1
|
Liu W, Bruggeman JW, Lei Q, van Pelt AMM, Koster J, Hamer G. Germline specific genes increase DNA double-strand break repair and radioresistance in lung adenocarcinoma cells. Cell Death Dis 2024; 15:38. [PMID: 38216586 PMCID: PMC10786935 DOI: 10.1038/s41419-024-06433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
In principle, germline cells possess the capability to transmit a nearly unaltered set of genetic material to infinite future generations, whereas somatic cells are limited by strict growth constraints necessary to assure an organism's physical structure and eventual mortality. As the potential to replicate indefinitely is a key feature of cancer, we hypothesized that the activation of a "germline program" in somatic cells can contribute to oncogenesis. Our group recently described over one thousand germline specific genes that can be ectopically expressed in cancer, yet how germline specific processes contribute to the malignant properties of cancer is poorly understood. We here show that the expression of germ cell/cancer (GC) genes correlates with malignancy in lung adenocarcinoma (LUAD). We found that LUAD cells expressing more GC genes can repair DNA double strand breaks more rapidly, show higher rates of proliferation and are more resistant to ionizing radiation, compared to LUAD cells that express fewer GC genes. In particular, we identified the HORMA domain protein regulator TRIP13 to be predominantly responsible for this malignant phenotype, and that TRIP13 inhibition or expression levels affect the response to ionizing radiation and subsequent DNA repair. Our results demonstrate that GC genes are viable targets in oncology, as they induce increased radiation resistance and increased propagation in cancer cells. Because their expression is normally restricted to germline cells, we anticipate that GC gene directed therapeutic options will effectively target cancer, with limited side effects besides (temporary) infertility.
Collapse
Affiliation(s)
- Wenqing Liu
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jan Willem Bruggeman
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Qijing Lei
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Houri A, Mukudai Y, Abe Y, Watanabe M, Nara M, Miyamoto S, Kurihara M, Shimane T, Shirota T. Suprabasin enhances the invasion, migration, and angiogenic ability of oral squamous cell carcinoma cells under hypoxic conditions. Oncol Rep 2023; 49:83. [PMID: 36896786 PMCID: PMC10035061 DOI: 10.3892/or.2023.8520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/09/2023] [Indexed: 03/10/2023] Open
Abstract
Suprabasin (SBSN) is a secreted protein that is isolated as a novel gene expressed in differentiated keratinocytes in mice and humans. It induces various cellular processes such as proliferation, invasion, metastasis, migration, angiogenesis, apoptosis, therapy and immune resistance. The role of SBSN was investigated in oral squamous cell carcinoma (OSCC) under hypoxic conditions using the SAS, HSC‑3, and HSC‑4 cell lines. Hypoxia induced SBSN mRNA and protein expression in OSCC cells and normal human epidermal keratinocytes (NHEKs), and this was most prominent in SAS cells. The function of SBSN in SAS cells was analyzed using 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT); 5‑bromo‑2'‑deoxyuridine (BrdU); cell cycle, caspase 3/7, invasion, migration, and tube formation assays; and gelatin zymography. Overexpression of SBSN decreased MTT activity, but the results of BrdU and cell cycle assays indicated upregulation of cell proliferation. Western blot analysis for cyclin‑related proteins indicated involvement of cyclin pathways. However, SBSN did not strongly suppress apoptosis and autophagy, as revealed by caspase 3/7 assay and western blotting for p62 and LC3. Additionally, SBSN increased cell invasion more under hypoxia than under normoxia, and this resulted from increased cell migration, not from matrix metalloprotease activity or epithelial‑mesenchymal transition. Furthermore, SBSN induced angiogenesis more strongly under hypoxia than under normoxia. Analysis using reverse transcription‑quantitative PCR showed that vascular endothelial growth factor (VEGF) mRNA was not altered by the knockdown or overexpression of SBSN VEGF, suggesting that VEGF is not located downstream of SBSN. These results demonstrated the importance of SBSN in the maintenance of survival and proliferation, invasion and angiogenesis of OSCC cells under hypoxia.
Collapse
Affiliation(s)
- Asami Houri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota‑ku, Tokyo 145‑8515, Japan
| | - Yoshiki Mukudai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota‑ku, Tokyo 145‑8515, Japan
| | - Yuzo Abe
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota‑ku, Tokyo 145‑8515, Japan
| | - Masataka Watanabe
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota‑ku, Tokyo 145‑8515, Japan
| | - Maki Nara
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota‑ku, Tokyo 145‑8515, Japan
| | - Saya Miyamoto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota‑ku, Tokyo 145‑8515, Japan
| | - Mai Kurihara
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota‑ku, Tokyo 145‑8515, Japan
| | - Toshikazu Shimane
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota‑ku, Tokyo 145‑8515, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Ota‑ku, Tokyo 145‑8515, Japan
| |
Collapse
|
3
|
Bai R, Yuan C. Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1): A Promising Cancer Testis Antigen. Aging Dis 2022; 13:1267-1277. [PMID: 35855340 PMCID: PMC9286905 DOI: 10.14336/ad.2021.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer has always been a huge problem in the field of human health, and its early diagnosis and treatment are the key to solving this problem. Cancer testis antigens (CTAs) are a family of multifunctional proteins that are specifically expressed in male spermatozoa and tumor cells but not in healthy somatic cells. Studies have found that CTAs are involved in the occurrence and development of tumors, and some CTAs trigger immunogenicity, which suggests a possibility of tumor immunotherapy. The differential expression and function of CTAs in normal tissues and tumor cells can promote the screening of tumor markers and the development of new immunotherapies. This article introduces the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1), a new member of the CTA family, in different types of tumors and its role in immunotherapy.
Collapse
Affiliation(s)
- Rui Bai
- 1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Yuan
- 2Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Zhou Z, Zhang Z, Chen H, Bao W, Kuang X, Zhou P, Gao Z, Li D, Xie X, Yang C, Chen X, Pan J, Tang R, Feng Z, Zhou L, Wang L, Yang J, Jiang L. SBSN drives bladder cancer metastasis via EGFR/SRC/STAT3 signalling. Br J Cancer 2022; 127:211-222. [PMID: 35484216 PMCID: PMC9296541 DOI: 10.1038/s41416-022-01794-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients with metastatic bladder cancer have very poor prognosis and predictive biomarkers are urgently needed for early clinical detection and intervention. In this study, we evaluate the effect and mechanism of Suprabasin (SBSN) on bladder cancer metastasis. METHODS A tissue array was used to detect SBSN expression by immunohistochemistry. A tumour-bearing mouse model was used for metastasis evaluation in vivo. Transwell and wound-healing assays were used for in vitro evaluation of migration and invasion. Comprehensive molecular screening was achieved by western blotting, immunofluorescence, luciferase reporter assay, and ELISA. RESULTS SBSN was found markedly overexpressed in bladder cancer, and indicated poor prognosis of patients. SBSN promoted invasion and metastasis of bladder cancer cells both in vivo and in vitro. The secreted SBSN exhibited identical biological function and regulation in bladder cancer metastasis, and the interaction of secreted SBSN and EGFR could play an essential role in activating the signalling in which SBSN enhanced the phosphorylation of EGFR and SRC kinase, followed with phosphorylation and nuclear location of STAT3. CONCLUSIONS Our findings highlight that SBSN, and secreted SBSN, promote bladder cancer metastasis through activation of EGFR/SRC/STAT3 pathway and identify SBSN as a potential diagnostic and therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Zhongqiu Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.,Meishan Women and Children's Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, 620000, Meishan, China
| | - Zhuojun Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Han Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Wenhao Bao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xiangqin Kuang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Ping Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Zhiqing Gao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Difeng Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xiaoyi Xie
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Chunxiao Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xuhong Chen
- Medical Research Center, Southern University of Science and Technology Hospital, 518055, Shenzhen, China
| | - Jinyuan Pan
- Department of Oncology, Huanggang Central Hospital of Yangtze University, 438000, Huanggang, China
| | - Ruiming Tang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangzhou, China
| | - Zhengfu Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangzhou, China
| | - Lihuan Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518, Guangzhou, China
| | - Lan Wang
- Department of Pathogen Biology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Jianan Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China. .,Department of Urologic Oncosurgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China.
| | - Lili Jiang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 510095, Guangzhou, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, 511436, Guangzhou, China.
| |
Collapse
|
5
|
Tan H, Wang L, Liu Z. Role of Suprabasin in the Dedifferentiation of Follicular Epithelial Cell-Derived Thyroid Cancer and Identification of Related Immune Markers. Front Genet 2022; 13:810681. [PMID: 35222534 PMCID: PMC8865917 DOI: 10.3389/fgene.2022.810681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Aberrant regulation of suprabasin (SBSN) is associated with the development of cancer and immune disorders. SBSN influences tumor cell migration, proliferation, angiogenesis, and immune resistance. In this study, we investigated the potential correlation between SBSN expression and immune infiltration in thyroid cancer. Methods: The expression of SBSN in 80 papillary thyroid carcinoma (PTC) specimens was determined using quantitative reverse-transcription polymerase chain reaction, western blotting, and immunohistochemical staining. The expression of SBSN in 9 cases of poorly differentiated thyroid carcinoma (PDTC) and 18 cases of anaplastic thyroid carcinoma (ATC) was evaluated by immunohistochemical staining. Comprehensive bioinformatics analysis of SBSN expression was performed using The Cancer Genome Atlas and Gene Expression Omnibus datasets, and the relationship of SBSN expression with M2 macrophages and T regulatory cells (Tregs) in ATC and PTC was verified by immunohistochemical staining. Results: Compared with those in adjacent normal tissues, the expression levels of SBSN mRNA and protein were significantly higher in PTC tissues. SBSN expression level was correlated with that of cervical lymph node metastasis in PTC patients. Immunohistochemical staining results showed statistically significant differences among high-positive expression rates of SBSN in PTC, PDTC, and ATC. Functional enrichment analysis showed that SBSN expression was associated with pathways related to cancer, cell signaling, and immune response. Furthermore, analysis of the tumor microenvironment (using CIBERSORT-ABS and xCell algorithms) showed that SBSN expression affected immune cell infiltration and the cancer immunity cycle, and immunohistochemistry confirmed a significant increase in M2 macrophage and Treg infiltration in tumor tissues with high-positive SBSN expression. Conclusion: These findings reveal that SBSN may be involved in thyroid carcinogenesis, tumor dedifferentiation progression, and immunosuppression as an important regulator of tumor immune cell infiltration.
Collapse
|
6
|
Suprabasin: Role in human cancers and other diseases. Mol Biol Rep 2021; 49:1453-1461. [PMID: 34775572 DOI: 10.1007/s11033-021-06897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Suprabasin (SBSN), a gene with unknown function located in q13 region of chromosome 19, was first found to be expressed in the basal layer of the stratified epithelium in mouse and human tissues and was thought to be a potential precursor of keratinized capsules. However, in recent years, significant progress has been made in the study of SBSN in a variety of human diseases. One common theme appears to be the effect of SBSN on tumor progression, such as invasion, metastasis and resistance. However, the function and mechanism of action of SBSN is still elusive. In this study, we reviewed the literature on SBSN in the PubMed database to identify the basic characteristics, biological functions, and roles of SBSN in cancer and other diseases. In particular, we focused on the potential mechanisms of SBSN activity, to improve our understanding of the complex function of this protein and provide a theoretical basis for further research on the role of SBSN in cancer and other diseases.
Collapse
|
7
|
Takahashi K, Asano N, Imatani A, Kondo Y, Saito M, Takeuchi A, Jin X, Saito M, Hatta W, Asanuma K, Uno K, Koike T, Masamune A. Sox2 induces tumorigenesis and angiogenesis of early-stage esophageal squamous cell carcinoma through secretion of Suprabasin. Carcinogenesis 2021; 41:1543-1552. [PMID: 32055838 DOI: 10.1093/carcin/bgaa014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Early stage of esophageal squamous cell carcinoma (ESCC) is known to be accompanied by angiogenesis and morphological changes of microvessels. Transcription factor Sox2 is amplified in various cancers including ESCC, but the role of Sox2 in the carcinogenesis and angiogenesis has not been determined. Hence, we aimed to investigate the role of Sox2 in the early stage of ESCC. We found that the expression of Sox2 was significantly higher in early-stage ESCC tissues than that in their adjacent normal tissues. We then established Sox2-inducible normal human esophageal squamous cell line (HetSox2) to investigate the role of Sox2 in esophageal carcinogenesis and angiogenesis in vitro. Sox2 overexpression led to increased cell proliferation and spheroid formation. The culture supernatant of Sox2-overexpressing HetSox2 induced migration and sprouting of endothelial cell line HUVEC (human umbilical vein endothelial cell). As for the mechanism, we found that the expression of secreted protein Suprabasin was directly induced by Sox2. Suprabasin enhanced proliferation of normal human esophageal squamous cells when added to the culture. Moreover, Suprabasin enhanced migration and sprouting of HUVEC cells, which were observed with the culture supernatant of Sox2-overexpressing HetSox2. This angiogenic effect of Suprabasin was abolished by inhibiting AKT phosphorylation, which suggested its dependence on AKT signaling. Finally, we showed that Suprabasin expression and the density of microvessels were significantly higher in ESCC tissues with high Sox2 expression. Our study suggested that increased Sox2 expression in esophageal squamous cells induced Suprabasin expression, and as a result initiated the carcinogenesis via increased cell proliferation and angiogenesis.
Collapse
Affiliation(s)
- Kiichi Takahashi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yutaka Kondo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masashi Saito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akio Takeuchi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Xiaoyi Jin
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masahiro Saito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Waku Hatta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kiyotaka Asanuma
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
8
|
Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021; 83:422-440. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT, 160019, India
| | - Sandeep Kumar
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
9
|
Abstract
Among the ~22,000 human genes, very few remain that have unknown functions. One such example is suprabasin (SBSN). Originally described as a component of the cornified envelope, the function of stratified epithelia-expressed SBSN is unknown. Both the lack of knowledge about the gene role under physiological conditions and the emerging link of SBSN to various human diseases, including cancer, attract research interest. The association of SBSN expression with poor prognosis of patients suffering from oesophageal carcinoma, glioblastoma multiforme, and myelodysplastic syndromes suggests that SBSN may play a role in human tumourigenesis. Three SBSN isoforms code for the secreted proteins with putative function as signalling molecules, yet with poorly described effects. In this first review about SBSN, we summarised the current knowledge accumulated since its original description, and we discuss the potential mechanisms and roles of SBSN in both physiology and pathology.
Collapse
|
10
|
Taguchi T, Kodera Y, Oba K, Saito T, Nakagawa Y, Kawashima Y, Shichiri M. Suprabasin-derived bioactive peptides identified by plasma peptidomics. Sci Rep 2021; 11:1047. [PMID: 33441610 PMCID: PMC7806982 DOI: 10.1038/s41598-020-79353-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/08/2020] [Indexed: 01/29/2023] Open
Abstract
Identification of low-abundance, low-molecular-weight native peptides using non-tryptic plasma has long remained an unmet challenge, leaving potential bioactive/biomarker peptides undiscovered. We have succeeded in efficiently removing high-abundance plasma proteins to enrich and comprehensively identify low-molecular-weight native peptides using mass spectrometry. Native peptide sequences were chemically synthesized and subsequent functional analyses resulted in the discovery of three novel bioactive polypeptides derived from an epidermal differentiation marker protein, suprabasin. SBSN_HUMAN[279-295] potently suppressed food/water intake and induced locomotor activity when injected intraperitoneally, while SBSN_HUMAN[225-237] and SBSN_HUMAN[243-259] stimulated the expression of proinflammatory cytokines via activation of NF-κB signaling in vascular cells. SBSN_HUMAN[225-237] and SBSN_HUMAN[279-295] immunoreactivities were present in almost all human organs analyzed, while immunoreactive SBSN_HUMAN[243-259] was abundant in the liver and pancreas. Human macrophages expressed the three suprabasin-derived peptides. This study illustrates a new approach for discovering unknown bioactive peptides in plasma via the generation of peptide libraries using a novel peptidomic strategy.
Collapse
Affiliation(s)
- Tomomi Taguchi
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Yoshio Kodera
- grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan ,grid.410786.c0000 0000 9206 2938Center for Disease Proteomics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Kazuhito Oba
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Tatsuya Saito
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan ,grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Yuzuru Nakagawa
- grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Yusuke Kawashima
- grid.410786.c0000 0000 9206 2938Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373 Japan
| | - Masayoshi Shichiri
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| |
Collapse
|
11
|
Xu D, Dang W, Wang S, Hu B, Yin L, Guan B. An optimal prognostic model based on gene expression for clear cell renal cell carcinoma. Oncol Lett 2020; 20:2420-2434. [PMID: 32782559 PMCID: PMC7400162 DOI: 10.3892/ol.2020.11780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/06/2020] [Indexed: 12/11/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of RCC; however, prognostic prediction tools for ccRCC are scant. Developing mRNA or long non-coding RNA (lncRNA)-based risk assessment tools may improve the prognosis in patients with ccRCC. RNA-sequencing and prognostic data from patients with ccRCC were downloaded from The Cancer Genome Atlas and the European Bioinformatics Institute Array database at the National Center for Biotechnology Information. Differentially expressed (DE) RNAs (DERs) and prognostic DERs were screened between less favorable and favorable prognoses using the limma package in R 3.4.1, and analyzed using univariate and multivariate Cox regression analyses, respectively. Risk score models were constructed using optimal combinations of DEmRNAs and DElncRNAs identified using the Least Absolute Shrinkage And Selection Operator Cox regression model of the penalized package. Associations between risk score models and overall survival time were evaluated. Independent prognostic clinical factors were screened using univariate and multivariate Cox regression analyses, and nomogram models were constructed. Gene Ontology biological processes and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted using the clusterProfiler package in R3.4.1. A total of 451 DERs were identified, including 404 mRNAs and 47 lncRNAs, between less favorable and favorable prognoses, and 269 DERs, including 233 mRNAs and 36 lncRNAs, were identified as independent prognostic factors. Optimal combinations including 10 DEmRNAs or 10 DElncRNAs were screened using four risk score models based on the status or expression levels of the 10 DEmRNAs or 10 DElncRNAs. The model based on the expression levels of the 10 DEmRNAs had the highest prognostic power. These prognostic DEmRNAs may be involved in biological processes associated with the inflammatory response, complement and coagulation cascades and neuroactive ligand-receptor interaction pathways. The present validated risk assessment tool based on the expression levels of these 10 DEmRNAs may help to identify patients with ccRCC at a high risk of mortality. These 10 DEmRNAs in optimal combinations may serve as prognostic biomarkers and help to elucidate the pathogenesis of ccRCC.
Collapse
Affiliation(s)
- Dan Xu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Wantai Dang
- Department of Rheumatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Shaoqing Wang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P.R. China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Baozhang Guan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
12
|
Naciri I, Laisné M, Ferry L, Bourmaud M, Gupta N, Di Carlo S, Huna A, Martin N, Peduto L, Bernard D, Kirsh O, Defossez PA. Genetic screens reveal mechanisms for the transcriptional regulation of tissue-specific genes in normal cells and tumors. Nucleic Acids Res 2019; 47:3407-3421. [PMID: 30753595 PMCID: PMC6468300 DOI: 10.1093/nar/gkz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The proper tissue-specific regulation of gene expression is essential for development and homeostasis in metazoans. However, the illegitimate expression of normally tissue-restricted genes—like testis- or placenta-specific genes—is frequently observed in tumors; this promotes transformation, but also allows immunotherapy. Two important questions are: how is the expression of these genes controlled in healthy cells? And how is this altered in cancer? To address these questions, we used an unbiased approach to test the ability of 350 distinct genetic or epigenetic perturbations to induce the illegitimate expression of over 40 tissue-restricted genes in primary human cells. We find that almost all of these genes are remarkably resistant to reactivation by a single alteration in signaling pathways or chromatin regulation. However, a few genes differ and are more readily activated; one is the placenta-expressed gene ADAM12, which promotes invasion. Using cellular systems, an animal model, and bioinformatics, we find that a non-canonical but druggable TGF-β/KAT2A/TAK1 axis controls ADAM12 induction in normal and cancer cells. More broadly, our data show that illegitimate gene expression in cancer is an heterogeneous phenomenon, with a few genes activatable by simple events, and most genes likely requiring a combination of events to become reactivated.
Collapse
Affiliation(s)
- Ikrame Naciri
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Marthe Laisné
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Laure Ferry
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Morgane Bourmaud
- INSERM U1132 and USPC Paris-Diderot, Hôpital Lariboisière, Paris, France
| | - Nikhil Gupta
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Selene Di Carlo
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - Anda Huna
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Lucie Peduto
- Unité Stroma, Inflammation & Tissue Repair, Institut Pasteur, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Olivier Kirsh
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Pierre-Antoine Defossez
- Univ. Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| |
Collapse
|
13
|
Hubackova S, Pribyl M, Kyjacova L, Moudra A, Dzijak R, Salovska B, Strnad H, Tambor V, Imrichova T, Svec J, Vodicka P, Vaclavikova R, Rob L, Bartek J, Hodny Z. Interferon-regulated suprabasin is essential for stress-induced stem-like cell conversion and therapy resistance of human malignancies. Mol Oncol 2019; 13:1467-1489. [PMID: 30919591 PMCID: PMC6599850 DOI: 10.1002/1878-0261.12480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 11/12/2022] Open
Abstract
Radiation and chemotherapy represent standard-of-care cancer treatments. However, most patients eventually experience tumour recurrence, treatment failure and metastatic dissemination with fatal consequences. To elucidate the molecular mechanisms of resistance to radio- and chemotherapy, we exposed human cancer cell lines (HeLa, MCF-7 and DU145) to clinically relevant doses of 5-azacytidine or ionizing radiation and compared the transcript profiles of all surviving cell subpopulations, including low-adherent stem-like cells. Stress-mobilized low-adherent cell fractions differed from other survivors in terms of deregulation of hundreds of genes, including those involved in interferon response. Exposure of cancer cells to interferon-gamma but not interferon-beta resulted in the development of a heterogeneous, low-adherent fraction comprising not only apoptotic/necrotic cells but also live cells exhibiting active Notch signalling and expressing stem-cell markers. Chemical inhibition of mitogen-activated protein kinase/ERK kinase (MEK) or siRNA-mediated knockdown of extracellular signal-regulated kinase 1/2 (Erk1/2) and interferon responsible factor 1 (IRF1) prevented mobilization of the surviving low-adherent population, indicating that interferon-gamma-mediated loss of adhesion and anoikis resistance required an active Erk pathway interlinked with interferon signalling by transcription factor IRF1. Notably, a skin-specific protein suprabasin (SBSN), a recently identified oncoprotein, was among the top scoring genes upregulated in surviving low-adherent cancer cells induced by 5-azacytidine or irradiation. SBSN expression required the activity of the MEK/Erk pathway, and siRNA-mediated knockdown of SBSN suppressed the low-adherent fraction in irradiated, interferon-gamma- and 5-azacytidine-treated cells, respectively, implicating SBSN in genotoxic stress-induced phenotypic plasticity and stress resistance. Importantly, SBSN expression was observed in human clinical specimens of colon and ovarian carcinomas, as well as in circulating tumour cells and metastases of the 4T1 mouse model. The association of SBSN expression with progressive stages of cancer development indicates its role in cancer evolution and therapy resistance.
Collapse
Affiliation(s)
- Sona Hubackova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic.,Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Miroslav Pribyl
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Lenka Kyjacova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Alena Moudra
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Rastislav Dzijak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Barbora Salovska
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Vojtech Tambor
- Biomedical Research Center, University Hospital Hradec Kralove, Czech Republic
| | - Terezie Imrichova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Jiri Svec
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic.,Department of Radiotherapy and Oncology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Prague, Czech Republic
| | - Radka Vaclavikova
- Laboratory of Pharmacogenomics, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Third Faculty of Medicine, Vinohrady University Hospital, Charles University, Prague, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic.,Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| |
Collapse
|
14
|
Alciaturi J, Anesetti G, Irigoin F, Skowronek F, Sapiro R. Distribution of sperm antigen 6 (SPAG6) and 16 (SPAG16) in mouse ciliated and non-ciliated tissues. J Mol Histol 2019; 50:189-202. [PMID: 30911868 DOI: 10.1007/s10735-019-09817-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
The cilia and flagella of eukaryotic cells serve many functions, exhibiting remarkable conservation of both structure and molecular composition in widely divergent eukaryotic organisms. SPAG6 and SPAG16 are the homologous in the mice to Chlamydomonas reinhardtii PF16 and PF20. Both proteins are associated with the axonemal central apparatus and are essential for ciliary and flagellar motility in mammals. Recent data derived from high-throughput studies revealed expression of these genes in tissues that do not contain motile cilia. However, the distribution of SPAG6 and SPAG16 in ciliated and non-ciliated tissues is not completely understood. In this work, we performed a quantitative analysis of the expression of Spag6 and Spag16 genes in parallel with the immune-localization of the proteins in several tissues of adult mice. Expression of mRNA was higher in the testis and tissues bearing motile cilia than in the other analyzed tissues. Both proteins were present in ciliated and non-ciliated tissues. In the testis, SPAG6 was detected in spermatogonia, spermatocytes, and in the sperm flagella whereas SPAG16 was found in spermatocytes and in the sperm flagella. In addition, both proteins were detected in the cytoplasm of cells from the brain, spinal cord, and ovary. A small isoform of SPAG16 was localized in the nucleus of germ cells and some neurons. In a parallel set of experiments, we overexpressed EGFP-SPAG6 in cultured cells and observed that the protein co-localized with a subset of acetylated cytoplasmic microtubules. A role of these proteins stabilizing the cytoplasmic microtubules of eukaryotic cells is discussed.
Collapse
Affiliation(s)
- Jimena Alciaturi
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Gabriel Anesetti
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Florencia Irigoin
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay.,Laboratorio de Genética Molecular Humana, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay
| | - Fernanda Skowronek
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay
| | - Rossana Sapiro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, Montevideo, Uruguay.
| |
Collapse
|
15
|
He Z, Wang X, Huang C, Gao Y, Yang C, Zeng P, Chen Z. The FENDRR/miR-214-3P/TET2 axis affects cell malignant activity via RASSF1A methylation in gastric cancer. Am J Transl Res 2018; 10:3211-3223. [PMID: 30416662 PMCID: PMC6220211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/22/2018] [Indexed: 06/09/2023]
Abstract
To explore the effect of fetal-lethal non-coding developmental regulatory RNA (FENDRR) in the initiation and progression of gastric cancer (GC). We detected the levels of FENDRR, microRNA-214-3p (miR-214-3p), and ten-eleven-translocation (TET2) in GC tissues and GC cell lines. In addition, we evaluated the location of FENDRR in GC cell lines by fluorescence in situ hybridization (FISH). Cell proliferation and apoptosis were measured by CCK-8 and Hoechst staining assays. Methylation-specific PCR assay (MSP) was used to evaluate the methylation status of ras-association domain family 1A (RASSF1A). We also observed the direct binding of miR-214-3p on FENDRR by dual-luciferase activity assay in GC cells. FENDRR and TET2 expressions were significantly down-regulated and miR-214-3p was up-regulated in gastric cancer tissues compared to adjacent unaffected tissues. In addition, RASSF1A was hypermethylated in gastric cancer tissues compared to adjacent tissues. The expressions of all the three indicators were influenced by differentiation of tumor, TNM stage of tumors, and lymph node metastasis in patients with GC. A gastric cancer cell line with low FENDRR expression compared to a high FENDRR expressing cell line showed again increased miR-214-3p expression, decreased TET2 and RASSF1A expressions, and RASSF1A hypermethylation, resulting in decreased apoptosis and increased proliferation. Furthermore, we observed a negative correlation between FENDRR and miR-214-3p in GC. The FENDRR/miR-214-3P/TET2 axis plays a critical role in GC progress via methylation of RASSF1A.
Collapse
Affiliation(s)
- Zhaocai He
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha, China
- Department of General Surgery, Heping Hospital Affiliated to Changzhi Medical CollegeChangzhi, China
| | - Xin Wang
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha, China
| | - Changhao Huang
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha, China
| | - Yu Gao
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha, China
| | - Chen Yang
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha, China
| | - Pengwei Zeng
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha, China
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
16
|
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int 2018; 18:154. [PMID: 30323717 PMCID: PMC6173857 DOI: 10.1186/s12935-018-0650-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
BORIS (CTCFL) is a DNA binding protein which is involved in tumorigenesis. Although, there are different opinions on the level of gene expression and function of BORIS in normal and cancer tissues, the results of many studies have classified BORIS as a protein belonging to cancer/testis (CT) genes, which are identified as a group of genes that are expressed normally in testis, and abnormally in various types of cancers. In testis, BORIS induces the expression of some male germ cell/testis specific genes, and plays crucial roles during spermatogenesis and production of sperm. In tumorigenesis, the role of BORIS in the expression induction of some CT genes and oncogenes, as well as increasing proliferation/viability of cancer cells has been demonstrated in many researches. In addition to cancer cells, some believe that BORIS is also expressed in normal conditions and plays a universal function in cell division and regulation of genes. The following is a comprehensive review on contradictory views on the expression pattern and biological function of BORIS in normal, as well as cancer cells/tissues, and presents some evidence that support the expression of BORIS in cancer stem cells (CSCs) and advanced stage/poorer differentiation grade of cancers. Boris is involved in the regulation of CSC cellular and molecular features such as self-renewal, chemo-resistance, tumorigenicity, sphere-forming ability, and migration capacity. Finally, the role of BORIS in regulating two important signaling pathways including Wnt/β-catenin and Notch in CSCs, and its ability in recruiting transcription factors or chromatin-remodeling proteins to induce tumorigenesis is discussed.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91775-1793 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
17
|
Hatamipour M, Ramezani M, Tabassi SAS, Johnston TP, Ramezani M, Sahebkar A. Demethoxycurcumin: A naturally occurring curcumin analogue with antitumor properties. J Cell Physiol 2018; 233:9247-9260. [PMID: 30076727 DOI: 10.1002/jcp.27029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
The eradication of cancer in a patient remains an elusive challenge despite advances in early detection and diagnosis, chemo- and immunotherapy, pinpoint radiation treatments, and expert surgical intervention. Although significant gains have been made in our understanding of cancer cell biology, a definite cure for most cancers does not exist at present. Thus, it is not surprising that the research and medical communities continue to explore the importance and therapeutic potential of natural products in their multimodality cancer treatment approach. Curcuminoids found in turmeric are one such class of natural products that have been extensively investigated for their potential to halt the progression of cancer cell proliferation and, more important, to stop metastasis from occurring. In this review, we examine one curcuminoid (demethoxycurcumin [DMC]) largely because of its increased stability and better aqueous solubility at physiological pH, unlike the more well-known curcuminoid (curcumin), which is largely unabsorbed after oral ingestion. The present review will focus on the signaling pathways that DMC utilizes to modulate the growth, invasion, and metastasis of cancer cells in an effort to provide enhanced mechanistic insight into DMC's action as it pertains to brain, ovarian, breast, lung, skin, and prostate cancer. Additionally, this review will attempt to provide an overview of DMC's mechanism of action by modulating apoptosis, cell cycle, angiogenesis, metastasis, and chemosensitivity. Lastly, it is hoped that increased understanding will be gained concerning DMC's interactive role with microRNA-551a, 5' adenosine monophosphate-activated protein kinase, nuclear factor-κB, Wnt inhibitory factor-1, and heat shock protein 70 to affect the progression of cancer.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thomas P Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| | - Mahnaz Ramezani
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amirhosein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Rosetti F, Crispín JC. Intrathecal anti-suprabasin antibodies in SLE, a cause of local concern? Clin Immunol 2018; 193:131-132. [DOI: 10.1016/j.clim.2017.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 11/26/2022]
|
19
|
Mahmoud AM. Cancer testis antigens as immunogenic and oncogenic targets in breast cancer. Immunotherapy 2018; 10:769-778. [PMID: 29926750 PMCID: PMC6462849 DOI: 10.2217/imt-2017-0179] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/16/2018] [Indexed: 01/07/2023] Open
Abstract
Breast cancer cells frequently express tumor-associated antigens that can elicit immune responses to eradicate cancer. Cancer-testis antigens (CTAs) are a group of tumor-associated antigens that might serve as ideal targets for cancer immunotherapy because of their cancer-restricted expression and robust immunogenicity. Previous clinical studies reported that CTAs are associated with negative hormonal status, aggressive tumor behavior and poor survival. Furthermore, experimental studies have shown the ability of CTAs to induce both cellular and humoral immune responses. They also demonstrated the implication of CTAs in promoting cancer cell growth, inhibiting apoptosis and inducing cancer cell invasion and migration. In the current review, we attempt to address the immunogenic and oncogenic potential of CTAs and their current utilization in therapeutic interventions for breast cancer.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71111, Egypt
| |
Collapse
|
20
|
Proteomic approach to profiling immune complex antigens in cerebrospinal fluid samples from patients with central nervous system autoimmune diseases. Clin Chim Acta 2018; 484:26-31. [PMID: 29775619 DOI: 10.1016/j.cca.2018.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Immune complexes (ICs) may clearly reflect immunological abnormalities caused by disease, especially for autoimmune diseases. Although ICs have been detected in cerebrospinal fluid (CSF) from patients with CNS autoimmune diseases, identities of antigens in such ICs have not been comprehensively determined. METHODS We used immune complexome analysis, in which nano-liquid chromatography-tandem mass spectrometry is employed to comprehensively identify antigens incorporated into ICs in biological fluids, to characterize ICs in CSF samples from patients with CNS autoimmune diseases, and to find disease-specific IC antigen to a certain CNS autoimmune disease. Also, we compared the IC antigens we identified with the reported CSF proteome or with the published plasma proteome to examine if the method is distinguished from the conventional CSF proteome analysis. RESULTS We identified 176 antigens in 78 CSF samples. We then assessed the overlaps among these antigens, the CSF proteome, and the plasma proteome; 140 of the 176 antigens were found to be exclusively detected by our method. Notably, IC-associated suprabasin in CSF was 100% specific to neuropsychiatric systemic lupus erythematosus (NPSLE). CONCLUSIONS This report is the first to comprehensively identify the antigens incorporated into ICs in CSF. There was limited overlap between the antigens we identified and the CSF proteome or the plasma proteome; therefore, our method can be distinguished from the conventional CSF proteome analysis. Although the sensitivity of disease-specific IC-antigens detected in immune complexome analysis screening, the sensitivity may be improved by developing an ELISA method specifically for detecting the ICs. Immune complexome analysis of CSF may be a new and promising path to biomarker discovery for diagnosis and study for CNS autoimmune diseases.
Collapse
|
21
|
|
22
|
Djureinovic D, Hallström BM, Horie M, Mattsson JSM, La Fleur L, Fagerberg L, Brunnström H, Lindskog C, Madjar K, Rahnenführer J, Ekman S, Ståhle E, Koyi H, Brandén E, Edlund K, Hengstler JG, Lambe M, Saito A, Botling J, Pontén F, Uhlén M, Micke P. Profiling cancer testis antigens in non-small-cell lung cancer. JCI Insight 2016; 1:e86837. [PMID: 27699219 PMCID: PMC5033889 DOI: 10.1172/jci.insight.86837] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022] Open
Abstract
Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non-small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.
Collapse
Affiliation(s)
- Dijana Djureinovic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Björn M. Hallström
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Linnea La Fleur
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hans Brunnström
- Department of Pathology, Regional Laboratories Region Skåne, Lund, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katrin Madjar
- Department of Statistics, Technical University of Dortmund, Dortmund, Germany
| | - Jörg Rahnenführer
- Department of Statistics, Technical University of Dortmund, Dortmund, Germany
| | - Simon Ekman
- Department of Radiology, Oncology and Radiation Sciences, Section of Oncology, and
| | - Elisabeth Ståhle
- Department of Clinical Sciences, Uppsala University, Uppsala, Sweden
| | - Hirsh Koyi
- Department of Respiratory Medicine, Centre for Research and Development, Uppsala University, County Council of Gävleborg, Gävle, Sweden
| | - Eva Brandén
- Department of Respiratory Medicine, Centre for Research and Development, Uppsala University, County Council of Gävleborg, Gävle, Sweden
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Dortmund, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Dortmund, Germany
| | - Mats Lambe
- Uppsala University Hospital, Regional Cancer Center, Uppsala, Sweden
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Husni RE, Shiba-Ishii A, Iiyama S, Shiozawa T, Kim Y, Nakagawa T, Sato T, Kano J, Minami Y, Noguchi M. DNMT3a expression pattern and its prognostic value in lung adenocarcinoma. Lung Cancer 2016; 97:59-65. [PMID: 27237029 DOI: 10.1016/j.lungcan.2016.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 01/28/2023]
Abstract
OBJECTIVES DNA methyltransferases (DNMTs) are an important part of the methylation pathway that is highly correlated with the pathophysiology of cancers. Several studies have reported overexpression of DNMTs in human lung cancer, but none have compared the expression pattern to pathological features. In this study, we clarified the association of DNMT3a expression pattern with pathological features and prognosis of lung adenocarcinoma. MATERIALS AND METHODS 135 cases of surgically resected lung adenocarcinoma specimens were used for DNMT3a immunohistochemistry (IHC). IHC score was determined by counting the number of positive nuclei. The ROC curve was drawn to determine the best cut-off point of the score; this was set at 57.5. Western blot also implemented and confirmed the specificity of the antibody. Correlations between expression pattern and clinicopathological features and prognosis were analyzed using chi-squared method and Cox proportional hazards model respectively. RESULT Seventy-nine of the 135 cases (58.5%) showed strong positive reactivity to anti-DNMT3a. In terms of histological subtypes, among invasive lung adenocarcinomas 41 out of 53 lepidic adenocarcinomas (77%) were strongly positive, while among the other histological subtypes only 23 out of 66 cases (34.8%) showed a positive reaction. Among non-invasive lung adenocarcinomas 15 out of 16 cases (93.8%) were strongly positive. The level of DNMT3a expression was associated with patient outcome, and patients with weak expression of DNMT3a had a poorer outcome than those with strong expression. Multivariate analysis also indicated that DNMT3a is an independent prognostic marker in lung adenocarcinoma. CONCLUSION Our results indicate that DNMT3a expression in lung adenocarcinoma is associated with the histologically non-invasive type and lepidic subtype, and a favorable prognosis. We also showed that DNMT3a expression is an independent prognostic marker in lung adenocarcinoma. Since lack of DNMT3a is thought to facilitate tumor progression, DNMT3a might be clinically applicable as an indicator of favorable prognosis.
Collapse
Affiliation(s)
- Ryan Edbert Husni
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Aya Shiba-Ishii
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shinji Iiyama
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Toshihiro Shiozawa
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yunjung Kim
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tomoki Nakagawa
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Taiki Sato
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Junko Kano
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuko Minami
- Department of Pathology, National Hospital Organization Ibarakihigashi National Hospital, The Center of Chest Diseases and Severe Motor and Intellectual Disabilities, Ibaraki, Japan
| | - Masayuki Noguchi
- Department of Pathology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
24
|
Overexpression of Suprabasin is Associated with Proliferation and Tumorigenicity of Esophageal Squamous Cell Carcinoma. Sci Rep 2016; 6:21549. [PMID: 26899563 PMCID: PMC4761926 DOI: 10.1038/srep21549] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/27/2016] [Indexed: 12/27/2022] Open
Abstract
Suprabasin is a recently identified oncoprotein that is upregulated in multiple cancers. However, the clinical significance and biological role of suprabasin in human esophageal squamous cell carcinoma (ESCC) remains unclear. In the current study, we reported that suprabasin was markedly overexpressed in ESCC cell lines and tissues at both mRNA and protein levels, and this was associated with advanced clinical stage, tumor-nodes-metastasis (TNM) classification, histological differentiation, tumor size and poorer survival. Furthermore, we found that both proliferation and tumorigenicity of ESCC cells were significantly induced by suprabasin overexpression, but inhibited by suprabasin knock-down. Moreover, we demonstrated that upregulation of suprabasin activated the Wnt/β-catenin signaling pathway and led to nuclear localization of β-catenin and upregulation of Cyclin D1 and c-Myc. Together, our results suggest that suprabasin plays an important oncogenic role in promoting proliferation and tumorigenesis of ESCC.
Collapse
|
25
|
Shin YH, Kim M, Kim N, Choi SK, Namkoong E, Choi SY, Lee JH, Cha S, Park K. Epigenetic alteration of the purinergic type 7 receptor in salivary epithelial cells. Biochem Biophys Res Commun 2015; 466:704-10. [PMID: 26399685 DOI: 10.1016/j.bbrc.2015.09.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
Abstract
Purinergic receptors, particularly type 7 (P2RX7), are involved in apoptotic cell death. However, the expression and function of P2RX7 are suppressed in HSG cells. In the present study, we explored whether P2RX7 function is regulated by epigenetic alteration of the receptors in two different cell lines, HSG cells derived from human submandibular ducts, and A253 cells, originated from human submandibular carcinoma. We discovered that HSG cells expressed all subtypes of purinergic receptors, excluding P2RX7, at the mRNA level. However, treatment of the cells with 5-Aza-CdR, a DNA demethylating agent, increased the mRNA expression levels of P2RX7 in a time-dependent manner. Furthermore, 5-Aza-CdR completely rescued the calcium response induced by P2RX7 agonist BzATP, a response that was absent in untreated HSG cells. In contrast, A253 cells showed a moderate methylation pattern in the P2RX7 CpG island. Most CG pairs from the first to the 21st were methylated in untreated HSG cells, but 5-Aza-CdR-treatment partially demethylated the methylated CG pairs. We obtained similar results when investigated human tissues; the CG pairs in the P2RX7 CpG islands showed hypermethylation and hypomethylation patterns in human normal and cancer tissues, respectively. Our results suggest that the expression level and function of P2RX7 are regulated by DNA methylation in epithelial cells.
Collapse
Affiliation(s)
- Yong-Hwan Shin
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, South Korea
| | - Minkyoung Kim
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, South Korea
| | - Nahyun Kim
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, South Korea
| | - Seul-Ki Choi
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, South Korea
| | - Eun Namkoong
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, South Korea
| | - Se-Young Choi
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, South Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, South Korea
| | - Seunghee Cha
- Departments of Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, South Korea.
| |
Collapse
|
26
|
Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency. J Vasc Surg 2015; 64:202-209.e6. [PMID: 25935274 DOI: 10.1016/j.jvs.2014.12.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Approximately 30% of autogenous vein grafts develop luminal narrowing and fail because of intimal hyperplasia or negative remodeling. We previously found that vein graft cells from patients who later develop stenosis proliferate more in vitro in response to growth factors than cells from patients who maintain patent grafts. To discover novel determinants of vein graft outcome, we have analyzed gene expression profiles of these cells using a systems biology approach to cluster the genes into modules by their coexpression patterns and to correlate the results with growth data from our prior study and with new studies of migration and matrix remodeling. METHODS RNA from 4-hour serum- or platelet-derived growth factor (PDGF)-BB-stimulated human saphenous vein cells obtained from the outer vein wall (20 cell lines) was used for microarray analysis of gene expression, followed by weighted gene coexpression network analysis. Cell migration in microchemotaxis chambers in response to PDGF-BB and cell-mediated collagen gel contraction in response to serum were also determined. Gene function was determined using short-interfering RNA to inhibit gene expression before subjecting cells to growth or collagen gel contraction assays. These cells were derived from samples of the vein grafts obtained at surgery, and the long-term fate of these bypass grafts was known. RESULTS Neither migration nor cell-mediated collagen gel contraction showed a correlation with graft outcome. Although 1188 and 1340 genes were differentially expressed in response to treatment with serum and PDGF, respectively, no single gene was differentially expressed in cells isolated from patients whose grafts stenosed compared with those that remained patent. Network analysis revealed four unique groups of genes, which we term modules, associated with PDGF responses, and 20 unique modules associated with serum responses. The "yellow" and "skyblue" modules, from PDGF and serum analyses, respectively, correlated with later graft stenosis (P = .005 and P = .02, respectively). In response to PDGF, yellow was also associated with increased cell growth. For serum, skyblue was also associated with inhibition of collagen gel contraction. The hub genes for yellow and skyblue (ie, the gene most connected to other genes in the module), scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN), respectively, were tested for effects on proliferation and collagen contraction. Knockdown of SCARA5 increased proliferation by 29.9% ± 7.8% (P < .01), whereas knockdown of SBSN had no effect. Knockdown of SBSN increased collagen gel contraction by 24.2% ± 8.6% (P < .05), whereas knockdown of SCARA5 had no effect. CONCLUSIONS Using weighted gene coexpression network analysis of cultured vein graft cell gene expression, we have discovered two small gene modules, which comprise 42 genes, that are associated with vein graft failure. Further experiments are needed to delineate the venous cells that express these genes in vivo and the roles these genes play in vein graft healing, starting with the module hub genes SCARA5 and SBSN, which have been shown to have modest effects on cell proliferation or collagen gel contraction.
Collapse
|
27
|
CUI ZHIBIN, SONG LIWEI, HOU ZHAOYUAN, HAN YIFAN, HU YUHUA, WU YADI, CHEN WANTAO, MAO LI. PLU-1/JARID1B overexpression predicts proliferation properties in head and neck squamous cell carcinoma. Oncol Rep 2015; 33:2454-60. [DOI: 10.3892/or.2015.3849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/19/2015] [Indexed: 11/05/2022] Open
|
28
|
Shin YH, Jin M, Hwang SM, Choi SK, Namkoong E, Kim M, Park MY, Choi SY, Lee JH, Park K. Epigenetic modulation of the muscarinic type 3 receptor in salivary epithelial cells. J Transl Med 2015; 95:237-45. [PMID: 25485536 DOI: 10.1038/labinvest.2014.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022] Open
Abstract
Muscarinic receptors, particularly the type 3 subtype (M3R), have an important role in exocrine secretion. M3R normally function in HSG cells originated from human submandibular gland ducts, but not in A253 and SGT cells, derived from human submandibular carcinoma and salivary gland adenocarcinoma. However, the underlying mechanism of this suppression has remained elusive. In this study, we examined whether M3R function is suppressed by epigenetic modulation of the receptor. To this end, we investigated the mRNA transcript and protein levels of the M3R using reverse transcriptase-PCR, western blot, and confocal microscopy analyses. Global DNA methylation assays, methylation-specific PCR, and bisulfite sequencing were also performed to understand the epigenetic status of the M3R CpG island. We found that A253 cells expressed all subtypes of muscarinic receptors, except M3R, on the mRNA level. However, treatment of cells with 5-aza-2'-deoxycytidine (5-Aza-CdR), a DNA-demethylating agent, increased the expression levels of both M3R mRNA transcript and protein in proportion to the incubation period. 5-Aza-CdR completely restored the carbachol-induced calcium response, which was not observed in untreated A253 cells. In untreated A253 cells, all CG pairs from the 1st to 14th were methylated and 5-Aza-CdR treatment demethylated one of the methylated CG pairs. We also examined the methylation pattern of M3R CpG island in human cancer tissue. Interestingly, the result was very similar to those of A253 cells. All CG pairs in M3R CpG island were also methylated. Another salivary gland tumor cell line, SGT, also showed the similar methylation pattern, heavy methylation in M3R CpG island. It is concluded that CpG island in M3R is hypermethylated in cancer cell lines and human cancer. Our results further suggest that 5-Aza-CdR could potentially be used to restore the function of M3R, suppressed in some cancer cell types.
Collapse
Affiliation(s)
- Yong-Hwan Shin
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Meihong Jin
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Sung-Min Hwang
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Seul-Ki Choi
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Eun Namkoong
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Minkyoung Kim
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Moon-Yong Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Se-Young Choi
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Jong-Ho Lee
- Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul, Korea
| |
Collapse
|
29
|
Adi Harel S, Bossel Ben-Moshe N, Aylon Y, Bublik DR, Moskovits N, Toperoff G, Azaiza D, Biagoni F, Fuchs G, Wilder S, Hellman A, Blandino G, Domany E, Oren M. Reactivation of epigenetically silenced miR-512 and miR-373 sensitizes lung cancer cells to cisplatin and restricts tumor growth. Cell Death Differ 2015; 22:1328-40. [PMID: 25591738 DOI: 10.1038/cdd.2014.221] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRs) regulate a variety of cellular processes, and their impaired expression is involved in cancer. Silencing of tumor-suppressive miRs in cancer can occur through epigenetic modifications, including DNA methylation and histone deacetylation. We performed comparative miR profiling on cultured lung cancer cells before and after treatment with 5'aza-deoxycytidine plus Trichostatin A to reverse DNA methylation and histone deacetylation, respectively. Several tens of miRs were strongly induced by such 'epigenetic therapy'. Two representatives, miR-512-5p (miR-512) and miR-373, were selected for further analysis. Both miRs were secreted in exosomes. Re-expression of both miRs augmented cisplatin-induced apoptosis and inhibited cell migration; miR-512 also reduced cell proliferation. TEAD4 mRNA was confirmed as a direct target of miR-512; likewise, miR-373 was found to target RelA and PIK3CA mRNA directly. Our results imply that miR-512 and miR-373 exert cell-autonomous and non-autonomous tumor-suppressive effects in lung cancer cells, where their re-expression may benefit epigenetic cancer therapy.
Collapse
Affiliation(s)
- S Adi Harel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - N Bossel Ben-Moshe
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Y Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - D R Bublik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - N Moskovits
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - G Toperoff
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - D Azaiza
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - F Biagoni
- Translational Oncogenomic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - G Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - S Wilder
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - A Hellman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - G Blandino
- Translational Oncogenomic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - E Domany
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - M Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
30
|
Langevin SM, Kratzke RA, Kelsey KT. Epigenetics of lung cancer. Transl Res 2015; 165:74-90. [PMID: 24686037 PMCID: PMC4162853 DOI: 10.1016/j.trsl.2014.03.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality in the United States. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA expression, have been reported widely in the literature to play a major role in the genesis of lung cancer. The goal of this review is to summarize the common epigenetic changes associated with lung cancer to give some clarity to its etiology, and to provide an overview of the potential translational applications of these changes, including applications for early detection, diagnosis, prognostication, and therapeutics.
Collapse
Affiliation(s)
- Scott M Langevin
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert A Kratzke
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minn
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI.
| |
Collapse
|
31
|
Alam MT, Nagao-Kitamoto H, Ohga N, Akiyama K, Maishi N, Kawamoto T, Shinohara N, Taketomi A, Shindoh M, Hida Y, Hida K. Suprabasin as a novel tumor endothelial cell marker. Cancer Sci 2014; 105:1533-40. [PMID: 25283635 PMCID: PMC4317965 DOI: 10.1111/cas.12549] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 01/24/2023] Open
Abstract
Recent studies have reported that stromal cells contribute to tumor progression. We previously demonstrated that tumor endothelial cells (TEC) characteristics were different from those of normal endothelial cells (NEC). Furthermore, we performed gene profile analysis in TEC and NEC, revealing that suprabasin (SBSN) was upregulated in TEC compared with NEC. However, its role in TEC is still unknown. Here we showed that SBSN expression was higher in isolated human and mouse TEC than in NEC. SBSN knockdown inhibited the migration and tube formation ability of TEC. We also showed that the AKT pathway was a downstream factor of SBSN. These findings suggest that SBSN is involved in the angiogenic potential of TEC and may be a novel TEC marker.
Collapse
Affiliation(s)
- Mohammad T Alam
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Oral Pathology and Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma. Mod Pathol 2014; 27:1238-45. [PMID: 24457462 PMCID: PMC4287229 DOI: 10.1038/modpathol.2013.244] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/08/2023]
Abstract
Myxoid and round-cell liposarcoma is a frequently encountered liposarcoma subtype. The mainstay of treatment remains surgical excision with or without chemoradiation. However, treatment options are limited in the setting of metastatic disease. Cancer-testis antigens are immunogenic antigens with the expression largely restricted to testicular germ cells and various malignancies, making them attractive targets for cancer immunotherapy. Gene expression studies have reported the expression of various cancer-testis antigens in liposarcoma, with mRNA expression of CTAG1B, CTAG2, MAGEA9, and PRAME described specifically in myxoid and round-cell liposarcoma. Herein, we further explore the expression of the cancer-testis antigens MAGEA1, ACRBP, PRAME, and SSX2 in myxoid and round-cell liposarcoma by immunohistochemistry in addition to determining mRNA levels of CTAG2 (LAGE-1), PRAME, and MAGEA3 by quantitative real-time PCR. Samples in formalin-fixed paraffin-embedded blocks (n=37) and frozen tissue (n=8) were obtained for immunohistochemistry and quantitative real-time PCR, respectively. Full sections were stained with antibodies to MAGEA1, ACRBP, PRAME, and SSX2 and staining was assessed for intensity (1-2+) and percent tumor positivity. The gene expression levels of CTAG2, PRAME, and MAGEA3 were measured by quantitative real-time PCR. In total, 37/37 (100%) of the samples showed predominantly strong, homogenous immunoreactivity for PRAME. There was a variable, focal expression of MAGEA1 (11%) and SSX2 (16%) and no expression of ACRBP. Quantitative real-time PCR demonstrated PRAME and CTAG2 transcripts in all eight samples: six tumors with high mRNA levels; two tumors with low mRNA levels. The gene expression of MAGEA3 was not detected in the majority of cases. In conclusion, myxoid and round-cell liposarcomas consistently express PRAME by immunohistochemistry as well as CTAG2 and PRAME by qualitative real-time PCR. This supports the use of cancer-testis antigen-targeted immunotherapy in the treatment of this malignancy.
Collapse
|
33
|
Grupp K, Ospina-Klinck D, Tsourlakis MC, Koop C, Wilczak W, Adam M, Simon R, Sauter G, Izbicki JR, Graefen M, Huland H, Steurer S, Schlomm T, Minner S, Quaas A. NY-ESO-1 expression is tightly linked to TMPRSS2-ERG fusion in prostate cancer. Prostate 2014; 74:1012-22. [PMID: 24789172 DOI: 10.1002/pros.22816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/02/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND NY-ESO-1 has been suggested as therapeutic cancer vaccine in prostate cancer. This study was undertaken to explore the relationship of NY-ESO-1 with tumor phenotype, biochemical recurrence, and molecular subgroups in hormone-naive prostate cancers. METHODS NY-ESO-1 immunohistochemistry was analyzed on a tissue microarray containing 11,152 prostate cancer samples. Results were compared to clinically follow-up data, ERG status, and deletions on PTEN, 3p13, 5q21, and 6q15. RESULTS NY-ESO-1 expression was absent in benign prostate glands. In prostate cancer, NY-ESO-1 positivity was found 8.8% of our 8,761 interpretable tumors including 5.8% with weak, 2.5% with moderate, and 0.5% with strong expression. There was a threefold higher rate of NY-ESO-1 expression in ERG fusion positive tumors than in ERG negative cancers (P < 0.0001). There was a significant association with early PSA recurrence, which was largely limited to ERG positive cancers. Within the ERG positive subgroup, high NY-ESO-1 expression was associated with early biochemical recurrence (P = 0.0002) and high Gleason grade (P < 0.0001). In ERG negative cancers, NY-ESO-1 expression was also linked to PTEN (P = 0.0012) and 6q15 deletions (P = 0.0005). CONCLUSIONS Our observations indicate a tight link of NY-ESO-1 expression to ERG activation and (to a lesser extent) PTEN- and 6q15-deletions in prostate cancer. The impact of these interactions on the likelihood of response to immunotherapy is unclear. The prognostic impact of NY-ESO-1 expression is little and not independent of histologic variables.
Collapse
Affiliation(s)
- Katharina Grupp
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen QW, Zhu XY, Li YY, Meng ZQ. Epigenetic regulation and cancer (review). Oncol Rep 2013; 31:523-32. [PMID: 24337819 DOI: 10.3892/or.2013.2913] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/04/2013] [Indexed: 11/06/2022] Open
Abstract
'Epigenetics' is defined as the inheritable changes in gene expression with no alterations in DNA sequences. Epigenetics is a rapidly expanding field, and the study of epigenetic regulation in cancer is emerging. Disruption of the epigenome is a fundamental mechanism in cancer, and several epigenetic drugs have been proven to prolong survival and to be less toxic than conventional chemotherapy. Promising results from combination clinical trials with DNA methylation inhibitors and histone deacetylase inhibitors have recently been reported, and data are emerging that describe molecular determinants of clinical responses. Despite significant advances, challenges remain, including a lack of predictive markers, unclear mechanisms of response and resistance, and rare responses in solid tumors. Preclinical studies are ongoing with novel classes of agents that target various components of the epigenetic machinery. In the present review, examples of studies that demonstrate the role of epigenetic regulation in human cancers with the focus on histone modifications and DNA methylation, and the recent clinical and translational data in the epigenetics field that have potential in cancer therapy are discussed.
Collapse
Affiliation(s)
- Q W Chen
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - X Y Zhu
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Y Y Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Z Q Meng
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
35
|
Abstract
Tumor cells frequently exhibit widespread epigenetic aberrations that significantly alter the repertoire of expressed proteins. In particular, it has been known for nearly 25 years that tumors frequently reactivate genes whose expression is typically restricted to germ cells. These gene products are classified as cancer/testis antigens (CTAs) owing to their biased expression pattern and their immunogenicity in cancer patients. While these genes have been pursued as targets for anticancer vaccines, whether these reactivated testis proteins have roles in supporting tumorigenic features is less studied. Recent evidence now indicates that these proteins can be directly employed by the tumor cell regulatory environment to support cell-autonomous behaviors. Here, we review the history of the CTA field and present recent findings indicating that CTAs can play functional roles in supporting tumorigenesis.
Collapse
|
36
|
Kim R, Kulkarni P, Hannenhalli S. Derepression of Cancer/testis antigens in cancer is associated with distinct patterns of DNA hypomethylation. BMC Cancer 2013; 13:144. [PMID: 23522060 PMCID: PMC3618251 DOI: 10.1186/1471-2407-13-144] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/14/2013] [Indexed: 01/29/2023] Open
Abstract
Background The Cancer/Testis Antigens (CTAs) are a heterogeneous group of proteins whose expression is typically restricted to the testis. However, they are aberrantly expressed in most cancers that have been examined to date. Broadly speaking, the CTAs can be divided into two groups: the CTX antigens that are encoded by the X-linked genes and the non-X CT antigens that are encoded by the autosomes. Unlike the non-X CTAs, the CTX antigens form clusters of closely related gene families and their expression is frequently associated with advanced disease with poorer prognosis. Regardless however, the mechanism(s) underlying their selective derepression and stage-specific expression in cancer remain poorly understood, although promoter DNA demethylation is believed to be the major driver. Methods Here, we report a systematic analysis of DNA methylation profiling data from various tissue types to elucidate the mechanism underlying the derepression of the CTAs in cancer. We analyzed the methylation profiles of 501 samples including sperm, several cancer types, and their corresponding normal somatic tissue types. Results We found strong evidence for specific DNA hypomethylation of CTA promoters in the testis and cancer cells but not in their normal somatic counterparts. We also found that hypomethylation was clustered on the genome into domains that coincided with nuclear lamina-associated domains (LADs) and that these regions appeared to be insulated by CTCF sites. Interestingly, we did not observe any significant differences in the hypomethylation pattern between the CTAs without CpG islands and the CTAs with CpG islands in the proximal promoter. Conclusion Our results corroborate that widespread DNA hypomethylation appears to be the driver in the derepression of CTA expression in cancer and furthermore, demonstrate that these hypomethylated domains are associated with the nuclear lamina-associated domains (LADS). Taken together, our results suggest that wide-spread methylation changes in cancer are linked to derepression of germ-line-specific genes that is orchestrated by the three dimensional organization of the cancer genome.
Collapse
Affiliation(s)
- Robert Kim
- James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
37
|
New targets for the immunotherapy of colon cancer-does reactive disease hold the answer? Cancer Gene Ther 2013; 20:157-68. [PMID: 23492821 DOI: 10.1038/cgt.2013.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers in both men and women, posing a serious demographic and economic burden worldwide. In the United Kingdom, CRC affects 1 in every 20 people and it is often detected once well established and after it has spread beyond the bowel (Stage IIA-C and Stage IIIA-C). A diagnosis at such advanced stages is associated with poor treatment response and survival. However, studies have identified two sub-groups of post-treatment CRC patients--those with good outcome (reactive disease) and those with poor outcome (non-reactive disease). We aim to review the state-of-the-art for CRC with respect to the expression of cancer-testis antigens (CTAs) and their identification, evaluation and correlation with disease progression, treatment response and survival. We will also discuss the relationship between CTA expression and regulatory T-cell (Treg) activity to tumorigenesis and tumor immune evasion in CRC and how this could account for the clinical presentation of CRC. Understanding the molecular basis of reactive CRC may help us identify more potent novel immunotherapeutic targets to aid the effective treatment of this disease. In this review, based on our presentation at the 2012 International Society for the Cell and Gene Therapy of Cancer annual meeting, we will summarize some of the most current advances in CTA and CRC research and their influence on the development of novel immunotherapeutic approaches for this common and at times difficult to treat disease.
Collapse
|
38
|
Raez LE, Walker GR, Baldie P, Fisher E, Gomez JE, Tolba K, Santos ES, Podack ER. CD8 T cell response in a phase I study of therapeutic vaccination of advanced NSCLC with allogeneic tumor cells secreting endoplasmic reticulum-chaperone gp96-Ig-peptide complexes. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/alc.2013.21002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Shao C, Tan M, Bishop JA, Liu J, Bai W, Gaykalova DA, Ogawa T, Vikani AR, Agrawal Y, Li RJ, Kim MS, Westra WH, Sidransky D, Califano JA, Ha PK. Suprabasin is hypomethylated and associated with metastasis in salivary adenoid cystic carcinoma. PLoS One 2012; 7:e48582. [PMID: 23144906 PMCID: PMC3492451 DOI: 10.1371/journal.pone.0048582] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 10/03/2012] [Indexed: 02/07/2023] Open
Abstract
Background Salivary gland adenoid cystic carcinoma (ACC) is a rare cancer, accounting for only 1% of all head and neck malignancies. ACC is well known for perineural invasion and distant metastasis, but its underlying molecular mechanisms of carcinogenesis are still unclear. Principal Findings Here, we show that a novel oncogenic candidate, suprabasin (SBSN), plays important roles in maintaining the anchorage-independent and anchorage-dependent cell proliferation in ACC by using SBSN shRNA stably transfected ACC cell line clones. SBSN is also important in maintaining the invasive/metastatic capability in ACC by Matrigel invasion assay. More interestingly, SBSN transcription is significantly upregulated by DNA demethylation induced by 5-aza-2′-deoxycytidine plus trichostatin A treatment and the DNA methylation levels of the SBSN CpG island located in the second intron were validated to be significantly hypomethylated in primary ACC samples versus normal salivary gland tissues. Conclusions/Significance Taken together, these results support SBSN as novel oncogene candidate in ACC, and the methylation changes could be a promising biomarker for ACC.
Collapse
Affiliation(s)
- Chunbo Shao
- Department of Otolaryngology-Head and Neck Surgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Marietta Tan
- Department of Otolaryngology-Head and Neck Surgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Justin A. Bishop
- Department of Surgical Pathology, the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Jia Liu
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Weiliang Bai
- Department of Otorhinolaryngology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Daria A. Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Takenori Ogawa
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Ami R. Vikani
- The George Washington University School of Medicine, Washington D.C., United States of America
| | - Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Ryan J. Li
- Department of Otolaryngology-Head and Neck Surgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Myoung Sook Kim
- Department of Otolaryngology-Head and Neck Surgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - William H. Westra
- Department of Surgical Pathology, the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Joseph A. Califano
- Department of Otolaryngology-Head and Neck Surgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Milton J Dance Jr. Head and Neck Center at the Greater Baltimore Medical Center, Baltimore, Maryland, United States of America
| | - Patrick K. Ha
- Department of Otolaryngology-Head and Neck Surgery, the Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Milton J Dance Jr. Head and Neck Center at the Greater Baltimore Medical Center, Baltimore, Maryland, United States of America
- * E-mail: *
| |
Collapse
|
40
|
Brzeziańska E, Dutkowska A, Antczak A. The significance of epigenetic alterations in lung carcinogenesis. Mol Biol Rep 2012; 40:309-25. [PMID: 23086271 PMCID: PMC3518808 DOI: 10.1007/s11033-012-2063-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/03/2012] [Indexed: 12/11/2022]
Abstract
Lung cancer is recognized as a leading cause of cancer-related death worldwide and its frequency is still increasing. The prognosis in lung cancer is poor and limited by the difficulties of diagnosis at early stage of disease, when it is amenable to surgery treatment. Therefore, the advance in identification of lung cancer genetic and epigenetic markers with diagnostic and/or prognostic values becomes an important tool for future molecular oncology and personalized therapy. As in case of other tumors, aberrant epigenetic landscape has been documented also in lung cancer, both at early and late stage of carcinogenesis. Hypermethylation of specific genes, mainly tumor suppressor genes, as well as hypomethylation of oncogenes and retrotransposons, associated with histopathological subtypes of lung cancer, has been found. Epigenetic aberrations of histone proteins and, especially, the lower global levels of histone modifications have been associated with poorer clinical outcome in lung cancer. The recently discovered role of epigenetic modifications of microRNA expression in tumors has been also proven in lung carcinogenesis. The identified epigenetic events in lung cancer contribute to its specific epigenotype and correlated phenotypic features. So far, some of them have been suggested to be cancer biomarkers for early detection, disease monitoring, prognosis, and risk assessment. As epigenetic aberrations are reversible, their correction has emerged as a promising therapeutic target.
Collapse
Affiliation(s)
- Ewa Brzeziańska
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska St. 251, 92-213 Lodz, Poland.
| | | | | |
Collapse
|
41
|
MAGEB2 is activated by promoter demethylation in head and neck squamous cell carcinoma. PLoS One 2012; 7:e45534. [PMID: 23029077 PMCID: PMC3454438 DOI: 10.1371/journal.pone.0045534] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Although promoter hypermethylation has been an accepted means of tumor suppressor gene inactivation, activation of otherwise normally repressed proto-oncogenes by promoter demethylation has been infrequently documented. EXPERIMENTAL DESIGN In this study we performed an integrative, whole-genome analysis for discovery of epigenetically activated proto-oncogenes in head and neck cancer tumors. We used the 47K GeneChip U133 Plus 2.0 Affymetrix expression microarray platform to obtain re-expression data from 5-aza treated normal cell line and expression data from primary head and neck squamous cell carcinoma (HNSCC) tumor tissues and normal mucosa tissues. We then investigated candidate genes by screening promoter regions for CpG islands and bisulfite sequencing followed by QUMSP and RT PCR for the best candidate genes. Finally, functional studies were performed on the top candidate gene. RESULTS From the top 178 screened candidates 96 had CpG islands in their promoter region. Seven candidate genes showed promoter region methylation in normal mucosa samples and promoter demethylation in a small cohort of primary HNSCC tissues. We then studied the demethylation of the top 3 candidate genes in an expanded cohort of 76 HNSCC tissue samples and 17 normal mucosa samples. We identified MAGEB2 as having significant promoter demethylation in primary head and neck squamous cell carcinoma tissues. We then found significantly higher expression of MAGEB2 in tumors in a separate cohort of 73 primary HNSCC tissues and 31 normal tissues. Finally, we found that MAGEB2 has growth promoting effects on minimally transformed oral keratinocyte cell lines but not a definite effect on HNSCC cell lines. CONCLUSION In conclusion, we identified MAGEB2 as activated by promoter demethylation in HNSCCand demonstrates growth promoting effects in a minimally transformed oral keratinocyte cell line. More studies are needed to evaluate MAGBE2's exact role in HNSCC.
Collapse
|
42
|
Shan Q, Lou X, Xiao T, Zhang J, Sun H, Gao Y, Cheng S, Wu L, Xu N, Liu S. A cancer/testis antigen microarray to screen autoantibody biomarkers of non-small cell lung cancer. Cancer Lett 2012; 328:160-7. [PMID: 22922091 DOI: 10.1016/j.canlet.2012.08.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/08/2012] [Accepted: 08/15/2012] [Indexed: 01/03/2023]
Abstract
Cancer/testis antigens (CTAs) are highly immunogenic in many tumors, especially in non-small cell lung cancer (NSCLC). A low-density protein microarray, which consisted of 72 CTAs and six non-CTAs, was used to screen for lung cancer-related autoantibodies. The CTA panel of NY-ESO-1, XAGE-1, ADAM29 and MAGEC1, had sensitivity and specificity values of 33% and 96%, respectively. When examined in a test set, this panel of markers had sensitivity and specificity values of 36% and 89%, respectively. This array of markers preferentially detected NSCLC, but did not detect breast cancer, and non-cancer lung disease.
Collapse
Affiliation(s)
- Qiang Shan
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101318, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
BHAN SHEETAL, CHUANG ALICE, NEGI SANDEEPS, GLAZER CHADA, CALIFANO JOSEPHA. MAGEA4 induces growth in normal oral keratinocytes by inhibiting growth arrest and apoptosis. Oncol Rep 2012; 28:1498-502. [DOI: 10.3892/or.2012.1934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/25/2012] [Indexed: 11/06/2022] Open
|
44
|
Gaykalova D, Vatapalli R, Glazer CA, Bhan S, Shao C, Sidransky D, Ha PK, Califano JA. Dose-dependent activation of putative oncogene SBSN by BORIS. PLoS One 2012; 7:e40389. [PMID: 22792300 PMCID: PMC3390376 DOI: 10.1371/journal.pone.0040389] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/06/2012] [Indexed: 11/18/2022] Open
Abstract
Testis-specific transcription factor BORIS (Brother of the Regulator of Imprinted Sites), a paralog and proposed functional antagonist of the widely expressed CTCF, is abnormally expressed in multiple tumor types and has been implicated in the epigenetic activation of cancer-testis antigens (CTAs). We have reported previously that suprabasin (SBSN), whose expression is restricted to the epidermis, is epigenetically derepressed in lung cancer. In this work, we establish that SBSN is a novel non-CTA target of BORIS epigenetic regulation. With the use of a doxycycline-inducible BORIS expressing vector, we demonstrate that relative BORIS dosage is critical for SBSN activation. At lower concentrations, BORIS induces demethylation of the SBSN CpG island and disruption and activation of chromatin around the SBSN transcription start site (TSS), resulting in a 35-fold increase in SBSN expression in the H358 human lung cancer cell line. Interestingly, increasing BORIS concentrations leads to a subsequent reduction in SBSN expression via chromatin repression. In a similar manner, increase in BORIS concentrations leads to eventual decrease of cell growth and colony formation. This is the first report demonstrating that different amount of BORIS defines its varied effects on the expression of a target gene via chromatin structure reorganization.
Collapse
Affiliation(s)
- Daria Gaykalova
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Rajita Vatapalli
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Chad A. Glazer
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Sheetal Bhan
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Chunbo Shao
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - David Sidransky
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Milton J. Dance Head and Neck Center, Greater Baltimore Medical Center, Baltimore, Maryland, United States of America
| | - Patrick K. Ha
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Milton J. Dance Head and Neck Center, Greater Baltimore Medical Center, Baltimore, Maryland, United States of America
| | - Joseph A. Califano
- Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
- Milton J. Dance Head and Neck Center, Greater Baltimore Medical Center, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Kulkarni P, Shiraishi T, Rajagopalan K, Kim R, Mooney SM, Getzenberg RH. Cancer/testis antigens and urological malignancies. Nat Rev Urol 2012; 9:386-96. [PMID: 22710665 DOI: 10.1038/nrurol.2012.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer/testis antigens (CTAs) are a group of tumour-associated antigens (TAAs) that display normal expression in the adult testis--an immune-privileged organ--but aberrant expression in several types of cancers, particularly in advanced cancers with stem cell-like characteristics. There has been an explosion in CTA-based research since CTAs were first identified in 1991 and MAGE-1 was shown to elicit an autologous cytotoxic T-lymphocyte (CTL) response in a patient with melanoma. The resulting data have not only highlighted a role for CTAs in tumorigenesis, but have also underscored the translational potential of these antigens for detecting and treating many types of cancers. Studies that have investigated the use of CTAs for the clinical management of urological malignancies indicate that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic, and therapeutic targets for cancer immunotherapy. Increasing evidence supports the utilization of these promising tools for urological indications.
Collapse
Affiliation(s)
- Prakash Kulkarni
- James Buchanan Brady Urological Institute, 600 North Wolfe Street, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Cancer/Testis Antigen MAGE-C1/CT7: new target for multiple myeloma therapy. Clin Dev Immunol 2012; 2012:257695. [PMID: 22481966 PMCID: PMC3310219 DOI: 10.1155/2012/257695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/28/2011] [Indexed: 12/13/2022]
Abstract
Cancer/Testis Antigens (CTAs) are a promising class of tumor antigens that have a limited expression in somatic tissues (testis, ovary, fetal, and placental cells). Aberrant expression of CTAs in cancer cells may lead to abnormal chromosome segregation and aneuploidy. CTAs are regulated by epigenetic mechanisms (DNA methylation and acetylation of histones) and are attractive targets for immunotherapy in cancer because the gonads are immune privileged organs and anti-CTA immune response can be tumor-specific. Multiple myeloma (MM) is an incurable hematological malignancy, and several CTAs have been detected in many MM cell lines and patients. Among CTAs expressed in MM we must highlight the MAGE-C1/CT7 located on the X chromosome and expressed specificity in the malignant plasma cells. MAGE-C1/CT7 seems to be related to disease progression and functional studies suggests that this CTA might play a role in cell cycle and mainly in survival of malignant plasma cells, protecting myeloma cells against spontaneous as well as drug-induced apoptosis.
Collapse
|
47
|
Use of integrative epigenetic and cytogenetic analyses to identify novel tumor-suppressor genes in malignant melanoma. Melanoma Res 2011; 21:298-307. [PMID: 21606880 DOI: 10.1097/cmr.0b013e328344a003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective of this study was to identify novel tumor-suppressor genes in melanoma, using an integrative genomic approach. Data from: (i) earlier reports of DNA loss and gain in malignant melanoma accompanied by comparative genomic hybridization high-definition array data of the entire human genome; (ii) microarray expression data from melanoma-derived cell lines identifying genes with significantly increased expression due to methylation using a pharmacologic demethylating strategy; and (iii) publicly available RNA expression microarray data of primary tumors and benign nevi were integrated using statistical tools to define a population of candidate tumor-suppressor genes. Twenty-seven genes were identified in areas of deletion that demonstrated diminished expression in primary melanomas relative to benign nevi and were significantly increased in expression by 5-Aza treatment. Seven genes of these 27 genes demonstrated methylation and deletion in a validation cohort of 14 separate primary tumors. These were: CHRDL1, SFRP1, TMEM47, LPL, RARRES1, PLCXD1, and KOX15. All of these genes demonstrated growth-suppressive properties with transfection into melanoma-derived cell lines. Seven putative tumor-suppressor genes in malignant melanoma were identified using a novel integrative technique.
Collapse
|
48
|
Matković B, Juretić A, Spagnoli GC, Separović V, Gamulin M, Separović R, Sarić N, Basić-Koretić M, Novosel I, Kruslin B. Expression of MAGE-A and NY-ESO-1 cancer/testis antigens in medullary breast cancer: retrospective immunohistochemical study. Croat Med J 2011; 52:171-7. [PMID: 21495200 PMCID: PMC3081216 DOI: 10.3325/cmj.2011.52.171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim To immunohistochemically evaluate the expression of MAGE-A1, MAGE-A, and NY-ESO-1 cancer/testis (C/T) tumor antigens in medullary breast cancer (MBC) tumor samples and to analyze it in relation to the clinicopathological features. Methods This retrospective study included samples from 49 patients: 40 with typical MBC and 9 with atypical MBC. Tumor specimens were obtained from patients operated on in the University Hospital for Tumors and the Sisters of Mercy University Hospital, Zagreb, Croatia, from 1999 to 2005. Standard immunohistochemistry was used on archival paraffin-embedded MBC tissues. Results MAGE-A1, MAGE-A, and NY-ESO-1 antigens were expressed in 33% (16/49), 33% (16/49), and 22% (11/49) of patients, respectively. No difference between the groups with and without C/T tumor antigen expression in age at diagnosis, tumor size, axillary lymph node metastasis, adjuvant therapy, and HER-2 expression was identified. Significantly more patients died in the MAGE-A-positive group than in the MAGE-A-negative group (P = 0.010), whereas a borderline significance was found between MAGE-A1-positive and the MAGE-A1-negative group (P = 0.079) and between NY-ESO-1-positive and NY-ESO-1-negative group (P = 0.117). Overall survival, as evaluated by the Kaplan-Meier curves, was lower in MAGE-A1- (P = 0.031), MAGE-A- (P = 0.004), NY-ESO-1-positive groups (P = 0.077). Conclusion Expression of C/T antigens may represent a marker of potential prognostic relevance in MBC.
Collapse
Affiliation(s)
- Bozica Matković
- Zagreb University Hospital Center, Department of Oncology, Kispatićeva 12, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Epigenetics refers to the study of mechanisms that alter gene expression without altering the primary DNA sequence. Epigenetic mechanisms are heritable and reversible. Over the last few decades, epigenetics has obtained a large importance in cancer research. Epigenetic alterations are widely described as essential players in cancer progression. They comprise DNA methylation, histone modifications, nucleosome positioning, and small, noncoding RNAs (miRNA, siRNA). They are involved in transcriptional changes and decisive events that will determine cell fate and phenotype. Epigenetics not only offers light into cancer biological processes, but also represents an attractive opportunity of reverting cancer-specific alterations, which may lead, in the future, to a possibility of stopping this disease. Epigenetic changes have been identified as putative cancer biomarkers for early detection, disease monitoring, prognosis, and risk assessment. Other epigenetic alterations are promising therapeutic targets and even therapeutic agents. Emerging discoveries in this area are already contributing to cancer management and monitoring, and a lot more progresses are expected in the future.
Collapse
Affiliation(s)
- Mariana Brait
- Division of Head and Neck Cancer Research, Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | |
Collapse
|
50
|
Epigenetic regulation of the X-chromosomal macrosatellite repeat encoding for the cancer/testis gene CT47. Eur J Hum Genet 2011; 20:185-91. [PMID: 21811308 DOI: 10.1038/ejhg.2011.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macrosatellite repeats (MSRs) present an extreme example of copy number variation, yet their epigenetic regulation in normal and malignant cells is largely understudied. The CT47 cancer/testis antigen located on human Xq24 is organized as an array of 4.8 kb large units. CT47 is expressed in the testis and in certain types of cancer, but not in non-malignant somatic tissue. We used CT47 as a model to study a possible correlation between copy number variation, epigenetic regulation and transcription originating from MSRs in normal and malignant cells. In lymphoblastoid cell lines and primary fibroblasts, CT47 expression was absent, consistent with the observed heterochromatic structure and DNA hypermethylation of the CT47 promoter. Heterochromatinization of CT47 occurs early during development as human embryonic stem cells show high levels of DNA methylation and repressive chromatin modifications in the absence of CT47 expression. In small-cell lung carcinoma cell lines with low levels of CT47 transcripts, we observed reduced levels of histone 3 lysine 9 trimethylation (H3K9me3) and trimethylated lysine 27 of histone H3 (H3K27me3) without concomitant increase in euchromatic histone modifications. DNA methylation levels in the promoter region of CT47 are also significantly reduced in these cells. This supports a model in which during oncogenic transformation, there is a relative loss of repressive chromatin markers resulting in leaky expression of CT47. We conclude that some MSRs, like CT47 and the autosomal MSRs TAF11-Like, PRR20, ZAV and D4Z4, the latter being involved in facioscapulohumeral muscular dystrophy, seem to be governed by common regulatory mechanisms with their abundant expression mostly being restricted to the germ line.
Collapse
|