wen J, Huang Y. Lipoic acid-mediated oral drug delivery system utilizing changes on cell surface thiol expression for the treatment of diabetes and inflammatory diseases. J Mater Chem B 2024; 12:3970-3983. [PMID: 38563351 DOI: 10.1039/d3tb02899b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Lipoic acid (LA), which has good safety and oral absorption, is obtained from various plant-based food sources and needs to be supplemented through human diet. Moreover, substances with a disulfide structure can enter cells through dynamic covalent disulfide exchange with thiol groups on the cell membrane surface. Based on these factors, we constructed LA-modified nanoparticles (LA NPs). Our results showed that LA NPs can be internalized into intestinal epithelial cells through surface thiols, followed by intracellular transcytosis via the endoplasmic reticulum-Golgi pathway. Further mechanistic studies indicated that disulfide bonds within the structure of LA play a critical role in this transport process. In a type I diabetes rat model, the oral administration of insulin-loaded LA NPs exhibited a more potent hypoglycemic effect, with a pharmacokinetic bioavailability of 5.42 ± 0.53%, representing a 1.6 fold enhancement compared to unmodified PEG NPs. Furthermore, a significant upregulation of surface thiols in inflammatory macrophages was reported. Thus, we turned our direction to investigate the uptake behavior of inflammatory macrophages with increased surface thiols towards LA NPs. Inflammatory macrophages showed a 2.6 fold increased uptake of LA NPs compared to non-inflammatory macrophages. Surprisingly, we also discovered that the antioxidant resveratrol facilitates the uptake of LA NPs in a concentration-dependent manner. This is mainly attributed to an increase in glutathione, which is involved in thiol uptake. Consequently, we employed LA NPs loaded with resveratrol for the treatment of colitis and observed a significant alleviation of colitis symptoms. These results suggest that leveraging the variations of thiol expression levels on cell surfaces under both healthy and diseased states through an oral drug delivery system mediated by the small-molecule nutrient LA can be employed for the treatment of diabetes and certain inflammatory diseases.
Collapse
Affiliation(s)
- Licheng Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Liyun Xing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ruinan Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xiaoxing Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Mingjie Ni
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xin Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhou Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Science, The University of Auckland, Auckland 1142, New Zealand
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
LIU X, WANG X. Recent advances on the structural modification of parthenolide and its derivatives as anticancer agents. Chin J Nat Med 2022; 20:814-829. [DOI: 10.1016/s1875-5364(22)60238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/23/2022]
|
5
|
Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor Properties. Biomedicines 2022; 10:biomedicines10020514. [PMID: 35203723 PMCID: PMC8962426 DOI: 10.3390/biomedicines10020514] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/23/2022] Open
Abstract
Due to its chemical properties and multiple molecular effects on different tumor cell types, the sesquiterpene lactone parthenolide (PN) can be considered an effective drug with significant potential in cancer therapy. PN has been shown to induce either classic apoptosis or alternative caspase-independent forms of cell death in many tumor models. The therapeutical potential of PN has been increased by chemical design and synthesis of more soluble analogues including dimethylaminoparthenolide (DMAPT). This review focuses on the molecular mechanisms of both PN and analogues action in tumor models, highlighting their effects on gene expression, signal transduction and execution of different types of cell death. Recent findings indicate that these compounds not only inhibit prosurvival transcriptional factors such as NF-κB and STATs but can also determine the activation of specific death pathways, increasing intracellular reactive oxygen species (ROS) production and modifications of Bcl-2 family members. An intriguing property of these compounds is its specific targeting of cancer stem cells. The unusual actions of PN and its analogues make these agents good candidates for molecular targeted cancer therapy.
Collapse
|
6
|
Anticancer Targets and Signaling Pathways Activated by Britannin and Related Pseudoguaianolide Sesquiterpene Lactones. Biomedicines 2021; 9:biomedicines9101325. [PMID: 34680439 PMCID: PMC8533303 DOI: 10.3390/biomedicines9101325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Sesquiterpene lactones (SLs) are abundant in plants and display a large spectrum of bioactivities. The compound britannin (BRT), found in different Inula species, is a pseudoguaianolide-type SL equipped with a typical and highly reactive α-methylene-γ-lactone moiety. The bioproperties of BRT and related pseudoguaianolide SLs, including helenalin, gaillardin, bigelovin and others, have been reviewed. Marked anticancer activities of BRT have been evidenced in vitro and in vivo with different tumor models. Three main mechanisms are implicated: (i) interference with the NFκB/ROS pathway, a mechanism common to many other SL monomers and dimers; (ii) blockade of the Keap1-Nrf2 pathway, with a covalent binding to a cysteine residue of Keap1 via the reactive α-methylene unit of BRT; (iii) a modulation of the c-Myc/HIF-1α signaling axis leading to a downregulation of the PD-1/PD-L1 immune checkpoint and activation of cytotoxic T lymphocytes. The non-specific reactivity of the α-methylene-γ-lactone moiety with the sulfhydryl groups of proteins is discussed. Options to reduce or abolish this reactivity have been proposed. Emphasis is placed on the capacity of BRT to modulate the tumor microenvironment and the immune-modulatory action of the natural product. The present review recapitulates the anticancer effects of BRT, some central concerns with SLs and discusses the implication of the PD1/PD-L1 checkpoint in its antitumor action.
Collapse
|
7
|
Poc P, Gutzeit VA, Ast J, Lee J, Jones BJ, D'Este E, Mathes B, Lehmann M, Hodson DJ, Levitz J, Broichhagen J. Interrogating surface versus intracellular transmembrane receptor populations using cell-impermeable SNAP-tag substrates. Chem Sci 2020; 11:7871-7883. [PMID: 34123074 PMCID: PMC8163392 DOI: 10.1039/d0sc02794d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/02/2020] [Indexed: 01/13/2023] Open
Abstract
Employing self-labelling protein tags for the attachment of fluorescent dyes has become a routine and powerful technique in optical microscopy to visualize and track fused proteins. However, membrane permeability of the dyes and the associated background signals can interfere with the analysis of extracellular labelling sites. Here we describe a novel approach to improve extracellular labelling by functionalizing the SNAP-tag substrate benzyl guanine ("BG") with a charged sulfonate ("SBG"). This chemical manipulation can be applied to any SNAP-tag substrate, improves solubility, reduces non-specific staining and renders the bioconjugation handle impermeable while leaving its cargo untouched. We report SBG-conjugated fluorophores across the visible spectrum, which cleanly label SNAP-fused proteins in the plasma membrane of living cells. We demonstrate the utility of SBG-conjugated fluorophores to interrogate class A, B and C G protein-coupled receptors (GPCRs) using a range of imaging approaches including nanoscopic superresolution imaging, analysis of GPCR trafficking from intra- and extracellular pools, in vivo labelling in mouse brain and analysis of receptor stoichiometry using single molecule pull down.
Collapse
Affiliation(s)
- Pascal Poc
- Max Planck Institute for Medical Research, Department of Chemical Biology Jahnstr. 29 69120 Heidelberg Germany
| | - Vanessa A Gutzeit
- Neuroscience Graduate Program, Weill Cornell Medicine New York NY 10065 USA
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham Birmingham UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners Birmingham UK
| | - Joon Lee
- Department of Biochemistry, Weill Cornell Medicine New York NY 10065 USA
| | - Ben J Jones
- Section of Investigative Medicine, Imperial College London London W12 0NN UK
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research Heidelberg Germany
| | - Bettina Mathes
- Max Planck Institute for Medical Research, Department of Chemical Biology Jahnstr. 29 69120 Heidelberg Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Pharmacology and Cell Biology Robert-Rössle-Str. 10 13125 Berlin Germany
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham Birmingham UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners Birmingham UK
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine New York NY 10065 USA
- Tri-Institutional PhD Program in Chemical Biology New York NY 10065 USA
| | - Johannes Broichhagen
- Max Planck Institute for Medical Research, Department of Chemical Biology Jahnstr. 29 69120 Heidelberg Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Department of Chemical Biology Robert-Rössle-Str. 10 13125 Berlin Germany
| |
Collapse
|
8
|
Freund RRA, Gobrecht P, Fischer D, Arndt HD. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep 2020; 37:541-565. [DOI: 10.1039/c9np00049f] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(−)-Parthenolide is a germacrane sesquiterpene lactone, available in ample amounts from the traditional medical plant feverfew (Tanacetum parthenium).
Collapse
Affiliation(s)
- Robert R. A. Freund
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| | - Philipp Gobrecht
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Dietmar Fischer
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Hans-Dieter Arndt
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| |
Collapse
|
9
|
Qu W, Yang Q, Wang G, Wang Z, Huang P, Huang W, Zhang R, Yan D. Amphiphilic irinotecan–melampomagnolide B conjugate nanoparticles for cancer chemotherapy. RSC Adv 2020; 10:8958-8966. [PMID: 35496516 PMCID: PMC9050120 DOI: 10.1039/d0ra00912a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Melampomagnolide B (MMB) is a natural sesquiterpene lactone product structurally related to parthenolide (PTL). Although MMB has been widely used to treat various types of cancers, such as glioma, leukemia and colon cancer, the effective delivery of MMB to cancer cells remains a challenge. An amphiphilic drug–drug conjugate (ADDC) strategy has been proposed and developed as a promising drug self-delivery system for cancer therapy because of its simple preparation, carrier-free nature, and high therapeutic activity. Herein, we present a new ADDC, which is synthesized by linking the hydrophilic anticancer drug irinotecan (Ir) and the hydrophobic anticancer drug MMB through a carbonate bond. The obtained amphiphilic irinotecan–melampomagnolide B conjugate (Ir–C–MMB) can self-assemble in water into stable nanoparticles with an average diameter of around 122.1 nm. After cellular uptake, the carbonate bond between the hydrophilic drug and hydrophobic drug can be cleaved to release free Ir and MMB under acidic conditions, which exhibit a synergistic effect in tumor cells. MTT results reveal that the Ir–C–MMB nanoparticles can effectively inhibit proliferation of cancer cells. The apoptosis data indicate that the apoptosis rate of cells treated with Ir–C–MMB nanoparticles is about 50% within 24 h, which is much higher than that of free Ir or MMB. Our results suggest that this ADDC strategy could be used as a drug delivery platform for MMB and its derivatives, and that it offers effective synergistic therapeutic efficacy. Ir–C–MMB nanoparticles can be easily fabricated using an ADDC strategy, and used as a MMB drug self-delivery platform for synergistic cancer therapy.![]()
Collapse
Affiliation(s)
- Wenhao Qu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Quanjun Yang
- Department of Pharmacy
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital
- Shanghai 200233
- China
| | - Guanchun Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhaohong Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Ping Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Wei Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Rong Zhang
- Department of Obstetrics and Gynecology
- Fengxian Hospital
- Southern Medical University
- Shanghai 201499
- China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
10
|
Bayat N, McOrist N, Ariotti N, Lai M, Sia KC, Li Y, Grace JL, Quinn JF, Whittaker MR, Kavallaris M, Davis TP, Lock RB. Thiol-Reactive Star Polymers Functionalized with Short Ethoxy-Containing Moieties Exhibit Enhanced Uptake in Acute Lymphoblastic Leukemia Cells. Int J Nanomedicine 2019; 14:9795-9808. [PMID: 31853178 PMCID: PMC6914812 DOI: 10.2147/ijn.s220326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/16/2019] [Indexed: 01/27/2023] Open
Abstract
Purpose Directing nanoparticles to cancer cells without using antibodies is of great interest. Subtle changes to the surface chemistry of nanoparticles can significantly affect their biological fate, including their propensity to associate with different cell populations. For instance, nanoparticles functionalized with thiol-reactive groups can potentially enhance association with cells that over-express cell-surface thiol groups. The potential of such an approach for enhancing drug delivery for childhood acute lymphoblastic leukemia (ALL) cells has not been investigated. Herein, we investigate the impact of thiol-reactive star polymers on the cellular association and the mechanisms of uptake of the nanoparticles. Methods We prepared fluorescently labeled star polymers functionalized with an mPEG brush corona and pyridyl disulfide to examine how reactivity to exofacial thiols impacts cellular association with ALL cells. We also studied how variations to the mPEG brush composition could potentially be used as a secondary method for controlling the extent of cell association. Specifically, we examined how the inclusion of shorter diethylene glycol brush moieties into the nanoparticle corona could be used to further influence cell association. Results Star polymers incorporating both thiol-reactive and diethylene glycol brush moieties exhibited the highest cellular association, followed by those functionalized solely with thiol reactive groups compared to control nanoparticles in T and B pediatric ALL patient-derived xenografts harvested from the spleens and bone marrow of immunodeficient mice. Transfection of cells with an early endosomal marker and imaging with correlative light and electron microscopy confirmed cellular uptake. Endocytosis inhibitors revealed dynamin-dependent clathrin-mediated endocytosis as the main uptake pathway for all the star polymers. Conclusion Thiol-reactive star polymers having an mPEG brush corona that includes a proportion of diethylene glycol brush moieties represent a potential strategy for improved leukemia cell delivery.
Collapse
Affiliation(s)
- Narges Bayat
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Nathan McOrist
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Nicholas Ariotti
- Electron Microscope Unit, Mark Wainwright Analytical Centre, Chemical Sciences Building, University of New South Wales, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - May Lai
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Keith Cs Sia
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - James L Grace
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Maria Kavallaris
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Tumor Biology and Targeting Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Department of Chemistry, University of Warwick, Coventry, UK.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard B Lock
- Leukemia Biology Program, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Thioredoxin-1 PEGylation as an In Vitro Method for Drug Target Identification. Methods Mol Biol 2019. [PMID: 31148069 DOI: 10.1007/978-1-4939-9463-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Redox signaling in the cell, which is essential for cell physiology, involves proteins with free sulfhydryl groups (-SH). Among them, the thioredoxin system plays the most significant role. Many conditions associated with cell malignancies feature the higher expression of thioredoxin, making it an attractive target for new therapeutic drug development. Here we present a simple in vitro model of testing the interaction between thioredoxin and the putative drug. This method is relatively inexpensive and gives the Investigator a first screen of the drug properties, which can be essential for further experimental approaches.
Collapse
|
12
|
Cha J, Kim H, Hwang NS, Kim P. Mild Reduction of the Cancer Cell Surface as an Anti-invasion Treatment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35676-35680. [PMID: 30288974 DOI: 10.1021/acsami.8b12566] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer cell invasion is the main reason for high mortality in patients with malignant cancers. There has been little improvement in cancer prognosis because of a high rate of infiltration. Therefore, successful treatment requires inhibition of cancer cell invasion. Here, we suggest a new approach to inhibit cancer cell invasion through mild reduction of cell surface proteins to expose free thiols. Through mild reduction, the cancer cell surfaces present free active thiols at the membranes, enhancing cell adhesion to extracellular matrix and decreasing motility. Collectively, we suggest cell surface modification as a new therapeutic approach to treat invading malignant cancers.
Collapse
Affiliation(s)
- Junghwa Cha
- Department of Bio and Brain Engineering , KAIST , Daejeon 34141 , Korea
| | - Hyunbum Kim
- Department of Chemical and Biological Engineering, Institute for Chemical Processes , Seoul National University , Seoul 08826 , Korea
| | - Nathaniel S Hwang
- Department of Chemical and Biological Engineering, Institute for Chemical Processes , Seoul National University , Seoul 08826 , Korea
- BioMAX Institute , Seoul National University , Seoul 08826 , Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering , KAIST , Daejeon 34141 , Korea
| |
Collapse
|
13
|
Janganati V, Ponder J, Thakkar S, Jordan CT, Crooks PA. Succinamide derivatives of melampomagnolide B and their anti-cancer activities. Bioorg Med Chem 2017; 25:3694-3705. [PMID: 28545815 PMCID: PMC5531864 DOI: 10.1016/j.bmc.2017.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
A series of succinamide derivatives of melampomagnolide B have been synthesized by coupling MMB monosuccinate (2) with various heterocyclic amines to afford compounds 3a-3l. MMB monosuccinate was also reacted with terminal diaminoalkanes to afford dimeric succinamido analogs of MMB (4a-4h). These succinamide analogs of MMB were evaluated for their anti-cancer activity against a panel of sixty human cancer cell lines. Analogs 3d-3i and dimers 4f-4g exhibited promising anti-cancer activity with GI50 values ranging from 0.28 to 33.5µM against most of the cell lines in the panel. The dimeric analogs 4f and 4g were identified as lead compounds with GI50 values in the nanomolar range (GI50=280-980nM) against several cell lines in the panel; i.e. leukemia cell lines CCRF-CEM, HL-60(TB), K-562, MOLT-4, RPMI-8226 and SR; and solid tumor cell lines NCI-H522 (non-small cell lung cancer), SW-620 and HCT-116 (colon cancer), LOX IMVI (melanoma), RXF 393 (renal cancer), and MCF7, BT-549 and MDA-MB-468 (breast cancer). Succinamide analogs 3a, 3c-3l and 4b-4h were also evaluated for their apoptotic activity against M9-ENL1 acute myelogenous leukemia cells; compounds 3h-3j and 4g were equipotent with parthenolide, exhibiting LC50 values in the range 4.1-8.1μM. Molecular docking studies indicate that these molecules interact covalently with the highly conserved Cys-46 residue of the N-terminal lobe (1-109) of human IKKβ to inhibit the NFκB transcription factor complex, resulting in down-regulation of anti-apoptotic genes under NFκB control.
Collapse
Affiliation(s)
- Venumadhav Janganati
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jessica Ponder
- Department of Toxicology, University of Colorado, Aurora, CO 80045, USA
| | - Shraddha Thakkar
- National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Aurora, CO 80045, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
14
|
Pomorska DK, Gach-Janczak K, Jakubowski R, Janecki T, Szymański J, Janecka A. Evaluation of anticancer properties of a new α-methylene-δ-lactone DL-249 on two cancer cell lines. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AbstractBackgroundThe anticancer activity of a new synthetic α-methylene-δ-lactone DL-249 was reported in leukemia HL-60 and breast cancer MCF-7 cells and compared with the activity of a natural α-methylene-γ-lactone from Tanacetum parthenium, parthenolide.MethodologyThe chemical synthesis of DL-249 was performed using Horner-Wadsworth-Emmons methodology. The cytotoxic activity of the tested compounds was assessed by an MTT test. The ability to induce apoptosis was studied by flow cytometry. The expression levels of genes were determined by quantitative real-time PCR.Principal Findings/ResultsDL-249 and parthenolide inhibited the growth of HL-60 and MCF-7 cells with IC50 values below 10 μM. DL-249 was a stronger apoptosis inducer than parthenolide in both cell lines and both compounds produced a more pronounced effect on HL-60 than on MCF-7 cells. DL-249 and PTL significantly up-regulated expression of Bax, caspase-9, caspase-3 and p53 genes and decreased the level of Bcl-2 and Bcl-xl genes in both cancer cell lines. Additionally DL-249 caused cell cycle arrest in the subG0/G1phase.Conclusion/SignificanceA new synthetic α-methylene-δ-lactone, DL-249 showed the anticancer activity on two cancer cell lines and seemed to be a better apoptosis inducer than parthenolide which makes this compound an attractive lead for further studies.
Collapse
Affiliation(s)
- Dorota K. Pomorska
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Rafał Jakubowski
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Szymański
- Central Laboratory, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
15
|
Bommagani S, Ponder J, Penthala NR, Janganati V, Jordan CT, Borrelli MJ, Crooks PA. Indole carboxylic acid esters of melampomagnolide B are potent anticancer agents against both hematological and solid tumor cells. Eur J Med Chem 2017; 136:393-405. [PMID: 28525840 DOI: 10.1016/j.ejmech.2017.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/08/2017] [Accepted: 05/10/2017] [Indexed: 01/08/2023]
Abstract
A series of novel, heteroaryl carboxylic acid conjugates of the sesquiterpene melampomagnolide-B (MMB, 3) has been evaluated as antitumor agents against an NCI panel of 64 human hematopoetic and solid tumor cell lines. The indole-3-acrylic acid conjugate 7j and the indole-3-carboxylic acid conjugate 7k were found to be the most potent analogs in the series. Compounds 7j and 7k exhibited remarkable growth inhibition, with GI50 values in the range 0.03-0.30 μM and 0.04-0.28 μM, respectively, against the cell lines in the leukemia sub-panel, and GI50 values of 0.05-0.40 μM and 0.04-0.61 μM, respectively, against 90% of the solid tumor cell lines in the NCI panel. Compound 7a was particularly effective against the sub-panel of breast cancer cell lines with GI50 values in the range <0.01-0.30 μM. Compounds 7j, 7a and its water soluble analog 7p also exhibited potent anticancer activity against rat 9L-SF gliosarcoma cells in culture. Compound 7j was the most potent compound in the series in the M9-ENL1 AML cell assay with a lethal dose concentration EC50 value of 720 nM, and exhibited the greatest cytotoxicity against a collection of primary AML stem cell specimens, which included a specimen that was unresponsive to PTL, affording EC50 values in the range 0.33-1.0 μM in three out of four specimens. The results from this study provide further evidence that analogs of the sesquiterpene MMB can be designed to afford molecules with significantly improved anticancer activity. Thus, both 7j and 7k are considered potential lead molecules in the search for new anticancer agents that can be used as treatments for both hematopoetic and solid tumors.
Collapse
Affiliation(s)
- Shobanbabu Bommagani
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jessica Ponder
- Division of Hematology, University of Colorado, Aurora, CO 80045, USA
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Venumadhav Janganati
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Aurora, CO 80045, USA
| | - Michael J Borrelli
- Department of Radiology and Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
16
|
Identification of a melampomagnolide B analog as a potential lead molecule for treatment of acute myelogenous leukemia. Bioorg Med Chem 2016; 25:1235-1241. [PMID: 28049618 DOI: 10.1016/j.bmc.2016.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
A series of carbamate derivatives of the antileukemic sesquiterpene melampomagnolide B (MMB) has been synthesized utilizing a 1,2,4-triazole carbamate conjugate of MMB as an intermediate synthon. Five imidazole- and benzimidazole-carbamate analogs of MMB (8a-8e) were prepared and evaluated for anti-leukemic activity against cultured M9 ENL1 AML cells. All the analogs exhibited improved anti-leukemic activity (EC50=0.90-3.93μM) when compared to parthenolide and the parent sesquiterpene, MMB (EC50=7.0μM and 15.5μM, respectively). The imidazole carbamate analog, 8a (EC50=0.9μM), was 16 times more potent than MMB. The comparative bioavailabilities of 8a and MMB were determined in BALB/c mice following oral dosing of these compounds. It has been demonstrated that the absolute plasma bioavailabilities of MMB and 8a were 6.7±0.8%, and 45.5±2%, respectively. These results indicate that, compared to MMB, the PK parameters for 8a display significantly improved bioavailability and exposure after oral administration. Analog 8a is considered to be a potential clinical candidate for treatment of acute myelogenous leukemia.
Collapse
|
17
|
Koo KA, Waisbourd-Zinman O, Wells RG, Pack M, Porter JR. Reactivity of Biliatresone, a Natural Biliary Toxin, with Glutathione, Histamine, and Amino Acids. Chem Res Toxicol 2016; 29:142-9. [PMID: 26713899 PMCID: PMC4757443 DOI: 10.1021/acs.chemrestox.5b00308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In our previous work, we identified a natural toxin, biliatresone, from Dysphania glomulifera and D. littoralis, endemic plants associated with outbreaks of biliary atresia in Australian neonatal livestock. Biliatresone is a very rare isoflavonoid with an α-methylene ketone between two phenyls, 1,2-diaryl-2-propenone, along with methylenedioxy, dimethoxyl, and hydroxyl functional groups, that causes extrahepatic biliary toxicity in zebrafish. The toxic core of biliatresone is a methylene in the α-position relative to the ketone of 1,2-diaryl-2-propenone that serves as an electrophilic Michael acceptor. The α-methylene of biliatresone spontaneously conjugated with water and methanol (MeOH), respectively, via Michael addition in a reverse phase high-performance liquid chromatography (RP-HPLC) analysis. We here report the reactivity of biliatresone toward glutathione (GSH), several amino acids, and other thiol- or imidazole-containing biomolecules. LC-MS and HPLC analysis of the conjugation reaction showed the reactivity of biliatresone to be in the order histidine > N-acetyl-d-cysteine (D-NAC) = N-acetyl-l-cysteine (L-NAC) > histamine > glutathione ≥ cysteine ≫ glycine > glutamate > phenylalanine, while serine and adenine had no reactivity due to intramolecular hydrogen bonding in the protic solvents. The reactivity of ethyl vinyl ketone (EVK, 1-penten-3-one), an example of a highly reactive α,ß-unsaturated ketone, toward GSH gave a 6.7-fold lower reaction rate constant than that of biliatresone. The reaction rate constant of synthetic 1,2-diaryl-2-propen-1-one (DP), a core structure of the toxic molecule, was 10-fold and 1.5-fold weaker in potency compared to the reaction rate constants of biliatresone and EVK, respectively. These results demostrated that the methylenedioxy, dimethoxyl, and hydroxyl functional groups of biliatresone contribute to the stronger reactivity of the Michael acceptor α-methylene ketone toward nucleophiles compared to that of DP and EVK.
Collapse
Affiliation(s)
- Kyung A. Koo
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Orith Waisbourd-Zinman
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Rebecca G. Wells
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael Pack
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Cell Biology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John R. Porter
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Mohapatra S, Nandi S, Chowdhury R, Das G, Ghosh S, Bhattacharyya K. Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy. Phys Chem Chem Phys 2016; 18:18381-90. [DOI: 10.1039/c6cp02748b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor micro-environment of 3D multicellular spheroids and their interaction with a drug molecule are studied using time resolved confocal microscopy.
Collapse
Affiliation(s)
- Saswat Mohapatra
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Somen Nandi
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Rajdeep Chowdhury
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Gaurav Das
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Kankan Bhattacharyya
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
19
|
Janganati V, Ponder J, Jordan CT, Borrelli MJ, Penthala NR, Crooks PA. Dimers of Melampomagnolide B Exhibit Potent Anticancer Activity against Hematological and Solid Tumor Cells. J Med Chem 2015; 58:8896-906. [PMID: 26540463 DOI: 10.1021/acs.jmedchem.5b01187] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Novel carbamate (7a-7h) and carbonate (7i, 7j, and 8) dimers of melampomagnolide B have been synthesized by reaction of the melampomagnolide-B-triazole carbamate synthon 6 with various terminal diamino- and dihydroxyalkanes. Dimeric carbamate products 7b, 7c, and 7f exhibited potent growth inhibition (GI50 = 0.16-0.99 μM) against the majority of cell lines in the NCI panel of 60 human hematological and solid tumor cell lines. Compound 7f and 8 exhibited anticancer activity that was 300-fold and 1 × 10(6)-fold more cytotoxic than DMAPT, respectively, at a concentration of 10 μM against rat 9L-SF gliosarcoma cells. Compounds 7a-7j and 8 were also screened against M9-ENL1 and acute myelogenous leukemia (AML) primary cell lines and exhibited 2- to 10-fold more potent antileukemic activity against M9-ENL1 cells (EC50 = 0.57-2.90 μM) when compared to parthenolide (EC50 = 6.0) and showed potent antileukemic activity against five primary AML cell lines (EC50 = 0.76-7.3 μM).
Collapse
Affiliation(s)
- Venumadhav Janganati
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| | - Jessica Ponder
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| | - Craig T Jordan
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| | - Michael J Borrelli
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy and ‡Department of Radiology and Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States.,Division of Hematology and §Department of Toxicology, University of Colorado , Aurora, Colorado 80045, United States
| |
Collapse
|
20
|
Agathanggelou A, Weston VJ, Perry T, Davies NJ, Skowronska A, Payne DT, Fossey JS, Oldreive CE, Wei W, Pratt G, Parry H, Oscier D, Coles SJ, Hole PS, Darley RL, McMahon M, Hayes JD, Moss P, Stewart GS, Taylor AMR, Stankovic T. Targeting the Ataxia Telangiectasia Mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants. Haematologica 2015; 100:1076-85. [PMID: 25840602 PMCID: PMC5004424 DOI: 10.3324/haematol.2014.115170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/25/2015] [Indexed: 12/21/2022] Open
Abstract
Inactivation of the Ataxia Telangiectasia Mutated gene in chronic lymphocytic leukemia results in resistance to p53-dependent apoptosis and inferior responses to treatment with DNA damaging agents. Hence, p53-independent strategies are required to target Ataxia Telangiectasia Mutated-deficient chronic lymphocytic leukemia. As Ataxia Telangiectasia Mutated has been implicated in redox homeostasis, we investigated the effect of the Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia genotype on cellular responses to oxidative stress with a view to therapeutic targeting. We found that in comparison to Ataxia Telangiectasia Mutated-wild type chronic lymphocytic leukemia, pro-oxidant treatment of Ataxia Telangiectasia Mutated-null cells led to reduced binding of NF-E2 p45-related factor-2 to antioxidant response elements and thus decreased expression of target genes. Furthermore, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia cells contained lower levels of antioxidants and elevated mitochondrial reactive oxygen species. Consequently, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia, but not tumors with 11q deletion or TP53 mutations, exhibited differentially increased sensitivity to pro-oxidants both in vitro and in vivo. We found that cell death was mediated by a p53- and caspase-independent mechanism associated with apoptosis inducing factor activity. Together, these data suggest that defective redox-homeostasis represents an attractive therapeutic target for Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia.
Collapse
Affiliation(s)
| | | | - Tracey Perry
- School of Cancer Sciences, University of Birmingham
| | | | | | | | | | | | - Wenbin Wei
- School of Cancer Sciences, University of Birmingham
| | - Guy Pratt
- School of Cancer Sciences, University of Birmingham Haematology Department, Birmingham Heartlands Hospital
| | - Helen Parry
- Haematology Department, Birmingham Heartlands Hospital
| | - David Oscier
- Haematology Department, Royal Bournemouth Hospital, Dorset
| | - Steve J Coles
- Department of Haematology, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff
| | - Paul S Hole
- Department of Haematology, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff
| | - Richard L Darley
- Department of Haematology, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff
| | | | - John D Hayes
- Medical Research Institute, University of Dundee, UK
| | - Paul Moss
- School of Cancer Sciences, University of Birmingham
| | | | | | | |
Collapse
|
21
|
Kempema AM, Widen JC, Hexum JK, Andrews TE, Wang D, Rathe SK, Meece FA, Noble KE, Sachs Z, Largaespada DA, Harki DA. Synthesis and antileukemic activities of C1-C10-modified parthenolide analogues. Bioorg Med Chem 2015; 23:4737-4745. [PMID: 26088334 DOI: 10.1016/j.bmc.2015.05.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/24/2015] [Indexed: 01/08/2023]
Abstract
Parthenolide (PTL) is a sesquiterpene lactone natural product with anti-proliferative activity to cancer cells. Selective eradication of leukemic stem cells (LSCs) over healthy hematopoietic stem cells (HSCs) by PTL has been demonstrated in previous studies, which suggests PTL and related molecules may be useful for targeting LSCs. Eradication of LSCs is required for curative therapy. Chemical optimizations of PTL to improve potency and pharmacokinetic parameters have focused largely on the α-methylene-γ-butyrolactone, which is essential for activity. Conversely, we evaluated modifications to the C1-C10 olefin and benchmarked new inhibitors to PTL with respect to inhibitory potency across a panel of cancer cell lines, ability to target drug-resistant acute myeloid leukemia (AML) cells, efficacy for inhibiting clonal growth of AML cells, toxicity to healthy bone marrow cells, and efficiency for promoting intracellular reactive oxygen species (ROS) levels. Cyclopropane 4 was found to possess less toxicity to healthy bone marrow cells, enhanced potency for the induction of cellular ROS, and similar broad-spectrum anti-proliferative activity to cancer cells in comparison to PTL.
Collapse
Affiliation(s)
- Aaron M Kempema
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - John C Widen
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph K Hexum
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy E Andrews
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan Wang
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susan K Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frederick A Meece
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Klara E Noble
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zohar Sachs
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
22
|
Abstract
Parthenolide (PTL) has shown great promise as a novel anti-leukemia agent as it selectively eliminates acute myeloid leukemia (AML) blast cells and leukemia stem cells (LSCs) while sparing normal hematopoietic cells. This success has not yet translated to the clinical setting because PTL is rapidly cleared from blood due to its hydrophobicity. To increase the aqueous solubility of PTL, we previously developed micelles formed from predominantly hydrophobic amphiphilic diblock copolymers of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (e.g., PSMA100-b-PS258) that exhibit robust PTL loading (75%efficiency, 11% w/w capacity) and release PTL over 24 h. Here, PTL-loaded PSMA-b-PS micelles were thoroughly characterized in vitro for PTL delivery to MV4-11 AML cells. Additionally, the mechanisms governing micelle-mediated cytotoxicity were examined in comparison to free PTL. PSMA-b-PS micelles were taken up by MV4-11 cells as evidenced by transmission electron microscopy and flow cytometry. Specifically, MV4-11 cells relied on clathrin-mediated endocytosis, rather than caveolae-mediated endocytosis and macropinocytosis. In addition, PTL-loaded PSMA-b-PS micelles exhibited a dose-dependent cytotoxicity towards AML cells and were capable of reducing cell viability by 75% at 10 μM PTL, while unloaded micelles were nontoxic. At 10 μM PTL, the cytotoxicity of PTL-loaded micelles increased gradually over 24 h while free PTL achieved maximal cytotoxicity between 2 and 4 h, demonstrating micelle-mediated delivery of PTL to AML cells and stability of the drug-loaded micelle even in the presence of cells. Both free PTL and PTL-loaded micelles induced NF-κB inhibition at 10 μM PTL doses, demonstrating some mechanistic similarities in cytotoxicity. However, free PTL relied more heavily on exofacial free thiol interactions to induce cytotoxicity than PTL-loaded micelles; free PTL cytotoxicity was reduced by over twofold when cell surface free thiols were depleted, where PTL-loaded micelle doses were unaffected by cell surface thiol modulation. The physical properties, stability, and efficacy of PTL-loaded PSMA-b-PS micelles support further development of a leukemia therapeutic with greater bioavailability and the potential to eliminate LSCs.
Collapse
|
23
|
Gach K, Szymański J, Pomorska D, Długosz A, Modranka J, Janecki T, Janecka A. Combined effects of anticancer drugs and new synthetic α-methylene-δ-lactones on MCF-7 cells. Tumour Biol 2015; 36:5971-7. [PMID: 25740060 DOI: 10.1007/s13277-015-3273-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/17/2015] [Indexed: 11/26/2022] Open
Abstract
The search for novel drug candidates is a priority goal for cancer therapy. Natural products isolated from plants are often used as valuable leads for the synthesis of analogs with simpler structure. Two synthetic α-methylene-δ-lactones with chroman-2-one skeleton, designated DL-3 and DL-5, exhibiting strong cytotoxic activity against several cancer cell lines, have been tested alone and in combination with well-known anticancer drugs, 5-fluorouracil, oxaliplatin, and taxol, in breast cancer MCF-7 cells. Parthenolide, a plant-derived α-methylene-γ-lactone, was used as a positive control. The effects on cell proliferation, DNA damage, and apoptosis induction were evaluated. Neither of the tested compounds significantly enhanced the effects produced by taxol, but a strong synergistic effect was observed with 5-fluorouracil and oxaliplatin. Only small differences between the actions of both α-methylene-δ-lactones were found. The synergistic effects produced by these compounds in MCF-7 cells were stronger as compared with parthenolide. Our findings show that simple and easy-to-obtain synthetic compounds with α-methylene-δ-lactone motif can potentiate the efficiency of anticancer drugs.
Collapse
Affiliation(s)
- Katarzyna Gach
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
24
|
Gach K, Długosz A, Janecka A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:477-86. [DOI: 10.1007/s00210-015-1096-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/21/2015] [Indexed: 02/06/2023]
|
25
|
Kiebala M, Skalska J, Casulo C, Brookes PS, Peterson DR, Hilchey SP, Dai Y, Grant S, Maggirwar SB, Bernstein SH. Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: a novel synergistic therapeutic approach. Exp Hematol 2014; 43:89-99. [PMID: 25448488 DOI: 10.1016/j.exphem.2014.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/23/2014] [Accepted: 10/13/2014] [Indexed: 02/05/2023]
Abstract
B-cell malignancies are a common type of cancer. One approach to cancer therapy is to either increase oxidative stress or inhibit the stress response systems on which cancer cells rely. In this study, we combined nontoxic concentrations of Auranofin (AUR), an inhibitor of the thioredoxin system, with nontoxic concentrations of buthionine-sulfoximine (BSO), a compound that reduces intracellular glutathione levels, and investigated the effect of this drug combination on multiple pathways critical for malignant B-cell survival. Auranofin interacted synergistically with BSO at low concentrations to trigger death in multiple malignant B-cell lines and primary mantle-cell lymphoma cells. Additionally, there was less toxicity toward normal B cells. Low AUR concentrations inhibited thioredoxin reductase (TrxR) activity, an effect significantly increased by BSO cotreatment. Overexpression of TrxR partially reversed AUR+BSO toxicity. Interestingly, the combination of AUR+BSO inhibited nuclear factor κB (NF-κB) signaling. Moreover, synergistic cell death induced by this regimen was attenuated in cells overexpressing NF-κB proteins, arguing for a functional role for NF-κB inhibition in AUR+BSO-mediated cell death. Together, these findings suggest that AUR+BSO synergistically induces malignant B-cell death, a process mediated by dual inhibition of TrxR and NF-κB, and such an approach warrants further investigation in B-cell malignancies.
Collapse
Affiliation(s)
- Michelle Kiebala
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | | | - Carla Casulo
- James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Derick R Peterson
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Shannon P Hilchey
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yun Dai
- Division of Hematology and Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven Grant
- Division of Hematology and Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Steven H Bernstein
- James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
26
|
Janganati V, Penthala NR, Madadi NR, Chen Z, Crooks PA. Anti-cancer activity of carbamate derivatives of melampomagnolide B. Bioorg Med Chem Lett 2014; 24:3499-502. [PMID: 24928404 PMCID: PMC4381805 DOI: 10.1016/j.bmcl.2014.05.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/21/2022]
Abstract
Melampomagnolide B (MMB) is a natural sesquiterpene structurally related to parthenolide (PTL). We have shown that MMB exhibits anti-leukemic properties similar to PTL. Unlike PTL, the presence of a primary hydroxyl group in the MMB molecule allows the opportunity for examining the biological activity of a variety of conjugated analogs of MMB. We have now synthesized a series of carbamate analogs of MMB and evaluated these derivatives for anti-cancer activity against a panel of sixty human cancer cell lines. Analogs 6a and 6e exhibited promising anti-leukemic activity against human leukemia cell line CCRF-CEM with GI50 values of 680 and 620 nM, respectively. Analog 6a also showed GI50 values of 1.98 and 1.38 μM respectively, against RPMI-8226 and SR leukemia cell lines and GI50 values of 460 and 570 nM against MDA-MB-435 melanoma and MDA-MB-468 breast cancer cell lines, respectively. Analog 6e had GI50 values of 650 and 900 nM against HOP-92 non-small cell lung and RXF 393 renal cancer cell lines.
Collapse
Affiliation(s)
- Venumadhav Janganati
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Nikhil Reddy Madadi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
27
|
Baranello MP, Bauer L, Benoit DSW. Poly(styrene-alt-maleic anhydride)-based diblock copolymer micelles exhibit versatile hydrophobic drug loading, drug-dependent release, and internalization by multidrug resistant ovarian cancer cells. Biomacromolecules 2014; 15:2629-41. [PMID: 24955779 DOI: 10.1021/bm500468d] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Amphiphilic diblock copolymers of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) and poly(styrene-alt-maleic anhydride)-b-poly(butyl acrylate) (PSMA-b-PBA) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerizations. Polymers were well-controlled with respect to molecular weight evolution and polydispersity indices (PDI < 1.2). Additionally, RAFT allowed for control of diblock compositions (i.e., ratio of hydrophilic PSMA blocks to hydrophobic PS/PBA blocks) and overall molecular weight, which resulted in reproducible self-assembly of diblocks into micelle nanoparticles with diameters of 20-100 nm. Parthenolide (PTL), a hydrophobic anticancer drug, was loaded and released from the micelles. The highest loading and prolonged release of PTL was observed from predominantly hydrophobic PSMA-b-PS micelles (e.g., PSMA100-b-PS258), which exhibited the most ordered hydrophobic environment for more favorable core-drug interactions. PSMA100-b-PS258 micelles were further loaded with doxorubicin (DOX), as well as two hydrophobic fluorescent probes, nile red and IR-780. While PTL released quantitatively within 24 h, DOX, IR-780, and nile red showed release over 1 week, suggesting stronger drug-core interactions and/or hindrance due to less favorable drug-solvent interactions. Finally, uptake and intracellular localization of PSMA100-b-PS258 micelles by multidrug resistant (MDR) ovarian cancer cells was observed by transmission electron microscopy (TEM). Additionally, in vitro analyses showed DOX-loaded PSMA-b-PS micelles exhibited greater cytotoxicity to NCI/ADR RES cells than equivalent free DOX doses (75% reduction in cell viability by DOX-loaded micelles compared to 40% reduction in viability by free DOX at 10 μM DOX), likely due to avoidance of MDR mechanisms that limit free hydrophobic drug accumulation. The ability of micelles to achieve intracellular delivery via avoidance of MDR mechanisms, along with the versatility of chemical constituents and drug loading and release rates, offer many advantages for a variety of drug delivery applications.
Collapse
Affiliation(s)
- Michael P Baranello
- Department of Chemical Engineering and ‡Department of Biomedical Engineering, University of Rochester , Rochester, New York 14627, United States
| | | | | |
Collapse
|
28
|
Janganati V, Penthala NR, Cragle CE, MacNicol AM, Crooks PA. Heterocyclic aminoparthenolide derivatives modulate G(2)-M cell cycle progression during Xenopus oocyte maturation. Bioorg Med Chem Lett 2014; 24:1963-7. [PMID: 24656611 PMCID: PMC4121966 DOI: 10.1016/j.bmcl.2014.02.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 12/11/2022]
Abstract
Aminoparthenolide derivatives have been prepared by reaction of parthenolide with various heterocyclic amines to afford corresponding Michael addition products. These novel compounds were evaluated for their modulatory effects on Xenopus oocyte maturation. Two compounds, 6e and 6f, were identified that promote G2-M cell cycle progression.
Collapse
Affiliation(s)
- Venumadhav Janganati
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Chad E Cragle
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
29
|
Diers AR, Broniowska KA, Chang CF, Hill RB, Hogg N. S-Nitrosation of monocarboxylate transporter 1: inhibition of pyruvate-fueled respiration and proliferation of breast cancer cells. Free Radic Biol Med 2014; 69:229-38. [PMID: 24486553 PMCID: PMC3982622 DOI: 10.1016/j.freeradbiomed.2014.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Energy substrates metabolized through mitochondria (e.g., pyruvate, glutamine) are required for biosynthesis of macromolecules in proliferating cells. Because several mitochondrial proteins are known to be targets of S-nitrosation, we determined whether bioenergetics are modulated by S-nitrosation and defined the subsequent effects on proliferation. The nitrosating agent S-nitroso-L-cysteine (L-CysNO) was used to initiate intracellular S-nitrosation, and treatment decreased mitochondrial function and inhibited proliferation of MCF7 mammary adenocarcinoma cells. Surprisingly, the d-isomer of CysNO (D-CysNO), which is not transported into cells, also caused mitochondrial dysfunction and limited proliferation. Both L- and D-CysNO also inhibited cellular pyruvate uptake and caused S-nitrosation of thiol groups on monocarboxylate transporter 1, a proton-linked pyruvate transporter. These data demonstrate the importance of mitochondrial metabolism in proliferative responses in breast cancer and highlight a novel role for inhibition of metabolic substrate uptake through S-nitrosation of exofacial protein thiols in cellular responses to nitrosative stress.
Collapse
Affiliation(s)
- Anne R Diers
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Katarzyna A Broniowska
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ching-Fang Chang
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - R Blake Hill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
30
|
Ghosh S, Chattoraj S, Bhattacharyya K. Solvation Dynamics and Intermittent Oscillation of Cell Membrane: Live Chinese Hamster Ovary Cell. J Phys Chem B 2014; 118:2949-56. [DOI: 10.1021/jp412631d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shirsendu Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Shyamtanu Chattoraj
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| |
Collapse
|
31
|
Castellani P, Balza E, Rubartelli A. Inflammation, DAMPs, tumor development, and progression: a vicious circle orchestrated by redox signaling. Antioxid Redox Signal 2014; 20:1086-97. [PMID: 23373831 DOI: 10.1089/ars.2012.5164] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Increasing evidence indicates that cancer development and progression are promoted by the joint action of redox distress and inflammation, supporting the potential impact of therapies aimed at restoring the redox homeostasis and fighting inflammation. RECENT ADVANCES Most of the literature of the last 40 years converges to the view that continuous oxidative stress and chronic inflammation sustain each other, leads to transformation of a normal cell to a neoplastic cell, and promotes tumor progression. Some recent findings, however, support an alternative model whereby the increased production of reactive oxygen species (ROS) is an attempt to defend more than a pathogenetic factor in cancer. Rather, tumor development and progression may be promoted by an excess of antioxidants, induced in both transformed cells and recruited inflammatory cells as an adaptive response to ROS. CRITICAL ISSUES Although the link among redox stress, chronic inflammation, and cancer is widely recognized, the underlying mechanisms are far to be understood. The redox unbalance of the microenvironment is likely to modulate the bioactivity of damage-associated molecular pattern molecules such as HMGB1, which are released by stressed tissues and play pleiotropic functions on tumor and inflammatory cells, but how this occur, and the relevant consequences, are still unclear. FUTURE DIRECTIONS In vivo measurement of cell redox status is an important challenge for future investigations. The improvement of the methodologies for ROS and antioxidant detection will allow a better understanding of the redox-related events in the tumor microenvironment with tremendous application potential in the development of rational combination therapies for cancer treatment.
Collapse
|
32
|
Amorim MHR, Gil da Costa RM, Lopes C, Bastos MMSM. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol 2014; 43:559-79. [PMID: 23875764 DOI: 10.3109/10408444.2013.813905] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sesquiterpene lactones (STLs) present a wide range of biological activities, mostly based on their alkylating capabilities, which underlie their therapeutic potential. These compounds are the active constituents of a variety of plants, frequently used as herbal remedies. STLs such as artemisinin and its derivatives are in use as first-line antimalarials while others, such as parthenolide, have recently reached cancer clinical trials. However, the toxicological profile of these compounds must be thoroughly characterized, since the same properties that make STL useful medicines can also cause severe toxicity. STL-containing plants have long been known to induce a contact dermatitis in exposed farm workers, and also to cause several toxic syndromes in farm animals. More recently, concerns are been raised regarding the genotoxic potential of these compounds and the embryotoxicity of artemisinins. A growing number of STLs are being reported to be mutagenic in different in vitro and in vivo assays. As yet no systematic studies have been published, but the genotoxicity of STLs seems to depend not so much on direct DNA alkylation as on oxidative DNA damage and other partially elucidated mechanisms. As the medicinal use of these compounds increases, further studies of their toxic potential are needed, especially those focusing on the structural determinants of genotoxicity and embryotoxicity.
Collapse
Affiliation(s)
- M Helena R Amorim
- Chemical Engineering Department, Faculty of Engineering, University of Porto, Portugal
| | | | | | | |
Collapse
|
33
|
Kolev JN, O’Dwyer KM, Jordan CT, Fasan R. Discovery of potent parthenolide-based antileukemic agents enabled by late-stage P450-mediated C-H functionalization. ACS Chem Biol 2014; 9:164-73. [PMID: 24206617 PMCID: PMC3904131 DOI: 10.1021/cb400626w] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sesquiterpene lactone parthenolide has recently attracted considerable attention owing to its promising antitumor properties, in particular in the context of stem-cell cancers including leukemia. Yet, the lack of viable synthetic routes for re-elaborating this complex natural product has represented a fundamental obstacle toward further optimization of its pharmacological properties. Here, we demonstrate how this challenge could be addressed via selective, late-stage sp(3) C-H bond functionalization mediated by P450 catalysts with tailored site-selectivity. Taking advantage of our recently introduced tools for high-throughput P450 fingerprinting and fingerprint-driven P450 reactivity prediction, we evolved P450 variants useful for carrying out the highly regioselective hydroxylation of two aliphatic sites (C9 and C14) in parthenolide carbocyclic backbone. By chemoenzymatic synthesis, a panel of novel C9- and C14-modified parthenolide analogs were generated in order to gain initial structure-activity insights on these previously inaccessible sites of the molecule. Notably, some of these compounds were found to possess significantly improved antileukemic potency against primary acute myeloid leukemia cells, while exhibiting low toxicity against normal mature and progenitor hematopoietic cells. By identifying two 'hot spots' for improving the anticancer properties of parthenolide, this study highlights the potential of P450-mediated C-H functionalization as an enabling, new strategy for the late-stage manipulation of bioactive natural product scaffolds.
Collapse
Affiliation(s)
- Joshua N. Kolev
- Department of Chemistry, University of Rochester, Rochester, New
York 14627, USA
| | - Kristen M. O’Dwyer
- Department of Hematology/Oncology, School of Medicine and Dentistry,
University of, Rochester, Rochester, New York 14627, USA
| | - Craig T. Jordan
- Department of Hematology/Oncology, School of Medicine and Dentistry,
University of, Rochester, Rochester, New York 14627, USA
- Current address: Division of Hematology, University of Colorado,
Aurora, Colorado 80045, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New
York 14627, USA
| |
Collapse
|
34
|
Ramachandran PV, Nicponski DR, Nair HNG, Helppi MA, Gagare PD, Schmidt CM, Yip-Schneider MT. Synthetic α-(aminomethyl)-γ-butyrolactones and their anti-pancreatic cancer activities. Bioorg Med Chem Lett 2013; 23:6911-4. [PMID: 24176399 DOI: 10.1016/j.bmcl.2013.09.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Aminated α-methylene-γ-butyrolactones, which are readily synthesized with facile control of the diastereoisomerism, provide an economical and commercially-viable alternative to the use of aminated natural products. These aminoloactones, which exhibit excellent activity against three pancreatic cancer cell lines when measured at 10 μM-Panc-1, MIA PaCa-2, and BxPC-3-and are comparable to or better than parthenolide and dimethylaminoparthenolide (DMAPT, LC-1). It has also been shown that there is an effect on the biological activity depending on the identity of the amine.
Collapse
Affiliation(s)
- P Veeraraghavan Ramachandran
- Herbert C. Brown Center for Borane Research, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhang G, Nitteranon V, Chan LY, Parkin KL. Glutathione conjugation attenuates biological activities of 6-dehydroshogaol from ginger. Food Chem 2013; 140:1-8. [PMID: 23578607 DOI: 10.1016/j.foodchem.2013.02.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 11/16/2022]
Abstract
6-Dehydroshogaol (6-DHSG) is a bioactive α,β-unsaturated carbonyl compound isolated from fresh ginger with anti-inflammatory and phase II enzyme inducing activities. Here we describe the glutathione (GSH)-dependent metabolism and the effect of this metabolic transformation on the biological activities of 6-DHSG. Compared with other ginger compounds, such as 6-gingerol and 6-shogaol, 6-DHSG showed the most potent anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The biological activities of 6-DHSG were attenuated by sulfhydryl antioxidants such as glutathione (GSH) or N-acetyl cysteine (NAC), but not ascorbic acid (ASC). 6-DHSG was metabolised by GSH to form a GSH conjugate (GS-6-DHSG) in RAW 264.7 cells, via a potential mechanism involving the catalytic activity of glutathione-S-transferase (GST). GS-6-DHSG showed reduced biological activities compared with 6-DHSG in multiple biological assays. Together, these results indicate that GSH conjugation attenuates the biological activities of 6-DHSG and other α,β-unsaturated carbonyl compounds.
Collapse
Affiliation(s)
- Guodong Zhang
- Department of Food Science, University of Wisconsin, 1605 Linden Dr., Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
36
|
Parthenolide inhibits nociception and neurogenic vasodilatation in the trigeminovascular system by targeting the TRPA1 channel. Pain 2013; 154:2750-2758. [PMID: 23933184 DOI: 10.1016/j.pain.2013.08.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 11/20/2022]
Abstract
Although feverfew has been used for centuries to treat pain and headaches and is recommended for migraine treatment, the mechanism for its protective action remains unknown. Migraine is triggered by calcitonin gene-related peptide (CGRP) release from trigeminal neurons. Peptidergic sensory neurons express a series of transient receptor potential (TRP) channels, including the ankyrin 1 (TRPA1) channel. Recent findings have identified agents either inhaled from the environment or produced endogenously that are known to trigger migraine or cluster headache attacks, such as TRPA1 simulants. A major constituent of feverfew, parthenolide, may interact with TRPA1 nucleophilic sites, suggesting that feverfew's antimigraine effect derives from its ability to target TRPA1. We found that parthenolide stimulates recombinant (transfected cells) or natively expressed (rat/mouse trigeminal neurons) TRPA1, where it, however, behaves as a partial agonist. Furthermore, in rodents, after initial stimulation, parthenolide desensitizes the TRPA1 channel and renders peptidergic TRPA1-expressing nerve terminals unresponsive to any stimulus. This effect of parthenolide abrogates nociceptive responses evoked by stimulation of peripheral trigeminal endings. TRPA1 targeting and neuronal desensitization by parthenolide inhibits CGRP release from trigeminal neurons and CGRP-mediated meningeal vasodilatation, evoked by either TRPA1 agonists or other unspecific stimuli. TRPA1 partial agonism, together with desensitization and nociceptor defunctionalization, ultimately resulting in inhibition of CGRP release within the trigeminovascular system, may contribute to the antimigraine effect of parthenolide.
Collapse
|
37
|
Abstract
The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges.
Collapse
Affiliation(s)
- Young-Mi Go
- From the Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | | |
Collapse
|
38
|
Ghantous A, Sinjab A, Herceg Z, Darwiche N. Parthenolide: from plant shoots to cancer roots. Drug Discov Today 2013; 18:894-905. [PMID: 23688583 DOI: 10.1016/j.drudis.2013.05.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023]
Abstract
Parthenolide (PTL), a sesquiterpene lactone (SL) originally purified from the shoots of feverfew (Tanacetum parthenium), has shown potent anticancer and anti-inflammatory activities. It is currently being tested in cancer clinical trials. Structure-activity relationship (SAR) studies of parthenolide revealed key chemical properties required for biological activities and epigenetic mechanisms, and led to the derivatization of an orally bioavailable analog, dimethylamino-parthenolide (DMAPT). Parthenolide is the first small molecule found to be selective against cancer stem cells (CSC), which it achieves by targeting specific signaling pathways and killing cancer from its roots. In this review, we highlight the exciting journey of parthenolide, from plant shoots to cancer roots.
Collapse
Affiliation(s)
- Akram Ghantous
- International Agency for Research on Cancer, Lyon, France
| | | | | | | |
Collapse
|
39
|
Mattox ML, D’Angelo JA, Grimes ZM, Fiebiger E, Dickinson BL. The cystine/glutamate antiporter regulates indoleamine 2,3-dioxygenase protein levels and enzymatic activity in human dendritic cells. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2012; 1:113-123. [PMID: 23243629 PMCID: PMC3520491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the tryptophan-catabolizing pathway and a key regulator of peripheral immune tolerance. As the suppressive effects of IDO are predominantly mediated by dendritic cells (DCs) and IDO-competent DCs promote long-term immunologic tolerance, a detailed understanding of how IDO expression and activity is regulated in these cells is central to the rational design of therapies to induce robust immune tolerance. We previously reported that the cystine/glutamate antiporter modulates the functional expression of IDO in human monocyte-derived DCs. Specifically, we showed that blocking antiporter uptake of cystine significantly increased both IDO mRNA and IDO enzymatic activity and that this correlated with impaired DC presentation of exogenous antigen to T cells via MHC class II and the cross-presentation pathway. The antiporter regulates intracellular and extracellular redox by transporting cystine into the cell in exchange for glutamate. Intracellular cystine is reduced to cysteine to support biosynthesis of the major cellular antioxidant glutathione and cysteine is exported from the cell where it functions as an extracellular antioxidant. Here we show that antiporter control of IDO expression in DCs is reversible, independent of interferon-γ, regulated by redox, and requires active protein synthesis. These findings highlight a role for antiporter regulation of cellular redox as a critical control point for modulating IDO expression and activity in DCs. Thus, systemic disease and aging, processes that perturb redox homeostasis, may adversely affect immunity by promoting the generation of IDO-competent DCs.
Collapse
Affiliation(s)
- Mildred L Mattox
- The West Virginia School of Osteopathic Medicine400 North Lee Street, Lewisburg, WV 24901
| | - June A D’Angelo
- The Research Institute for Children, Children’s Hospital and Department of Pediatrics, Louisiana State University Health Science CenterNew Orleans, LA 70118
| | - Zachary M Grimes
- The West Virginia School of Osteopathic Medicine400 North Lee Street, Lewisburg, WV 24901
| | - Edda Fiebiger
- Division of Gastroenterology and Nutrition, Children’s Hospital Boston, Harvard Medical SchoolBoston, MA 02115
| | - Bonny L Dickinson
- The West Virginia School of Osteopathic Medicine400 North Lee Street, Lewisburg, WV 24901
| |
Collapse
|
40
|
Czyz M, Koprowska K, Sztiller-Sikorska M. Parthenolide reduces the frequency of ABCB5-positive cells and clonogenic capacity of melanoma cells from anchorage independent melanospheres. Cancer Biol Ther 2012. [PMID: 23192276 PMCID: PMC3571995 DOI: 10.4161/cbt.22952] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Growing evidence suggests that the cancer stem cell phenotype in melanoma is dynamically regulated. Therefore, effective therapies have to target simultaneously bulk tumor cells and melanoma stem-like cells. The aim of the present study was to investigate the effects of parthenolide on heterogeneous cancer cell populations from anchorage-independent melanospheres. Cells derived from nodular melanoma specimens were grown under serum-free sphere-forming conditions. The effects of parthenolide on cellular viability, immunophenotype and self-renewing capacity were assessed with cells from dissociated melanospheres. Its penetration capacity was evaluated with intact melanospheres. In melanoma cells that survived treatment with parthenolide, a different immunophenotype than that in untreated control was found. The frequency of cells expressing the ABCB5 transporter was markedly reduced. Most importantly, melanoma cells that survived parthenolide treatment lost their self-renewing capacity. Significantly lower influence of drug on cellular viability and frequency of ABCB5-positive cells was observed in intact melanospheres. The potential clinical significance of our findings is based on the ability of parthenolide to affect both bulk and melanoma stem-like cells with clonogenic capacity and high expression of the ABCB5 transporter. Its low penetration capacity, however, may limit its action to easily accessible melanoma cells, either circulating in the blood or those in the vicinity to blood vessels within the tumor. Because of limited penetration capacity of parthenolide, this drug should be further explored as a part of multimodal therapies rather than as a stand-alone therapeutic agent.
Collapse
Affiliation(s)
- Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz, Poland.
| | | | | |
Collapse
|
41
|
Extracellular glutathione decreases the ability of Burkholderia cenocepacia to penetrate into epithelial cells and to induce an inflammatory response. PLoS One 2012; 7:e47550. [PMID: 23094061 PMCID: PMC3477146 DOI: 10.1371/journal.pone.0047550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 09/18/2012] [Indexed: 12/16/2022] Open
Abstract
Background The airway surface liquid (ASL) of Cystic Fibrosis (CF) patients contains a lower concentration of reduced glutathione (GSH) with respect to healthy people. It is not known whether this defect may favor lung colonization by opportunistic pathogens. Principal Findings We have analyzed the effects of extracellular GSH on the ability of Burkholderia cenocepacia to penetrate and multiply in epithelial respiratory cells. Extracellular GSH proved to be able to drastically reduce the pathogen ability to adhere and invade airway epithelial cells. This effect is correlated to a GSH-dependent increase in the number of free thiols on the surface of epithelial cells, suggestive of a change in the oxidoreductive status of membrane proteins involved in B. cenocepacia recognition. Moreover, treatments with GSH led to a consistent reduction of the expression of IL-8, TNF-α and IL-1β in response to B. cenocepacia infection. Conclusions and Significance Extracellular GSH modulates the interaction between B. cenocepacia and epithelial respiratory cells and inhibits the bacterial invasion into these cells. This suggests that therapies aimed at restoring normal levels of GSH in the ASL might be beneficial to control CF lung infections.
Collapse
|
42
|
King BC, Nowakowska J, Karsten CM, Köhl J, Renström E, Blom AM. Truncated and full-length thioredoxin-1 have opposing activating and inhibitory properties for human complement with relevance to endothelial surfaces. THE JOURNAL OF IMMUNOLOGY 2012; 188:4103-12. [PMID: 22430737 DOI: 10.4049/jimmunol.1101295] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thioredoxin (Trx)-1 is a small, ubiquitously expressed redox-active protein with known important cytosolic functions. However, Trx1 is also upregulated in response to various stress stimuli, is found both at the cell surface and secreted into plasma, and has known anti-inflammatory and antiapoptotic properties. Previous animal studies have demonstrated that exogenous Trx1 delivery can have therapeutic effects in a number of disease models and have implicated an interaction of Trx1 with the complement system. We found that Trx1 is expressed in a redox-active form at the surface of HUVEC and acts as an inhibitor of complement deposition in a manner dependent on its Cys-Gly-Pro-Cys active site. Inhibition occurred at the point of the C5 convertase of complement, regulating production of C5a and the membrane attack complex. A truncated form of Trx1 also exists in vivo, Trx80, which has separate nonoverlapping functions compared with the full-length Trx1. We found that Trx80 activates the classical and alternative pathways of complement activation, leading to C5a production, but the inflammatory potential of this was also limited by the binding of inhibitors C4b-binding protein and factor H. This study adds a further role to the known anti-inflammatory properties of Trx1 and highlights the difference in function between the full-length and truncated forms.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Laboratory Medicine, Lund University, S-205 02 Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Janecka A, Wyrębska A, Gach K, Fichna J, Janecki T. Natural and synthetic α-methylenelactones and α-methylenelactams with anticancer potential. Drug Discov Today 2012; 17:561-72. [PMID: 22309965 DOI: 10.1016/j.drudis.2012.01.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/12/2011] [Accepted: 01/18/2012] [Indexed: 01/31/2023]
Abstract
α-Methylene-γ- and δ-lactones, as well as α-methylene-γ- and δ-lactams, are plant-derived compounds often used in traditional medicine for the treatment of inflammatory diseases. In recent years, the anticancer properties of these compounds and the molecular mechanisms of their action have been studied extensively. In the search for modern anticancer drugs, various synthetic analogs of α-methylene-γ- and δ-lactones and lactams have been synthesized and tested for their cytotoxic activity. In this review, we give a brief description of the occurrence and biological activity of such compounds isolated from plants and their diverse synthetic analogs.
Collapse
Affiliation(s)
- Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Poland.
| | | | | | | | | |
Collapse
|
44
|
Yeo AT, Porco JA, Gilmore TD. Bcl-XL, but not Bcl-2, can protect human B-lymphoma cell lines from parthenolide-induced apoptosis. Cancer Lett 2011; 318:53-60. [PMID: 22155272 DOI: 10.1016/j.canlet.2011.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 12/19/2022]
Abstract
In this report, we investigated the effects of the natural product parthenolide on human B-lymphoma cell lines. We show that parthenolide inhibited NF-κB transcription factor c-Rel (REL). In addition, the sensitivity of several human B-lymphoma cell lines to parthenolide-induced apoptosis inversely correlated with their levels of anti-apoptosis protein Bcl-X(L). Furthermore, ectopic expression of Bcl-X(L) (but not Bcl-2) in two B-lymphoma cell lines decreased their sensitivity to parthenolide-induced apoptosis. Finally, over-expression of a transforming mutant of REL, which increased expression of endogenous Bcl-X(L), decreased the sensitivity of BJAB B-lymphoma cells to parthenolide-induced apoptosis. These results demonstrate that the NF-κB target gene products Bcl-X(L) and Bcl-2 can play different roles in protecting B-lymphoma cells from chemical-induced apoptosis.
Collapse
Affiliation(s)
- Alan T Yeo
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
45
|
Venè R, Castellani P, Delfino L, Lucibello M, Ciriolo MR, Rubartelli A. The cystine/cysteine cycle and GSH are independent and crucial antioxidant systems in malignant melanoma cells and represent druggable targets. Antioxid Redox Signal 2011; 15:2439-53. [PMID: 21529243 DOI: 10.1089/ars.2010.3830] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIMS Cancer chemoresistance is often due to upregulation of antioxidant systems. Therapeutic targeting of these systems is however hampered by their redundancy. Here, we have performed a functional dissection of the antioxidant systems in different melanoma cases aimed at the identification of the most effective redox active drug. RESULTS We have identified two crucial antioxidant mechanisms: glutathione (GSH), the major intracellular redox buffer, and the cystine/cysteine cycle, which switches the extracellular redox state from an oxidized to a reduced state. The two mechanisms are independent in melanoma cells and may be substitutes for each other, but targeting both of them is lethal. Exposure to the pro-oxidant compound As(2)O(3) induces an antioxidant response. However, while in these cells the intracellular redox balance remains almost unaffected, a reduced environment is generated extracellularly. GSH depletion by buthioninesulfoximine (BSO), or cystine/cysteine cycle inhibition by (S)-4-carboxyphenylglycine (sCPG), enhanced the sensitivity to As(2)O(3). Remarkably, sCPG also prevented the remodeling of the microenvironment redox state. INNOVATION We propose that the definition of the prevalent antioxidant system(s) in tumors is crucial for the design of tailored therapies involving redox-directed drugs in association with pro-oxidant drugs. CONCLUSION In melanoma cells, BSO is the best enhancer of As(2)O(3) sensitivity. However, since the strong remodeling of the microenvironmental redox state caused by As(2)O(3) may promote tumor progression, the concomitant use of cystine/cysteine cycle blockers is recommended.
Collapse
Affiliation(s)
- Roberta Venè
- Cell Biology Unit, National Cancer Research Institute, Genova, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Yan Y, Wang Y, Heath JK, Nice EC, Caruso F. Cellular association and cargo release of redox-responsive polymer capsules mediated by exofacial thiols. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:3916-3921. [PMID: 21809395 DOI: 10.1002/adma.201101609] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/01/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Yan Yan
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
47
|
Lindahl M, Mata-Cabana A, Kieselbach T. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. Antioxid Redox Signal 2011; 14:2581-642. [PMID: 21275844 DOI: 10.1089/ars.2010.3551] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ten years ago, proteomics techniques designed for large-scale investigations of redox-sensitive proteins started to emerge. The proteomes, defined as sets of proteins containing reactive cysteines that undergo oxidative post-translational modifications, have had a particular impact on research concerning the redox regulation of cellular processes. These proteomes, which are hereafter termed "disulfide proteomes," have been studied in nearly all kingdoms of life, including animals, plants, fungi, and bacteria. Disulfide proteomics has been applied to the identification of proteins modified by reactive oxygen and nitrogen species under stress conditions. Other studies involving disulfide proteomics have addressed the functions of thioredoxins and glutaredoxins. Hence, there is a steadily growing number of proteins containing reactive cysteines, which are probable targets for redox regulation. The disulfide proteomes have provided evidence that entire pathways, such as glycolysis, the tricarboxylic acid cycle, and the Calvin-Benson cycle, are controlled by mechanisms involving changes in the cysteine redox state of each enzyme implicated. Synthesis and degradation of proteins are processes highly represented in disulfide proteomes and additional biochemical data have established some mechanisms for their redox regulation. Thus, combined with biochemistry and genetics, disulfide proteomics has a significant potential to contribute to new discoveries on redox regulation and signaling.
Collapse
Affiliation(s)
- Marika Lindahl
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Centro de Investigaciones Científicas Isla de la Cartuja, Seville, Spain
| | | | | |
Collapse
|
48
|
Nimmo CM, Owen SC, Shoichet MS. Diels-Alder Click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 2011; 12:824-30. [PMID: 21314111 DOI: 10.1021/bm101446k] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polymer that holds considerable promise for tissue engineering applications. Current cross-linking chemistries often require a coupling agent, catalyst, or photoinitiator, which may be cytotoxic, or involve a multistep synthesis of functionalized-HA, increasing the complexity of the system. With the goal of designing a simpler one-step, aqueous-based cross-linking system, we synthesized HA hydrogels via Diels-Alder "click" chemistry. Furan-modified HA derivatives were synthesized and cross-linked via dimaleimide poly(ethylene glycol). By controlling the furan to maleimide molar ratio, both the mechanical and degradation properties of the resulting Diels-Alder cross-linked hydrogels can be tuned. Rheological and degradation studies demonstrate that the Diels-Alder click reaction is a suitable cross-linking method for HA. These HA cross-linked hydrogels were shown to be cytocompatible and may represent a promising material for soft tissue engineering.
Collapse
Affiliation(s)
- Chelsea M Nimmo
- The Donnelly Centre for Cellular and Biomolecular Research, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
49
|
Nasim S, Pei S, Hagen FK, Jordan CT, Crooks PA. Melampomagnolide B: A new antileukemic sesquiterpene. Bioorg Med Chem 2011; 19:1515-9. [PMID: 21273084 DOI: 10.1016/j.bmc.2010.12.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
|
50
|
Williams ME, Connors JM, Dreyling MH, Gascoyne RD, Kahl BS, Leonard JP, Press OW, Wilson WH. Mantle cell lymphoma: report of the 2010 Mantle Cell Lymphoma Consortium Workshop. Leuk Lymphoma 2010; 52:24-33. [PMID: 21133727 DOI: 10.3109/10428194.2010.532893] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma typically characterized by cyclin D1 overexpression as result of the t(11;14) translocation. MCL is biologically and clinically heterogeneous and frequently involves extranodal dissemination. Although MCL is incurable with current therapies, with the exception of allogeneic stem cell transplant, recent advances are improving long-term outcomes in MCL. Intensive research has continued to focus on elucidating biological mechanisms of MCL, identifying new molecular targets, and optimizing existing therapies. Most recently, researchers have begun focusing on new areas such as epigenetics and microRNAs and their potential applications to MCL therapy. Advances across a broad spectrum of MCL research were presented at a recent MCL Workshop. This report provides an overview of the scientific highlights from the meeting and a framework for future research.
Collapse
|