1
|
Gahurova L, Tomankova J, Cerna P, Bora P, Kubickova M, Virnicchi G, Kovacovicova K, Potesil D, Hruska P, Zdrahal Z, Anger M, Susor A, Bruce AW. Spatial positioning of preimplantation mouse embryo cells is regulated by mTORC1 and m 7G-cap-dependent translation at the 8- to 16-cell transition. Open Biol 2023; 13:230081. [PMID: 37553074 PMCID: PMC10409569 DOI: 10.1098/rsob.230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Preimplantation mouse embryo development involves temporal-spatial specification and segregation of three blastocyst cell lineages: trophectoderm, primitive endoderm and epiblast. Spatial separation of the outer-trophectoderm lineage from the two other inner-cell-mass (ICM) lineages starts with the 8- to 16-cell transition and concludes at the 32-cell stages. Accordingly, the ICM is derived from primary and secondary contributed cells; with debated relative EPI versus PrE potencies. We report generation of primary but not secondary ICM populations is highly dependent on temporal activation of mammalian target of Rapamycin (mTOR) during 8-cell stage M-phase entry, mediated via regulation of the 7-methylguanosine-cap (m7G-cap)-binding initiation complex (EIF4F) and linked to translation of mRNAs containing 5' UTR terminal oligopyrimidine (TOP-) sequence motifs, as knockdown of identified TOP-like motif transcripts impairs generation of primary ICM founders. However, mTOR inhibition-induced ICM cell number deficits in early blastocysts can be compensated by the late blastocyst stage, after inhibitor withdrawal; compensation likely initiated at the 32-cell stage when supernumerary outer cells exhibit molecular characteristics of inner cells. These data identify a novel mechanism specifically governing initial spatial segregation of mouse embryo blastomeres, that is distinct from those directing subsequent inner cell formation, contributing to germane segregation of late blastocyst lineages.
Collapse
Affiliation(s)
- Lenka Gahurova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Jana Tomankova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Pavlina Cerna
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Pablo Bora
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Michaela Kubickova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Giorgio Virnicchi
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Kristina Kovacovicova
- Laboratory of Cell Division Control, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - David Potesil
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Pavel Hruska
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Martin Anger
- Laboratory of Cell Division Control, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
2
|
Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell Tissue Res 2021; 386:423-444. [PMID: 34586506 DOI: 10.1007/s00441-021-03530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell-cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.
Collapse
|
3
|
Karasek C, Ashry M, Driscoll CS, Knott JG. A tale of two cell-fates: role of the Hippo signaling pathway and transcription factors in early lineage formation in mouse preimplantation embryos. Mol Hum Reprod 2021; 26:653-664. [PMID: 32647873 PMCID: PMC7473788 DOI: 10.1093/molehr/gaaa052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/18/2020] [Indexed: 12/26/2022] Open
Abstract
In mammals, the first cell-fate decision occurs during preimplantation embryo development when the inner cell mass (ICM) and trophectoderm (TE) lineages are established. The ICM develops into the embryo proper, while the TE lineage forms the placenta. The underlying molecular mechanisms that govern lineage formation involve cell-to-cell interactions, cell polarization, cell signaling and transcriptional regulation. In this review, we will discuss the current understanding regarding the cellular and molecular events that regulate lineage formation in mouse preimplantation embryos with an emphasis on cell polarity and the Hippo signaling pathway. Moreover, we will provide an overview on some of the molecular tools that are used to manipulate the Hippo pathway and study cell-fate decisions in early embryos. Lastly, we will provide exciting future perspectives on transcriptional regulatory mechanisms that modulate the activity of the Hippo pathway in preimplantation embryos to ensure robust lineage segregation.
Collapse
Affiliation(s)
- Challis Karasek
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Mohamed Ashry
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Chad S Driscoll
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Jason G Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
5
|
Firmin J, Maître JL. Morphogenesis of the human preimplantation embryo: bringing mechanics to the clinics. Semin Cell Dev Biol 2021; 120:22-31. [PMID: 34253437 DOI: 10.1016/j.semcdb.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
During preimplantation development, the human embryo forms the blastocyst, the structure enabling uterine implantation. The blastocyst consists of an epithelial envelope, the trophectoderm, encompassing a fluid-filled lumen, the blastocoel, and a cluster of pluripotent stem cells, the inner cell mass. This specific architecture is crucial for the implantation and further development of the human embryo. Furthermore, the morphology of the human embryo is a prime determinant for clinicians to assess the implantation potential of in vitro fertilized human embryos, which constitutes a key aspect of assisted reproduction technology. Therefore, it is crucial to understand how the human embryo builds the blastocyst. As any material, the human embryo changes shape under the action of forces. Here, we review recent advances in our understanding of the mechanical forces shaping the blastocyst. We discuss the cellular processes responsible for generating morphogenetic forces that were studied mostly in the mouse and review the literature on human embryos to see which of them may be conserved. Based on the specific morphological defects commonly observed in clinics during human preimplantation development, we discuss how mechanical forces and their underlying cellular processes may be affected. Together, we propose that bringing tissue mechanics to the clinics will advance our understanding of human preimplantation development, as well as our ability to help infertile couples to have babies.
Collapse
Affiliation(s)
- Julie Firmin
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM, U934 Paris, France
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM, U934 Paris, France.
| |
Collapse
|
6
|
Schliffka MF, Tortorelli AF, Özgüç Ö, de Plater L, Polzer O, Pelzer D, Maître JL. Multiscale analysis of single and double maternal-zygotic Myh9 and Myh10 mutants during mouse preimplantation development. eLife 2021; 10:e68536. [PMID: 33871354 PMCID: PMC8096435 DOI: 10.7554/elife.68536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022] Open
Abstract
During the first days of mammalian development, the embryo forms the blastocyst, the structure responsible for implanting the mammalian embryo. Consisting of an epithelium enveloping the pluripotent inner cell mass and a fluid-filled lumen, the blastocyst results from a series of cleavage divisions, morphogenetic movements, and lineage specification. Recent studies have identified the essential role of actomyosin contractility in driving cytokinesis, morphogenesis, and fate specification, leading to the formation of the blastocyst. However, the preimplantation development of contractility mutants has not been characterized. Here, we generated single and double maternal-zygotic mutants of non-muscle myosin II heavy chains (NMHCs) to characterize them with multiscale imaging. We found that Myh9 (NMHC II-A) is the major NMHC during preimplantation development as its maternal-zygotic loss causes failed cytokinesis, increased duration of the cell cycle, weaker embryo compaction, and reduced differentiation, whereas Myh10 (NMHC II-B) maternal-zygotic loss is much less severe. Double maternal-zygotic mutants for Myh9 and Myh10 show a much stronger phenotype, failing most of the attempts of cytokinesis. We found that morphogenesis and fate specification are affected but nevertheless carry on in a timely fashion, regardless of the impact of the mutations on cell number. Strikingly, even when all cell divisions fail, the resulting single-celled embryo can initiate trophectoderm differentiation and lumen formation by accumulating fluid in increasingly large vacuoles. Therefore, contractility mutants reveal that fluid accumulation is a cell-autonomous process and that the preimplantation program carries on independently of successful cell division.
Collapse
Affiliation(s)
- Markus Frederik Schliffka
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
- Carl Zeiss SASMarly-le-RoyFrance
| | | | - Özge Özgüç
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | | | - Oliver Polzer
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | - Diane Pelzer
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne UniversitéParisFrance
| |
Collapse
|
7
|
Saiz N, Hadjantonakis AK. Coordination between patterning and morphogenesis ensures robustness during mouse development. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190562. [PMID: 32829684 PMCID: PMC7482220 DOI: 10.1098/rstb.2019.0562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian preimplantation embryo is a highly tractable, self-organizing developmental system in which three cell types are consistently specified without the need for maternal factors or external signals. Studies in the mouse over the past decades have greatly improved our understanding of the cues that trigger symmetry breaking in the embryo, the transcription factors that control lineage specification and commitment, and the mechanical forces that drive morphogenesis and inform cell fate decisions. These studies have also uncovered how these multiple inputs are integrated to allocate the right number of cells to each lineage despite inherent biological noise, and as a response to perturbations. In this review, we summarize our current understanding of how these processes are coordinated to ensure a robust and precise developmental outcome during early mouse development. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Néstor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
8
|
Płusa B, Piliszek A. Common principles of early mammalian embryo self-organisation. Development 2020; 147:147/14/dev183079. [PMID: 32699138 DOI: 10.1242/dev.183079] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pre-implantation mammalian development unites extreme plasticity with a robust outcome: the formation of a blastocyst, an organised multi-layered structure ready for implantation. The process of blastocyst formation is one of the best-known examples of self-organisation. The first three cell lineages in mammalian development specify and arrange themselves during the morphogenic process based on cell-cell interactions. Despite decades of research, the unifying principles driving early mammalian development are still not fully defined. Here, we discuss the role of physical forces, and molecular and cellular mechanisms, in driving self-organisation and lineage formation that are shared between eutherian mammals.
Collapse
Affiliation(s)
- Berenika Płusa
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
9
|
Özgüç Ö, Maître JL. Multiscale morphogenesis of the mouse blastocyst by actomyosin contractility. Curr Opin Cell Biol 2020; 66:123-129. [PMID: 32711300 DOI: 10.1016/j.ceb.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 01/31/2023]
Abstract
During preimplantation development, the mouse embryo forms the blastocyst, which consists of a squamous epithelium enveloping a fluid-filled lumen and a cluster of pluripotent cells. The shaping of the blastocyst into its specific architecture is a prerequisite to implantation and further development of the embryo. Recent studies identified the central role of the actomyosin cortex in generating the forces driving the successive steps of blastocyst morphogenesis. As seen in other developing animals, actomyosin functions across spatial scales from the subcellular to the tissue levels. In addition, the slow development of the mouse embryo reveals that actomyosin contractility operates at multiple timescales with periodic cortical waves of contraction every ∼80 s and tissue remodeling over hours.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, 26, rue d'Ulm - 75248 Paris Cedex 05 - France
| | | |
Collapse
|
10
|
Simulations of sea urchin early development delineate the role of oriented cell division in the morula-to-blastula transition. Mech Dev 2020; 162:103606. [PMID: 32165284 DOI: 10.1016/j.mod.2020.103606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 11/24/2022]
Abstract
The sea urchin morula to blastula transition has long been thought to require oriented cell divisions and blastomere adherence to the enveloping hyaline layer. In a computer simulation model, cell divisions constrained by a surface plane division rule are adequate to effect morphological transition. The hyaline membrane acts as an enhancer but is not essential. The model is consistent with the orientation of micromere divisions and the open blastulae of direct developing species. The surface plane division rule precedes overt epithelization of surface cells and acts to organize the developing epithelium. It is a universal feature of early metazoan development and simulations of non-echinoid cleavage patterns support its role throughout Metazoa. The surface plane division rule requires only local cues and cells need not reference global positional information or embryonic axes.
Collapse
|
11
|
Mihajlović AI, Bruce AW. The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity. Open Biol 2018; 7:rsob.170210. [PMID: 29167310 PMCID: PMC5717349 DOI: 10.1098/rsob.170210] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
During the first cell-fate decision of mouse preimplantation embryo development, a population of outer-residing polar cells is segregated from a second population of inner apolar cells to form two distinct cell lineages: the trophectoderm and the inner cell mass (ICM), respectively. Historically, two models have been proposed to explain how the initial differences between these two cell populations originate and ultimately define them as the two stated early blastocyst stage cell lineages. The 'positional' model proposes that cells acquire distinct fates based on differences in their relative position within the developing embryo, while the 'polarity' model proposes that the differences driving the lineage segregation arise as a consequence of the differential inheritance of factors, which exhibit polarized subcellular localizations, upon asymmetric cell divisions. Although these two models have traditionally been considered separately, a growing body of evidence, collected over recent years, suggests the existence of a large degree of compatibility. Accordingly, the main aim of this review is to summarize the major historical and more contemporarily identified events that define the first cell-fate decision and to place them in the context of both the originally proposed positional and polarity models, thus highlighting their functional complementarity in describing distinct aspects of the developmental programme underpinning the first cell-fate decision in mouse embryogenesis.
Collapse
Affiliation(s)
- Aleksandar I Mihajlović
- Laboratory of Developmental Biology and Genetics (LDB&G), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Alexander W Bruce
- Laboratory of Developmental Biology and Genetics (LDB&G), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
12
|
Abstract
During the very first days of mammalian development, the embryo forms a structure called the blastocyst. The blastocyst consists of two cell types: the trophectoderm (TE), which implants the embryo in the uterus and the inner cell mass (ICM), which gives rise to all cells of the mammalian body. Previous works identified how cells differentiate according to their position within the embryo: TE for surface cells and ICM for internal cells. It is therefore essential to understand how cells acquire their position in the first place. During the formation of the blastocyst, cells distort and relocate as a consequence of forces that are generated by the cells themselves. Recently, several important studies have identified the forces and cellular mechanisms leading to the shaping of the ICM. Here, I describe how these studies led us to understand how contractile forces shape the mammalian embryo to position and differentiate the ICM.
Collapse
Affiliation(s)
- Jean-Léon Maître
- Institut Curie, PSL Research University, CNRS UMR3215 Inserm U934, 26 rue d'Ulm, 75248 Paris, France - Équipe mécanique du développement mammifère, Unité Génétique et Biologie du Développement, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France
| |
Collapse
|
13
|
Maître JL. Mechanics of blastocyst morphogenesis. Biol Cell 2017; 109:323-338. [DOI: 10.1111/boc.201700029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jean-Léon Maître
- Institut Curie; PSL Research University; CNRS UMR3215, INSERM U934; Paris France
| |
Collapse
|
14
|
Forceful patterning in mouse preimplantation embryos. Semin Cell Dev Biol 2017; 71:129-136. [PMID: 28577924 DOI: 10.1016/j.semcdb.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 12/22/2022]
Abstract
The generation of a functional organism from a single, fertilized ovum requires the spatially coordinated regulation of diverse cell identities. The establishment and precise arrangement of differentiated cells in developing embryos has, historically, been extensively studied by geneticists and developmental biologists. While chemical gradients and genetic regulatory networks are widely acknowledged to play significant roles in embryo patterning, recent studies have highlighted that mechanical forces generated by, and exerted on, embryos are also crucial for the proper control of cell differentiation and morphogenesis. Here we review the most recent findings in murine preimplantation embryogenesis on the roles of cortical tension in the coupling of cell-fate determination and cell positioning in 8-16-cell-stage embryos. These basic principles of mechanochemical coupling in mouse embryos can be applied to other pattern formation phenomena that rely on localized modifications of cell polarity proteins and actin cytoskeletal components and activities.
Collapse
|
15
|
Mouse blastomeres acquire ability to divide asymmetrically before compaction. PLoS One 2017; 12:e0175032. [PMID: 28362853 PMCID: PMC5376319 DOI: 10.1371/journal.pone.0175032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/20/2017] [Indexed: 11/23/2022] Open
Abstract
The mouse preimplantation embryo generates the precursors of trophectoderm (TE) and inner cell mass (ICM) during the 8- to 16-cell stage transition, when the apico-basal polarized blastomeres undergo divisions that give rise to cells with different fate. Asymmetric segregation of polar domain at 8–16 cell division generate two cell types, polar cells which adopt an outer position and develop in TE and apolar cells which are allocated to inner position as the precursors of ICM. It is still not know when the blastomeres of 8-cell stage start to be determined to undergo asymmetric division. Here, we analyze the frequency of symmetric and asymmetric divisions of blastomeres isolated from 8-cell stage embryo before and after compaction. Using p-Ezrin as the polarity marker we found that size of blastomeres in 2/16 pairs cannot be used as a criterion for distinguishing symmetric and asymmetric divisions. Our results showed that at early 8-cell stage, before any visible signs of cortical polarity, a subset of blastomeres had been already predestined to divide asymmetrically. We also showed that almost all of 8-cell stage blastomeres isolated from compacted embryo divide asymmetrically, whereas in intact embryos, the frequency of asymmetric divisions is significantly lower. Therefore we conclude that in intact embryo the frequency of symmetric and asymmetric division is regulated by cell-cell interactions.
Collapse
|
16
|
Schatten H, Sun QY. Cytoskeletal Functions, Defects, and Dysfunctions Affecting Human Fertilization and Embryo Development. Hum Reprod 2016. [DOI: 10.1002/9781118849613.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology; University of Missouri; Columbia MO USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
17
|
Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 2016; 536:344-348. [PMID: 27487217 PMCID: PMC4998956 DOI: 10.1038/nature18958] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/23/2016] [Indexed: 12/23/2022]
Abstract
During pre-implantation development, the mammalian embryo self-organizes into the blastocyst, which consists of an epithelial layer encapsulating the inner-cell mass (ICM) giving rise to all embryonic tissues. In mice, oriented cell division, apicobasal polarity and actomyosin contractility are thought to contribute to the formation of the ICM. However, how these processes work together remains unclear. Here we show that asymmetric segregation of the apical domain generates blastomeres with different contractilities, which triggers their sorting into inner and outer positions. Three-dimensional physical modelling of embryo morphogenesis reveals that cells internalize only when differences in surface contractility exceed a predictable threshold. We validate this prediction using biophysical measurements, and successfully redirect cell sorting within the developing blastocyst using maternal myosin (Myh9)-knockout chimaeric embryos. Finally, we find that loss of contractility causes blastomeres to show ICM-like markers, regardless of their position. In particular, contractility controls Yap subcellular localization, raising the possibility that mechanosensing occurs during blastocyst lineage specification. We conclude that contractility couples the positioning and fate specification of blastomeres. We propose that this ensures the robust self-organization of blastomeres into the blastocyst, which confers remarkable regulative capacities to mammalian embryos.
Collapse
|
18
|
Humięcka M, Krupa M, Guzewska MM, Maleszewski M, Suwińska A. ESCs injected into the 8-cell stage mouse embryo modify pattern of cleavage and cell lineage specification. Mech Dev 2016; 141:40-50. [PMID: 27345419 DOI: 10.1016/j.mod.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 11/17/2022]
Abstract
During mouse embryogenesis initial specification of the cell fates depends on the type of division during 8- to 16- and 16- to 32-cell stage transition. A conservative division of a blastomere creates two polar outer daughter cells, which are precursors of the trophectoderm (TE), whereas a differentiative division gives rise to a polar outer cell and an apolar inner (the presumptive inner cell mass - ICM) cell. We hypothesize that the type of division may depend on the interactions between blastomeres of the embryo. To investigate whether modification of these interactions influences divisions, we analyzed the pattern of blastomere division and cell lineage specification in chimeric embryos obtained by injection of a different number of mouse embryonic stem cells (ESCs) into 8-cell embryos. As the ESCs populate only the ICM of the resulting chimeric blastocysts, they emulated in our model additional inner cells. We found that introduction of ESCs decreased the number of inner, apolar blastomeres at the 8- to 16-cell stage transition and reduced the number of ICM cells of host embryo-origin during formation of the blastocyst. Moreover, we showed that the proportion of inner blastomeres and their fate (EPI or PE) in chimeric blastocysts was dependent on the number of ESCs injected. Our results suggest the existence of a regulative mechanism, which links number of inner cells with a proportion of conservative vs. differentiative blastomere divisions during the cleavage and thus dictates their developmental fate.
Collapse
Affiliation(s)
- Monika Humięcka
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Krupa
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria M Guzewska
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marek Maleszewski
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Aneta Suwińska
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
19
|
Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement. Nat Commun 2015; 6:8872. [PMID: 26602832 PMCID: PMC4696517 DOI: 10.1038/ncomms9872] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 10/12/2015] [Indexed: 01/05/2023] Open
Abstract
Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.
Collapse
|
20
|
Samarage C, White M, Álvarez Y, Fierro-González J, Henon Y, Jesudason E, Bissiere S, Fouras A, Plachta N. Cortical Tension Allocates the First Inner Cells of the Mammalian Embryo. Dev Cell 2015; 34:435-47. [DOI: 10.1016/j.devcel.2015.07.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/18/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023]
|
21
|
Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y. Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development 2014; 141:2813-24. [PMID: 24948601 DOI: 10.1242/dev.107276] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the mouse embryo, asymmetric divisions during the 8-16 cell division generate two cell types, polar and apolar cells, that are allocated to outer and inner positions, respectively. This outer/inner configuration is the first sign of the formation of the first two cell lineages: trophectoderm (TE) and inner cell mass (ICM). Outer polar cells become TE and give rise to the placenta, whereas inner apolar cells become ICM and give rise to the embryo proper and yolk sac. Here, we analyze the frequency of asymmetric divisions during the 8-16 cell division and assess the relationships between cell polarity, cell and nuclear position, and Hippo signaling activation, the pathway that initiates lineage-specific gene expression in 16-cell embryos. Although the frequency of asymmetric divisions varied in each embryo, we found that more than six blastomeres divided asymmetrically in most embryos. Interestingly, many apolar cells in 16-cell embryos were located at outer positions, whereas only one or two apolar cells were located at inner positions. Live imaging analysis showed that outer apolar cells were eventually internalized by surrounding polar cells. Using isolated 8-cell blastomeres, we carefully analyzed the internalization process of apolar cells and found indications of higher cortical tension in apolar cells than in polar cells. Last, we found that apolar cells activate Hippo signaling prior to taking inner positions. Our results suggest that polar and apolar cells have intrinsic differences that establish outer/inner configuration and differentially regulate Hippo signaling to activate lineage-specific gene expression programs.
Collapse
Affiliation(s)
- Shihadeh Anani
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada Department of Human Genetics, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada
| | - Shivani Bhat
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada
| | - Nobuko Honma-Yamanaka
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada
| | - Dayana Krawchuk
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada Department of Human Genetics, McGill University, 1160 Pine Avenue West, Montreal, QC H3A1A3, Canada
| |
Collapse
|
22
|
Lanner F. Lineage specification in the early mouse embryo. Exp Cell Res 2013; 321:32-9. [PMID: 24333597 DOI: 10.1016/j.yexcr.2013.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
Abstract
Before the mammalian embryo is ready to implant in the uterine wall, the single cell zygote must divide and differentiate into three distinct tissues; trophectoderm (prospective placenta), primitive endoderm (prospective yolk sac), and pluripotent epiblast cells which will form the embryo proper. In this review I will discuss our current understanding of how positional information, cell polarization, signaling pathways, and transcription factor networks converge to drive and regulate the progressive segregation of the first three cell types in the mouse embryo.
Collapse
Affiliation(s)
- Fredrik Lanner
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Karolinska Universitetssjukhuset, K 57 CLINTEC, 141 86 Stockholm, Sweden.
| |
Collapse
|
23
|
A self-organization framework for symmetry breaking in the mammalian embryo. Nat Rev Mol Cell Biol 2013; 14:452-9. [PMID: 23778971 DOI: 10.1038/nrm3602] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying the appearance of asymmetry between cells in the early embryo and consequently the specification of distinct cell lineages during mammalian development remain elusive. Recent experimental advances have revealed unexpected dynamics of and new complexity in this process. These findings can be integrated in a new unified framework that regards the early mammalian embryo as a self-organizing system.
Collapse
|
24
|
Morrison JT, Bantilan NS, Wang VN, Nellett KM, Cruz YP. Expression patterns of Oct4, Cdx2, Tead4, and Yap1 proteins during blastocyst formation in embryos of the marsupial,Monodelphis domesticaWagner. Evol Dev 2013; 15:171-85. [DOI: 10.1111/ede.12031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J. T. Morrison
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - N. S. Bantilan
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - V. N. Wang
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - K. M. Nellett
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - Y. P. Cruz
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| |
Collapse
|
25
|
Lineage mapping the pre-implantation mouse embryo by two-photon microscopy, new insights into the segregation of cell fates. Dev Biol 2011; 355:239-49. [PMID: 21539832 PMCID: PMC3119919 DOI: 10.1016/j.ydbio.2011.04.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 11/20/2022]
Abstract
The first lineage segregation in the pre-implantation mouse embryo gives rise to cells of the inner cell mass and the trophectoderm. Segregation into these two lineages during the 8-cell to 32-cell stages is accompanied by a significant amount of cell displacement, and as such it has been difficult to accurately track cellular behavior using conventional imaging techniques. Consequently, how cellular behaviors correlate with cell fate choices is still not fully understood. To achieve the high spatial and temporal resolution necessary for tracking individual cell lineages, we utilized two-photon light-scanning microscopy (TPLSM) to visualize and follow every cell in the embryo using fluorescent markers. We found that cells undergoing asymmetric cell fate divisions originate from a unique population of cells that have been previously classified as either outer or inner cells. This imaging technique coupled with a tracking algorithm we developed allows us to show that these cells, which we refer to as intermediate cells, share features of inner cells but exhibit different dynamic behaviors and a tendency to expose their cell surface in the mouse embryo between the fourth and fifth cleavages. We provide an accurate description of the correlation between cell division order and cell fate, and demonstrate that cell cleavage angle is a more accurate indicator of cellular polarity than cell fate. Our studies demonstrate the utility of two-photon imaging in answering questions in the pre-implantation field that have previously been difficult or impossible to address. Our studies provide a framework for the future use of specific markers to track cell fate molecularly and with high accuracy.
Collapse
|