1
|
Hagadorn KA, Peterson ME, Kole H, Scott B, Skinner J, Diouf A, Takashima E, Ongoiba A, Doumbo S, Doumtabe D, Li S, Sekar P, Yan M, Zhu C, Nagaoka H, Kanoi BN, Li QZ, Long C, Long EO, Kayentao K, Jenks SA, Sanz I, Tsuboi T, Traore B, Bolland S, Miura K, Crompton PD, Hopp CS. Autoantibodies inhibit Plasmodium falciparum growth and are associated with protection from clinical malaria. Immunity 2024; 57:1769-1779.e4. [PMID: 38901428 PMCID: PMC11324401 DOI: 10.1016/j.immuni.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Many infections, including malaria, are associated with an increase in autoantibodies (AAbs). Prior studies have reported an association between genetic markers of susceptibility to autoimmune disease and resistance to malaria, but the underlying mechanisms are unclear. Here, we performed a longitudinal study of children and adults (n = 602) in Mali and found that high levels of plasma AAbs before the malaria season independently predicted a reduced risk of clinical malaria in children during the ensuing malaria season. Baseline AAb seroprevalence increased with age and asymptomatic Plasmodium falciparum infection. We found that AAbs purified from the plasma of protected individuals inhibit the growth of blood-stage parasites and bind P. falciparum proteins that mediate parasite invasion. Protected individuals had higher plasma immunoglobulin G (IgG) reactivity against 33 of the 123 antigens assessed in an autoantigen microarray. This study provides evidence in support of the hypothesis that a propensity toward autoimmunity offers a survival advantage against malaria.
Collapse
Affiliation(s)
- Kelly A Hagadorn
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA; Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, USA
| | - Mary E Peterson
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Hemanta Kole
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Bethany Scott
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Padmapriya Sekar
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chengsong Zhu
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan; Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Genecopoeia Inc, Rockville, MD, USA
| | - Carole Long
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Eric O Long
- Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Scott A Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology and Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology and Emory Autoimmunity Center of Excellence, Emory University, Atlanta, GA, USA
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Silvia Bolland
- Autoimmunity and Functional Genomics Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA.
| | - Christine S Hopp
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, USA; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
2
|
Abstract
It is well established that by modulating various immune functions, host infection may alter the course of concomitant inflammatory diseases, of both infectious and autoimmune etiologies. Beyond the major impact of commensal microbiota on the immune status, host exposure to viral, bacterial, and/or parasitic microorganisms also dramatically influences inflammatory diseases in the host, in a beneficial or harmful manner. Moreover, by modifying pathogen control and host tolerance to tissue damage, a coinfection can profoundly affect the development of a concomitant infectious disease. Here, we review the diverse mechanisms that underlie the impact of (co)infections on inflammatory disorders. We discuss epidemiological studies in the context of the hygiene hypothesis and shed light on the sometimes dual impact of germ exposure on human susceptibility to inflammatory disease. We then summarize the immunomodulatory mechanisms at play, which can involve pleiotropic effects of immune players and discuss the possibility to harness pathogen-derived compounds to the host benefit.
Collapse
|
3
|
Leleu I, Genete D, Desnoulez SS, Saidi N, Brodin P, Lafont F, Tomavo S, Pied S. A noncanonical autophagy is involved in the transfer of Plasmodium-microvesicles to astrocytes. Autophagy 2021; 18:1583-1598. [PMID: 34747313 DOI: 10.1080/15548627.2021.1993704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cerebral malaria is a neuroinflammatory disease induced by P. falciparum infection. In animal models, the neuro-pathophysiology of cerebral malaria results from the sequestration of infected red blood cells (iRBCs) in microvessels that promotes the activation of glial cells in the brain. This activation provokes an exacerbated inflammatory response characterized by the secretion of proinflammatory cytokines and chemokines, leading to brain infiltration by pathogenic CD8+ T lymphocytes. Astrocytes are a major subtype of brain glial cells that play an important role in maintaining the homeostasis of the central nervous system, the integrity of the brain-blood barrier and in mounting local innate immune responses. We have previously shown that parasitic microvesicles (PbA-MVs) are transferred from iRBCs to astrocytes. The present study shows that an unconventional LC3-mediated autophagy pathway independent of ULK1 is involved in the transfer and degradation of PbA-MVs inside the astrocytes. We further demonstrate that inhibition of the autophagy process by treatment with 3-methyladenine blocks the transfer of PbA-MVs, which remain localized in the astrocytic cell membrane and are not internalized. Moreover, bafilomycin A1, another drug against autophagy promotes the accumulation of PbA-MVs inside the astrocytes by inhibiting the fusion with lysosomes, and prevents ECM in mice infected with PbA. Finally, we establish that RUBCN/rubicon or ATG5 silencing impede astrocyte production in CCL2 and CXCL10 chemokines induced by PbA stimulation. Altogether, our data suggest that a non-canonical autophagy-lysosomal pathway may play a key role in cerebral malaria through regulation of brain neuro-inflammation by astrocytes.
Collapse
Affiliation(s)
- Inès Leleu
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France
| | - Delphine Genete
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France
| | | | - Nasreddine Saidi
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France
| | - Priscille Brodin
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France
| | - Frank Lafont
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France.,Institut Pasteur De Lille, Univ. Lille, Cnrs, Inserm, Chu Lille, Lille, France
| | - Stanislas Tomavo
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylviane Pied
- Center for Infection and Immunity of Lille-CIIL, Institut Pasteur De Lille, Univ. Lille, Lille, France
| |
Collapse
|
4
|
Mourão LC, Cardoso-Oliveira GP, Braga ÉM. Autoantibodies and Malaria: Where We Stand? Insights Into Pathogenesis and Protection. Front Cell Infect Microbiol 2020; 10:262. [PMID: 32596165 PMCID: PMC7300196 DOI: 10.3389/fcimb.2020.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Autoantibodies are frequently reported in patients with malaria, but whether they contribute to protection or to pathology is an issue of debate. A large body of evidence indicates that antibodies against host-self components are associated to malaria clinical outcomes such as cerebral malaria, renal dysfunction and anemia. Nonetheless, self-reactive immunoglobulins induced during an infection can also mediate protection. In light of these controversies, we summarize here the latest findings in our understanding of autoimmune responses in malaria, focusing on Plasmodium falciparum and Plasmodium vivax. We review the main targets of self-antibody responses in malaria as well as the current, but still limited, knowledge of their role in disease pathogenesis or protection.
Collapse
Affiliation(s)
- Luiza Carvalho Mourão
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
5
|
Zhang W, Rho JH, Roehrl MH, Wang JY. A comprehensive autoantigen-ome of autoimmune liver diseases identified from dermatan sulfate affinity enrichment of liver tissue proteins. BMC Immunol 2019; 20:21. [PMID: 31242852 PMCID: PMC6595630 DOI: 10.1186/s12865-019-0304-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autoimmune diseases result from aberrant immune attacks by the body itself. It is mysterious how autoantigens, a large cohort of seemingly unconnected molecules expressed in different parts of the body, can induce similar autoimmune responses. We have previously found that dermatan sulfate (DS) can form complexes with molecules of apoptotic cells and stimulate autoreactive CD5+ B cells to produce autoantibodies. Hence, autoantigenic molecules share a unique biochemical property in their affinity to DS. This study sought to further test this uniform principle of autoantigenicity. RESULTS Proteomes were extracted from freshly collected mouse livers. They were loaded onto columns packed with DS-Sepharose resins. Proteins were eluted with step gradients of increasing salt strength. Proteins that bound to DS with weak, moderate, or strong affinity were eluted with 0.4, 0.6, and 1.0 M NaCl, respectively. After desalting, trypsin digestion, and gel electrophoresis, proteins were sequenced by mass spectrometry. To validate whether these proteins have been previously identified as autoantigens, an extensive literature search was conducted using the protein name or its alternative names as keywords. Of the 41 proteins identified from the strong DS-affinity fraction, 33 (80%) were verified autoantigens. Of the 46 proteins with moderate DS-affinity, 27 (59%) were verified autoantigens. Of the 125 proteins with weak DS-affinity, 44 (35%) were known autoantigens. Strikingly, these autoantigens fell into the classical autoantibody categories of autoimmune liver diseases: ANA (anti-nuclear autoantibodies), SMA (anti-smooth muscle autoantibodies), AMA (anti-mitochondrial autoantibodies), and LKM (liver-kidney microsomal autoantigens). CONCLUSIONS This study of DS-affinity enrichment of liver proteins establishes a comprehensive autoantigen-ome for autoimmune liver diseases, yielding 104 verified and 108 potential autoantigens. The liver autoantigen-ome sheds light on the molecular origins of autoimmune liver diseases and further supports the notion of a unifying biochemical principle of autoantigenicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | | | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA.
| | | |
Collapse
|
6
|
Patgaonkar M, Herbert F, Powale K, Gandhe P, Gogtay N, Thatte U, Pied S, Sharma S, Pathak S. Vivax infection alters peripheral B-cell profile and induces persistent serum IgM. Parasite Immunol 2018; 40:e12580. [PMID: 30102786 DOI: 10.1111/pim.12580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/03/2018] [Indexed: 01/06/2023]
Abstract
B cell-mediated humoral responses are essential for controlling malarial infection. Studies have addressed the effects of Plasmodium falciparum infection on peripheral B-cell subsets but not much is known for P. vivax infection. Furthermore, majority of the studies investigate changes during acute infection, but not after parasite clearance. In this prospective study, we analysed peripheral B-cell profiles and antibody responses during acute P. vivax infection and upon recovery (30 days post-treatment) in a low-transmission area in India. Dengue patients were included as febrile-condition controls. Both dengue and malaria patients showed a transient increase in atypical memory B cells during acute infection. However, transient B cell-activating factor (BAFF)-independent increase in the percentage of total and activated immature B cells was observed in malaria patients. Naïve B cells from malaria patients also showed increased TLR4 expression. Total IgM levels remained unchanged during acute infection but increased significantly at recovery. Serum antibody profiling showed a parasite-specific IgM response that persisted at recovery. A persistent IgM autoantibody response was also observed in malaria but not dengue patients. Our data suggest that in hypoendemic regions acute P. vivax infection skews peripheral B-cell subsets and results in a persistent parasite-specific and autoreactive IgM response.
Collapse
Affiliation(s)
- Mandar Patgaonkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Fabien Herbert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Krushali Powale
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Prajakta Gandhe
- Department of Clinical Pharmacology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Nithya Gogtay
- Department of Clinical Pharmacology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Urmila Thatte
- Department of Clinical Pharmacology, King Edward Memorial Hospital, Parel, Mumbai, India
| | - Sylviane Pied
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
7
|
Mourão LC, Baptista RDP, de Almeida ZB, Grynberg P, Pucci MM, Castro-Gomes T, Fontes CJF, Rathore S, Sharma YD, da Silva-Pereira RA, Bemquerer MP, Braga ÉM. Anti-band 3 and anti-spectrin antibodies are increased in Plasmodium vivax infection and are associated with anemia. Sci Rep 2018; 8:8762. [PMID: 29884876 PMCID: PMC5993813 DOI: 10.1038/s41598-018-27109-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/18/2018] [Indexed: 11/09/2022] Open
Abstract
Clearance of non-infected red blood cells (nRBCs) is one of the main components of anemia associated with Plasmodium vivax malaria. Recently, we have shown that anemic patients with P. vivax infection had elevated levels of anti-RBCs antibodies, which could enhance in vitro phagocytosis of nRBCs and decrease their deformability. Using immunoproteomics, here we characterized erythrocytic antigens that are differentially recognized by autoantibodies from anemic and non-anemic patients with acute vivax malaria. Protein spots exclusively recognized by anemic P. vivax-infected patients were identified by mass spectrometry revealing band 3 and spectrin as the main targets. To confirm this finding, antibody responses against these specific proteins were assessed by ELISA. In addition, an inverse association between hemoglobin and anti-band 3 or anti-spectrin antibodies levels was found. Anemic patients had higher levels of IgG against both band 3 and spectrin than the non-anemic ones. To determine if these autoantibodies were elicited because of molecular mimicry, we used in silico analysis and identified P. vivax proteins that share homology with human RBC proteins such as spectrin, suggesting that infection drives autoimmune responses. These findings suggest that band 3 and spectrin are potential targets of autoantibodies that may be relevant for P. vivax malaria-associated anemia.
Collapse
Affiliation(s)
- Luiza Carvalho Mourão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Maíra Mazzoni Pucci
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yagya D Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Érika Martins Braga
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Martinelli E, Fattorossi A, Battaglia A, Petrillo M, Raspaglio G, Zannoni GF, Fanelli M, Gallo D, Scambia G. Preoperative Anti-Class III β-Tubulin Antibodies As Relevant Clinical Biomarkers in Ovarian Cancer. Transl Oncol 2018; 11:358-365. [PMID: 29448203 PMCID: PMC5852414 DOI: 10.1016/j.tranon.2018.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 01/13/2023] Open
Abstract
Class III β-tubulin (TUBB3) overexpression in ovarian cancer (OC) associates with poor prognosis. We investigated whether TUBB3 overexpression elicited anti-TUBB3 antibody production in OC patients and whether these antibodies may have diagnostic and prognostic impact. The presence of serum anti-TUBB3 antibodies was investigated in 49 untreated OC patients and 44 healthy individuals by an in-house developed ELISA that used recombinant TUBB3 as the antigen. Receiver operating characteristic (ROC) curves were generated to assess the diagnostic accuracy of the assay. Anti-TUBB3 antibodies discriminated OC patients and healthy individuals with excellent sensitivity and specificity (91.8% and 90.9%, respectively). In multivariate analysis, anti-TUBB3 antibody level emerged as an independent prognostic factor for progression free and overall survival. The ELISA was then optimized using a biotin-labeled TUBB3 C-terminal peptide424-450 instead of recombinant TUBB3 as the antigen and streptavidin-coated plates. The diagnostic role of the anti-TUBB3 antibodies was studied in an independent series of 99 OC patients and 80 gynecological benign disease patients. ROC-curve analysis showed a valuable diagnostic potential for serum anti-TUBB3 antibodies to identify OC patients with higher sensitivity and specificity (95.3% and 97.6%, respectively). Overall, our results provide evidence that preoperative anti-TUBB3 antibody level is a promising diagnostic and prognostic biomarker for the management of OC patients.
Collapse
Affiliation(s)
- Enrica Martinelli
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Fattorossi
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandra Battaglia
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Petrillo
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppina Raspaglio
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Franco Zannoni
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mara Fanelli
- Laboratory of Molecular Oncology, Fondazione di Ricerca e Cura Giovanni Paolo II, Campobasso, Italy
| | - Daniela Gallo
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Giovanni Scambia
- Department of Woman and Child Health, Fondazione Policlinico Universitario A. Gemelli -Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
9
|
Antwi-Baffour S, Adjei JK, Agyemang-Yeboah F, Annani-Akollor M, Kyeremeh R, Asare GA, Gyan B. Proteomic analysis of microparticles isolated from malaria positive blood samples. Proteome Sci 2017; 15:5. [PMID: 28352210 PMCID: PMC5366142 DOI: 10.1186/s12953-017-0113-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/17/2017] [Indexed: 01/06/2023] Open
Abstract
Background Malaria continues to be a great public health concern due to the significant mortality and morbidity associated with the disease especially in developing countries. Microparticles (MPs), also called plasma membrane derived extracellular vesicles (PMEVs) are subcellular structures that are generated when they bud off the plasma membrane. They can be found in healthy individuals but the numbers tend to increase in pathological conditions including malaria. Although, various studies have been carried out on the protein content of specific cellular derived MPs, there seems to be paucity of information on the protein content of circulating MPs in malaria and their association with the various signs and symptoms of the disease. The aim of this study was therefore to carry out proteomic analyses of MPs isolated from malaria positive samples and compare them with proteins of MPs from malaria parasite culture supernatant and healthy controls in order to ascertain the role of MPs in malaria infection. Methods Plasma samples were obtained from forty-three (43) malaria diagnosed patients (cases) and ten (10) healthy individuals (controls). Malaria parasite culture supernatant was obtained from our laboratory and MPs were isolated from them and confirmed using flow cytometry. 2D LC-MS was done to obtain their protein content. Resultant data were analyzed using SPSS Ver. 21.0 statistical software, Kruskal Wallis test and Spearman’s correlation coefficient r. Results In all, 1806 proteins were isolated from the samples. The MPs from malaria positive samples recorded 1729 proteins, those from culture supernatant were 333 while the control samples recorded 234 proteins. The mean number of proteins in MPs of malaria positive samples was significantly higher than that in the control samples. Significantly, higher quantities of haemoglobin subunits were seen in MPs from malaria samples and culture supernatant compared to control samples. Conclusion A great number of proteins were observed to be carried in the microparticles (MPs) from malaria samples and culture supernatant compared to controls. The greater loss of haemoglobin from erythrocytes via MPs from malaria patients could serve as the initiation and progression of anaemia in P.falciparum infection. Also while some proteins were upregulated in circulating MPs in malaria samples, others were down regulated.
Collapse
Affiliation(s)
- Samuel Antwi-Baffour
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Jonathan Kofi Adjei
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana.,Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francis Agyemang-Yeboah
- Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Max Annani-Akollor
- Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ransford Kyeremeh
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - George Awuku Asare
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Ben Gyan
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Ghana
| |
Collapse
|
10
|
Dalko E, Tchitchek N, Pays L, Herbert F, Cazenave PA, Ravindran B, Sharma S, Nataf S, Das B, Pied S. Erythropoietin Levels Increase during Cerebral Malaria and Correlate with Heme, Interleukin-10 and Tumor Necrosis Factor-Alpha in India. PLoS One 2016; 11:e0158420. [PMID: 27441662 PMCID: PMC4956275 DOI: 10.1371/journal.pone.0158420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/15/2016] [Indexed: 12/12/2022] Open
Abstract
Cerebral malaria (CM) caused by Plasmodium falciparum parasites often leads to the death of infected patients or to persisting neurological sequelae despite anti-parasitic treatments. Erythropoietin (EPO) was recently suggested as a potential adjunctive treatment for CM. However diverging results were obtained in patients from Sub-Saharan countries infected with P. falciparum. In this study, we measured EPO levels in the plasma of well-defined groups of P. falciparum-infected patients, from the state of Odisha in India, with mild malaria (MM), CM, or severe non-CM (NCM). EPO levels were then correlated with biological parameters, including parasite biomass, heme, tumor necrosis factor (TNF)-α, interleukin (IL)-10, interferon gamma-induced protein (IP)-10, and monocyte chemoattractant protein (MCP)-1 plasma concentrations by Spearman’s rank and multiple correlation analyses. We found a significant increase in EPO levels with malaria severity degree, and more specifically during fatal CM. In addition, EPO levels were also found correlated positively with heme, TNF-α, IL-10, IP-10 and MCP-1 during CM. We also found a significant multivariate correlation between EPO, TNF-α, IL-10, IP-10 MCP-1 and heme, suggesting an association of EPO with a network of immune factors in CM patients. The contradictory levels of circulating EPO reported in CM patients in India when compared to Africa highlights the need for the optimization of adjunctive treatments according to the targeted population.
Collapse
Affiliation(s)
- Esther Dalko
- Centre for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille 59019, France
| | - Nicolas Tchitchek
- CEA, DSV/iMETI, Immunology of viral infections and autoimmune diseases research unit, UMR1184, IDMIT infrastructure, Fontenay-aux-Roses, France
| | - Laurent Pays
- Lyon 1 University, CarMeN Laboratory, INSERM U-1060, INRA USC-1235, 69921, Oullins, France; Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Fabien Herbert
- Centre for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille 59019, France
| | - Pierre-André Cazenave
- Centre for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille 59019, France
| | | | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Serge Nataf
- Lyon 1 University, CarMeN Laboratory, INSERM U-1060, INRA USC-1235, 69921, Oullins, France; Banque de Tissus et de Cellules des Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - Bidyut Das
- SCB Medical College, Cuttack, Odisha 753007, India
| | - Sylviane Pied
- Centre for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille 59019, France
- * E-mail:
| |
Collapse
|
11
|
Rucksaken R, Haonon O, Pinlaor P, Pairojkul C, Roytrakul S, Yongvanit P, Selmi C, Pinlaor S. Plasma IgG autoantibody against actin-related protein 3 in liver fluke Opisthorchis viverrini infection. Parasite Immunol 2016; 37:340-8. [PMID: 25809205 DOI: 10.1111/pim.12188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/16/2015] [Indexed: 01/20/2023]
Abstract
Opisthorchiasis secondary to Opisthorchis viverrini infection leads to cholangiocellular carcinoma through chronic inflammation of the bile ducts and possibly inducing autoimmunity. It was hypothesized that plasma autoantibodies directed against self-proteins are biomarkers for opisthorchiasis. Plasma from patients with opisthorchiasis was tested using proteins derived from immortalized cholangiocyte cell lines, and spots reacting with plasma were excised and subjected to LC-MS/MS. Seven protein spots were recognized by IgG autoantibodies, and the highest matching scored protein was actin-related protein 3 (ARP3). The antibody against ARP3 was tested in plasma from 55 O. viverrini-infected patients, 24 patients with others endemic parasitic infections and 17 healthy controls using Western blot and ELISA. Immunoreactivity against recombinant ARP3 was significantly more prevalent in opisthorchiasis compared to healthy controls at Western blotting and ELISA (P < 0.05). Plasma ARP3 autoantibody titres were also higher in opisthorchiasis compared to healthy individuals (P < 0.01) and other parasitic infections including Strongyloides stercoralis (P < 0.001), echinostome (P < 0.05), hookworms (P < 0.001) and Taenia spp. (P < 0.05). It was further characterized in that the ARP3 autoantibody titre had a sensitivity of 78.18% and specificity of 100% for opisthorchiasis. In conclusion, it may be suggested that plasma anti-ARP3 might represent a new diagnostic antibody for opisthorchiasis.
Collapse
Affiliation(s)
- R Rucksaken
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - O Haonon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - P Pinlaor
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Centre for Research and Development in Medical Diagnostic Laboratory, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - C Pairojkul
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - S Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - P Yongvanit
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - C Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| | - S Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
12
|
Multifaceted Role of Heme during Severe Plasmodium falciparum Infections in India. Infect Immun 2015; 83:3793-9. [PMID: 26169278 DOI: 10.1128/iai.00531-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 12/20/2022] Open
Abstract
Several immunomodulatory factors are involved in malaria pathogenesis. Among them, heme has been shown to play a role in the pathophysiology of severe malaria in rodents, but its role in human severe malaria remains unclear. Circulating levels of total heme and its main scavenger, hemopexin, along with cytokine/chemokine levels and biological parameters, including hemoglobin and creatinine levels, as well as transaminase activities, were measured in the plasma of 237 Plasmodium falciparum-infected patients living in the state of Odisha, India, where malaria is endemic. All patients were categorized into well-defined groups of mild malaria, cerebral malaria (CM), or severe noncerebral malaria, which included acute renal failure (ARF) and hepatopathy. Our results show a significant increase in total plasma heme levels with malaria severity, especially for CM and malarial ARF. Spearman rank correlation and canonical correlation analyses have shown a correlation between total heme, hemopexin, interleukin-10, tumor necrosis factor alpha, gamma interferon-induced protein 10 (IP-10), and monocyte chemotactic protein 1 (MCP-1) levels. In addition, canonical correlations revealed that heme, along with IP-10, was associated with the CM pathophysiology, whereas both IP-10 and MCP-1 together with heme discriminated ARF. Altogether, our data indicate that heme, in association with cytokines and chemokines, is involved in the pathophysiology of both CM and ARF but through different mechanisms.
Collapse
|
13
|
Autoantibody profile of patients infected with knowlesi malaria. Clin Chim Acta 2015; 448:33-8. [PMID: 26086445 DOI: 10.1016/j.cca.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND Autoantibodies or antibodies against self-antigens are produced either during physiological processes to maintain homeostasis or pathological process such as trauma and infection. Infection with parasites including Plasmodium has been shown to generally induce elevated self-antibody (autoantibody) levels. Plasmodium knowlesi is increasingly recognized as one of the most important emerging human malaria in Southeast Asia that can cause severe infection leading to mortality. Autoimmune-like phenomena have been hypothesized to play a role in the protective immune responses in malaria infection. METHODS We studied the autoantibody profile from serum of eleven patients diagnosed with P. knowlesi. Autoantigen arrays were used to elucidate the autoantibody repertoire of P. knowlesi infected patients. The patented OGT Discovery Array with 1636 correctly folded antigen was employed. RESULTS Analysis of the patient versus control sera gave us 24 antigens with high reactivity with serum antibodies. CONCLUSIONS Understanding the autoantibody profile of malarious patients infected with P. knowlesi would help to further understand the host-parasite interaction, host immune response and disease pathogenesis. These reactive antigens may serve as potential biomarkers for cases of asymptomatic malaria and mild malaria or predictive markers for severe malaria.
Collapse
|
14
|
Guiyedi V, Bécavin C, Herbert F, Gray J, Cazenave PA, Kombila M, Crisanti A, Fesel C, Pied S. Asymptomatic Plasmodium falciparum infection in children is associated with increased auto-antibody production, high IL-10 plasma levels and antibodies to merozoite surface protein 3. Malar J 2015; 14:162. [PMID: 25889717 PMCID: PMC4419484 DOI: 10.1186/s12936-015-0658-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/19/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Mechanisms of acquired protection to malaria in asymptomatic Plasmodium falciparum carriers are only partially understood. Among them, the role plays by the self-reactive antibodies has not been clarified yet. In this study, the relationship between repertoires of circulating self-reactive and parasite-specific immunoglobulin G (IgG), their correlation with cytokine levels, and their association with protection against malaria was investigated in asymptomatic Plasmodium falciparum-infected Gabonese children. METHODS The diversity of P. falciparum-specific antibody repertoire was analysed using a protein micro-array immunoassay, the total auto-antibody repertoire by quantitative immunoblotting and circulating cytokine levels were measured by ELISA in endemic controls (EC) and P. falciparum-infected children from Gabon with asymptomatic (AM) or mild malaria (MM). The association of self- and parasite-specific antibody repertoires with circulating cytokines was evaluated using single linkage hierarchical clustering, Kruskal-Wallis tests and Spearman's rank correlation. RESULTS Children with AM exhibited an IgG response to merozoite surface protein 3 (MSP3) but not to MSP1-19, although their levels of total P. falciparum-specific IgG were similar to those in the MM group. Moreover, the asymptomatic children had increased levels of autoantibodies recognising brain antigens. In addition, a correlation between IL-10 levels and parasite load was found in AM and MM children. These two groups also exhibited significant correlations between plasma levels of IL-10 and IFN-γ with age and with total plasma IgG levels. IL-10 and IFN-γ levels were also associated with auto-antibody responses in AM. CONCLUSIONS Altogether, these results indicate that a self-reactive polyclonal response associated with increased IgG to MSP3 and high plasma levels of IL-10 and IFN-γ may contribute to protective immune mechanisms triggered in asymptomatic P. falciparum infection in Gabonese children.
Collapse
Affiliation(s)
- Vincent Guiyedi
- CIIL-Centre for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Lille University, Institut Pasteur de Lille, 1, rue du Professeur Calmette, Cedex 59019, Lille, France.
- Département de Parasitologie-Mycologie-Médecine Tropicale, Faculté de Médecine de Libreville, Université des Sciences de la Santé, Owendo, Gabon.
| | - Christophe Bécavin
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015, Paris, France.
| | - Fabien Herbert
- CIIL-Centre for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Lille University, Institut Pasteur de Lille, 1, rue du Professeur Calmette, Cedex 59019, Lille, France.
| | - Julian Gray
- Department of Biological Sciences, London Imperial College, London, UK.
| | - Pierre-André Cazenave
- CIIL-Centre for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Lille University, Institut Pasteur de Lille, 1, rue du Professeur Calmette, Cedex 59019, Lille, France.
| | - Maryvonne Kombila
- Département de Parasitologie-Mycologie-Médecine Tropicale, Faculté de Médecine de Libreville, Université des Sciences de la Santé, Owendo, Gabon.
| | - Andrea Crisanti
- Department of Biological Sciences, London Imperial College, London, UK.
| | | | - Sylviane Pied
- CIIL-Centre for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Lille University, Institut Pasteur de Lille, 1, rue du Professeur Calmette, Cedex 59019, Lille, France.
| |
Collapse
|
15
|
Duarte J, Herbert F, Guiyedi V, Franetich JF, Roland J, Cazenave PA, Mazier D, Kombila M, Fesel C, Pied S. High Levels of Immunoglobulin E Autoantibody to 14-3-3 Protein Correlate With Protection Against Severe Plasmodium falciparum Malaria. J Infect Dis 2012; 206:1781-9. [DOI: 10.1093/infdis/jis595] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Brahimi K, Martins YC, Zanini GM, Ferreira-da-Cruz MDF, Daniel-Ribeiro CT. Monoclonal auto-antibodies and sera of autoimmune patients react with Plasmodium falciparum and inhibit its in vitro growth. Mem Inst Oswaldo Cruz 2012; 106 Suppl 1:44-51. [PMID: 21881756 DOI: 10.1590/s0074-02762011000900006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 03/25/2011] [Indexed: 01/05/2023] Open
Abstract
The relationship between autoimmunity and malaria is not well understood. To determine whether autoimmune responses have a protective role during malaria, we studied the pattern of reactivity to plasmodial antigens of sera from 93 patients with 14 different autoimmune diseases (AID) who were not previously exposed to malaria. Sera from patients with 13 different AID reacted against Plasmodium falciparum by indirect fluorescent antibody test with frequencies varying from 33-100%. In addition, sera from 37 AID patients were tested for reactivity against Plasmodium yoelii 17XNL and the asexual blood stage forms of three different P. falciparum strains. In general, the frequency of reactive sera was higher against young trophozoites than schizonts (p < 0.05 for 2 strains), indicating that the antigenic determinants targeted by the tested AID sera might be more highly expressed by the former stage. The ability of monoclonal auto-antibodies (auto-Ab) to inhibit P. falciparum growth in vitro was also tested. Thirteen of the 18 monoclonal auto-Ab tested (72%), but none of the control monoclonal antibodies, inhibited parasite growth, in some cases by greater than 40%. We conclude that autoimmune responses mediated by auto-Ab may present anti-plasmodial activity.
Collapse
Affiliation(s)
- Karima Brahimi
- Laboratorie de Parasitologie Biomédicale, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
17
|
Identification of β-tubulin as a common immunogen in gastrointestinal malignancy by mass spectrometry of colorectal cancer proteome: implications for early disease detection. Anal Bioanal Chem 2012; 403:1801-9. [DOI: 10.1007/s00216-011-5628-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/22/2011] [Accepted: 11/29/2011] [Indexed: 01/11/2023]
|
18
|
Dassé R, Lefranc D, Dubucquoi S, Dussart P, Dutoit-Lefevre V, Sendid B, Sombo Mambo F, Vermersch P, Prin L. Changes Related to Age in Natural and Acquired Systemic Self-IgG Responses in Malaria. Interdiscip Perspect Infect Dis 2011; 2011:462767. [PMID: 22253622 PMCID: PMC3255176 DOI: 10.1155/2011/462767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/23/2011] [Indexed: 01/22/2023] Open
Abstract
Background. Absence of acquired protective immunity in endemic areas children leads to higher susceptibility to severe malaria. To investigate the involvement of regulatory process related to self-reactivity, we evaluated potent changes in auto-antibody reactivity profiles in children and older subjects living in malaria-endemic zones comparatively to none-exposed healthy controls. Methods. Analysis of IgG self-reactive footprints was performed using Western blotting against healthy brain antigens. Plasmas of 102 malaria exposed individuals (MEIs) from endemic zone, with or without cerebral malaria (CM) were compared to plasmas from non-endemic controls (NECs). Using linear discriminant and principal component analysis, immune footprints were compared by counting the number, the presence or absence of reactive bands. We identified the most discriminant bands with respect to age and clinical status. Results. A higher number of bands were recognized by IgG auto-antibodies in MEI than in NEC. Characteristic changes in systemic self-IgG-reactive repertoire were found with antigenic bands that discriminate Plasmodium falciparum infections with or without CM according to age. 8 antigenic bands distributed in MEI compared with NEC were identified while 6 other antigenic bands were distributed within MEI according to the age and clinical status. Such distortion might be due to evolutionary processes leading to pathogenic/protective events.
Collapse
Affiliation(s)
- Romuald Dassé
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
- Laboratoire d'Immunologie et Hématologie du CHU-Cocody, Abidjan, Cote D'Ivoire
| | - Didier Lefranc
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Sylvain Dubucquoi
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Patricia Dussart
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Virginie Dutoit-Lefevre
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| | - Boualem Sendid
- Laboratoire de Parasitologie et de Mycologie, Institute de Biologie et Pathologie, CHRU de Lille 59037 Lille, France
| | | | - Patrick Vermersch
- Service de Neurologie D, Hôpital Roger Salengro, 59037 Lille Cedex, France
| | - Lionel Prin
- Laboratoire d'Immunologie EA 2686, IMPRT-IFR 114, Faculté de Médecine Pôle Recherche, Université Lille 2, 1 Place de Verdun, 59045 Lille Cedex, France
| |
Collapse
|
19
|
Gallien S, Roussilhon C, Blanc C, Pérignon JL, Druilhe P. Autoantibody against dendrite in Plasmodium falciparum infection: a singular auto-immune phenomenon preferentially in cerebral malaria. Acta Trop 2011; 118:67-70. [PMID: 21315059 DOI: 10.1016/j.actatropica.2011.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/13/2011] [Accepted: 01/16/2011] [Indexed: 01/02/2023]
Abstract
To investigate auto-reactive antibodies against dendrites of neurons (AAD) previously reported in cerebral malaria (CM) for their functional biological activity, a serological study was conducted in a larger cohort of patients with CM and uncomplicated falciparum malaria (UM). Sera from Thai adults with CM (n=22) and UM (n=21) were tested to determine the titers of AAD by indirect fluorescent antibody test and specific antibody responses to Plasmodium falciparum antigens by ELISA. Immunoreactivity against the dendrites of neurons was observed in 100% of sera from the cerebral malaria group as compared to 71% from the non-cerebral malaria group, and the median titer of AAD was higher in CM versus UM, though the difference did not reach significance. In contrast an opposite pattern was seen for anti-P. falciparum antibody titers, which were significantly lower among CM than among UM patients, both for IgG and IgM (p=0.024 and p=0.0033, respectively). Our results indicate that this auto-immune phenomenon induced by P. falciparum infection occurs preferentially in cerebral malaria despite lower responses in parasite-specific antibody responses.
Collapse
|
20
|
Bécavin C, Benecke A. New dimensionality reduction methods for the representation of high dimensional 'omics' data. Expert Rev Mol Diagn 2011; 11:27-34. [PMID: 21171918 DOI: 10.1586/erm.10.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
'Omics' data have increased very rapidly in quantity and resolution, and are increasingly recognized as very valuable experimental observations in the systematic study of biological phenomena. The increase in availability, complexity and nonexpert interest in such data requires the urgent development of accurate and efficient dimensionality reduction and visualization techniques. To illustrate this need for new approaches we extensively discuss current methodology in terms of the limitations encountered. We then illustrate a recent example of how combinations of existing techniques can be used to overcome some of the present limitations, and discuss possible future directions for research in this important field of study.
Collapse
Affiliation(s)
- Christophe Bécavin
- Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440 Bures sur Yvette, France
| | | |
Collapse
|
21
|
Bécavin C, Tchitchek N, Mintsa-Eya C, Lesne A, Benecke A. Improving the efficiency of multidimensional scaling in the analysis of high-dimensional data using singular value decomposition. Bioinformatics 2011; 27:1413-21. [PMID: 21421551 DOI: 10.1093/bioinformatics/btr143] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Multidimensional scaling (MDS) is a well-known multivariate statistical analysis method used for dimensionality reduction and visualization of similarities and dissimilarities in multidimensional data. The advantage of MDS with respect to singular value decomposition (SVD) based methods such as principal component analysis is its superior fidelity in representing the distance between different instances specially for high-dimensional geometric objects. Here, we investigate the importance of the choice of initial conditions for MDS, and show that SVD is the best choice to initiate MDS. Furthermore, we demonstrate that the use of the first principal components of SVD to initiate the MDS algorithm is more efficient than an iteration through all the principal components. Adding stochasticity to the molecular dynamics simulations typically used for MDS of large datasets, contrary to previous suggestions, likewise does not increase accuracy. Finally, we introduce a k nearest neighbor method to analyze the local structure of the geometric objects and use it to control the quality of the dimensionality reduction. RESULTS We demonstrate here the, to our knowledge, most efficient and accurate initialization strategy for MDS algorithms, reducing considerably computational load. SVD-based initialization renders MDS methodology much more useful in the analysis of high-dimensional data such as functional genomics datasets.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Intense interventions are ongoing to combat malaria. Malaria mortality investigation remains as an intense area of study with controversies, competing models of pathogenesis, and a few carefully proceeding clinical trials. This review suggests a reframing of the question of cerebral malaria pathology in light of recent findings to focus on dissection of pathogenesis that will lead to effective treatments. RECENT FINDINGS Pediatric and adult manifestations of cerebral malaria within the retina allows for intense study of the clinical defined patients including the advent of multiple imaging modalities in endemic regions. Basic pathogenesis in mouse models and human studies, focused on cytokines, inflammation, cytoadherence, and endothelial activation, continues to be elucidated molecule by molecule. Coagulation is variably important and may serve as one of several unifying principles of current pathogenesis models. Parasite-derived molecules - surface or soluble - remain necessary but not sufficient to explain pathologic manifestations. SUMMARY As we close the gaps in the fight against global malaria, the question of cerebral malaria mortality remains a source of great concern. We currently have no effective means of reversal of coma or impacting mortality in the comatose patient. As transmission is broken, cerebral malaria will spread to older age groups in Africa where we expect mortality will be higher. Continued directed study of pathogenesis with the primary goal of efficacious interventions in the comatose is a necessity.
Collapse
Affiliation(s)
- Danny A Milner
- The Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|